Huddled&Masses&Yearning&to& Breathe&Free&&pono.ucsd.edu/~adam/presentations/0910princeton.pdf ·...

26
Huddled Masses Yearning to Breathe Free Unresolved Brown Dwarf Binaries Iden:fied with Low Resolu:on NearInfrared Spectroscopy Adam J. Burgasser UC San Diego/MIT © 2009 Adam J. Burgasser

Transcript of Huddled&Masses&Yearning&to& Breathe&Free&&pono.ucsd.edu/~adam/presentations/0910princeton.pdf ·...

  • Huddled  Masses  Yearning  to  Breathe  Free    Unresolved  Brown  Dwarf  Binaries  Iden:fied  with  Low  Resolu:on  Near-‐Infrared  Spectroscopy  

    Adam  J.  Burgasser  UC  San  Diego/MIT  

    ©  2009  Adam  J.  Burgasser  

  • WHAT  IS  THE  BROWN  DWARF  MULTIPLICITY  

    FRACTION  IN  THE  FIELD?  

    10%?

    20%?

    50%?

    ©  2009  Adam  J.  Burgasser  

  • Bate  et  al.  (2009):  5-‐20%  Lada  (2006):  5-‐15%  

    Thies  &  Kroupa  (2007):  5-‐15%  ©  2009  Adam  J.  Burgasser  

  • Bate  et  al.  (2009):  5-‐20%  Lada  (2006):  5-‐15%  

    Thies  &  Kroupa  (2007):  5-‐15%  

    “BD  binary  frac:ons  are  low”    But  are  they?  

    ©  2009  Adam  J.  Burgasser  

  • Pinfield  et  al.  (2003):  40-‐61%  

    Lodieu  et  al.  (2007):  28-‐44%  

    Maxted  &  Jeffries  (2005):  32-‐45%  

    ©  2009  Adam  J.  Burgasser  

  • hcp://www.vlmbinaries.org  ©  2009  Adam  J.  Burgasser  

  • hcp://www.vlmbinaries.org  10-2 100 102 104

    Projected Separation (AU)

    0

    5

    10

    15

    20

    25

    30

    Num

    ber

    of S

    ourc

    es

    VLM Binaries Archive 93 sources ~4  AU  

    ©  2009  Adam  J.  Burgasser  

  • hcp://www.vlmbinaries.org  10-2 100 102 104 106

    Angular Separation (marcs)

    0

    5

    10

    15

    20

    25

    30

    Num

    ber

    of S

    ourc

    es

    VLM Binaries Archive 90 sources

    50  mas  

    ©  2009  Adam  J.  Burgasser  

  • hcp://www.vlmbinaries.org  10-2 100 102 104 106

    Angular Separation (marcs)

    0

    5

    10

    15

    20

    25

    30

    Num

    ber

    of S

    ourc

    es

    VLM Binaries Archive 90 sources

    50  mas  

    How  many  sources  live  

    here?  

    ©  2009  Adam  J.  Burgasser  

  • Standard  Ways  to  Find  Tight  BD  Binaries  

    •  Radial  velocity  variables  (e.g.,  Joergens  2006,2008;  Basri  &  Reiners  2006;  Blake  et  al.  2008)  Pros:  samples  :ght  physical  separa:ons  (

  • Spectral  Binaries  

    Silvestri  et  al.  (2006)  WD-‐dM  unresolved  pair  

    Combined  light  spectra  of  dis:nct  but  comparably  bright  components  

    Pros:  independent  of  angular  &  projected  separa:on,  can  be  done  with  low-‐resolu:on  data  (cheap),  can  characterize  components  

    Cons:  rare,  no  separa:on  info,  complex  selec:on  effects    

    ©  2009  Adam  J.  Burgasser  

  • Spectral  Binaries  

    Silvestri  et  al.  (2006)  WD-‐dM  unresolved  pair  

    Combined  light  spectra  of  dis:nct  but  comparably  bright  components  

    Pros:  independent  of  angular  &  projected  separa:on,  can  be  done  with  low-‐resolu:on  data  (cheap),  can  characterize  components  

    Cons:  rare,  no  separa:on  info,  complex  selec:on  effects    

    Spectral  binaries  are  easily  iden:fiable  at  the    

    L  dwarf/T  dwarf  transi:on    

    ©  2009  Adam  J.  Burgasser  

  • The  L  dwarf/  T  dwarf  Transi:on*  

    *Spectral  types  L7-‐T5  1.0 1.5 2.0Wavelength (!m)

    0

    1

    2

    3

    4

    5

    Nor

    mal

    ized

    F

    L7

    L8

    L9

    T0

    T1

    T2

    T3

    T4

    T5

    ΔTeff  ≈  200-‐400  K  ΔLbol  ≈  0.3  dex    

    ©  2009  Adam  J.  Burgasser  

  • The  J-‐band  bump  

    J-‐Ks  color  

    MJ  

    Burrows  et  al.  (2006)  See  also  Dahn  et  al.  (1999);  Ackerman  &  Marley  (2001);  Marley  et  al.  (2002);  Tinney  et  al.  (2003);  Tsuji  (2003,2005);  Saumon  &  Marley  (2008)  ©  2009  Adam  J.  Burgasser  

  • Looper  et  al.  (2008);  Burgasser  et  al.  (2006)  See  also  Gizis  et  al.  (2003);  Cruz  et  al.  (2004);  Liu  et  al.  (2006);  Burgasser  (2007,2008)    

    Primary  Secondary  

    Combined  Light  Data  

    J  

    H  

    Ks  

    The  J-‐band  bump  

    Detected  in  resolved  coeval  binaries  as  well  

    2M  1404-‐3159   SD  0423-‐0414  

    ©  2009  Adam  J.  Burgasser  

  • Exploi:ng  the  L/T  Transi:on  “J-‐band”  bump   Deep  minimum  in  LF  

    An  enhanced  binary  frac:on  of  equal-‐

    brightness  components  at  the  L/T  transi:on  

    ©  2009  Adam  J.  Burgasser  

  • ©  2009  Adam  J.  Burgasser  

  • 1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    0518-2828

    0825+2115 L7.5 (L7.0)

    2331-4718 T5.0 (T5.0)

    "2 = 58.9

    2M  0518-‐2828    Archetype  L/T  Spectral  Binary  

    Cruz  et  al.  (2004);  Burgasser  et  al.  (2006)  

    Resolved  (barely)  with  HST/NICMOS  (50  mas  ≈  1.8  AU)  

    ©  2009  Adam  J.  Burgasser  

  • 2M  0320-‐0446  An  M/T  Spectral/Spectroscopic  Binary  

    Burgasser  et  al.  (2008);  Blake  et  al.  (2008)  

    Spectroscopic  binary  with  0.67  yr  period    

    (ΔV  =  ±7  km/s;  M1  ≈  0.08  M,  M2  ≈  0.05  M    

    ΔK  =  4.3  mag    

    ©  2009  Adam  J.  Burgasser  

  • A  Search  for  Unresolved  L/T  Binaries  

    •  Full  sample  of  253  SpeX  prism  spectra  for  233  L3-‐T8  dwarfs  from  SpeX  Prism  Spectral  Libraries*  

    •  Index  selec:on  of  binary  candidates  •  Template  library  of  170  spectra  (reject  low  g,  subdwarfs,  low  S/N,  known  &  candidate  binaries)  

    •  Construct  13,581  unique  binary  combina:ons  •  Compare  single  and  binary  templates  to  candidates  and  assess  sta:s:cal  significance  of  “becer  fit”  

    *  hcp://www.browndwarfs.org/spexprism  ©  2009  Adam  J.  Burgasser  

  • Derived NIR Spectral Type

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    H2O

    -J/H

    2O

    -H2252-1730 0423-0414

    0423-0414

    0518-2828

    1404-3159

    1021-0304

    1534+1615

    L0 L2 L4 L6 L8 T0 T2 T4 T6 T8

    Index  Selec:on  

    =>  20  candidates  iden:fied  (12  “strong”  +  8  “weak”)  

    x6  

    ©  2009  Adam  J.  Burgasser  

  • 1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2N

    orm

    aliz

    ed F

    !0247-1631

    1520+3546 T0.0 (L7.5)

    0050-3322 T7.0 (T6.5)

    "2 = 1.99

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    0351+4810

    0103+1935 L6.0 (L6.0)

    0602+4043 T4.5 (T4.5)

    "2 = 6.64

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    1039+3256

    1043+1213 L7.0 (L8.0)

    2254+3123 T4.0 (T4.0)

    "2 = 2.56

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    1106+2754

    1520+3546 T0.0 (L7.5)

    0000+2554 T4.5 (T4.5)

    "2 = 5.18

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    No

    rmal

    ized

    F!

    1324+6358

    1043+2225 L8.0 (L9.0)

    1214+6316 T3.5 (T4.0)

    "2 = 6.17

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    No

    rmal

    ized

    F!

    1415+5724

    1523+3014 L8.0 (L7.5)

    0741+2351 T5.0 (T5.5)

    "2 = 1.73

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    No

    rmal

    ized

    F!

    1435+1129

    1043+1213 L7.0 (L8.0)

    1615+1340 T6.0 (T6.0)

    "2 = 19.9

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    No

    rmal

    ized

    F!

    1439+3042

    0151+1244 T1.0 (T0.0)

    2356-1553 T5.5 (T5.5)

    "2 = 4.85

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    1516+0259

    0318-3421 L7.0 (L6.5)

    1048+0919 T2.5 (T2.5)

    "2 = 1.97

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    1711+2232

    0624-4521 L5.0 (L5.0)

    1828-4849 T5.5 (T5.5)

    "2 = 1.49

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    2139+0220

    0830+4828 L9.0 (L9.5)

    1214+6316 T3.5 (T4.0)

    "2 = 1.83

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    0119+2403

    0858+3256 T1.0 (T0.0)

    2254+3123 T4.0 (T4.0)

    "2 = 15.7

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    0909+6525

    1750+4222 T2.0 (T1.5)

    1048+0919 T2.5 (T2.5)

    "2 = 2.53

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    0949-1545

    1632+4150 T1.0 (T1.0)

    1122-3512 T2.0 (T2.0)

    "2 = 13.7

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    1207+0244

    1036-3441 L6.0 (L6.5)

    1209-1004 T3.0 (T3.0)

    "2 = 6.14

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    2052-1609

    1155+0559 L7.5 (L7.0)

    1122-3512 T2.0 (T2.0)

    "2 = 2.59

    ©  2009  Adam  J.  Burgasser  

  • 1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2N

    orm

    aliz

    ed F

    !0247-1631

    1520+3546 T0.0 (L7.5)

    0050-3322 T7.0 (T6.5)

    "2 = 1.99

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    0351+4810

    0103+1935 L6.0 (L6.0)

    0602+4043 T4.5 (T4.5)

    "2 = 6.64

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    1039+3256

    1043+1213 L7.0 (L8.0)

    2254+3123 T4.0 (T4.0)

    "2 = 2.56

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    1106+2754

    1520+3546 T0.0 (L7.5)

    0000+2554 T4.5 (T4.5)

    "2 = 5.18

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    No

    rmal

    ized

    F!

    1324+6358

    1043+2225 L8.0 (L9.0)

    1214+6316 T3.5 (T4.0)

    "2 = 6.17

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    No

    rmal

    ized

    F!

    1415+5724

    1523+3014 L8.0 (L7.5)

    0741+2351 T5.0 (T5.5)

    "2 = 1.73

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    No

    rmal

    ized

    F!

    1435+1129

    1043+1213 L7.0 (L8.0)

    1615+1340 T6.0 (T6.0)

    "2 = 19.9

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    No

    rmal

    ized

    F!

    1439+3042

    0151+1244 T1.0 (T0.0)

    2356-1553 T5.5 (T5.5)

    "2 = 4.85

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    1516+0259

    0318-3421 L7.0 (L6.5)

    1048+0919 T2.5 (T2.5)

    "2 = 1.97

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    1711+2232

    0624-4521 L5.0 (L5.0)

    1828-4849 T5.5 (T5.5)

    "2 = 1.49

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    2139+0220

    0830+4828 L9.0 (L9.5)

    1214+6316 T3.5 (T4.0)

    "2 = 1.83

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    0119+2403

    0858+3256 T1.0 (T0.0)

    2254+3123 T4.0 (T4.0)

    "2 = 15.7

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    0909+6525

    1750+4222 T2.0 (T1.5)

    1048+0919 T2.5 (T2.5)

    "2 = 2.53

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    0949-1545

    1632+4150 T1.0 (T1.0)

    1122-3512 T2.0 (T2.0)

    "2 = 13.7

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    1207+0244

    1036-3441 L6.0 (L6.5)

    1209-1004 T3.0 (T3.0)

    "2 = 6.14

    1.0 1.5 2.0Wavelength (µm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Norm

    aliz

    ed F

    !

    2052-1609

    1155+0559 L7.5 (L7.0)

    1122-3512 T2.0 (T2.0)

    "2 = 2.59

    We  iden:fied  17/20  sources  as  probable  binaries  (index  selec:on,  becer  fit  to  binary  templates)  –  more  than  2x  known  sample  

    3  are  unresolved  with  HST/AO  (Looper  et  al.  2008;  Gelino  et  al.  in  prep)  

    2  have  been  subsequently  resolved  with  AO  (Gelino  et  al.  in  prep.)  

    12  are  unobserved  at  high  resolu:on  

    ©  2009  Adam  J.  Burgasser  

  • Spectral Type

    0

    20

    40

    60

    80

    Fra

    ctio

    n o

    f B

    ina

    rie

    s

    L8 L9 T0 T1 T2 T3 T4 T5

    0/12 (21) 1/9 (13) 6/9 (14) 6/10 (15) 8/17 (20) 3/7 (13) 1/10 (20)

    eb = 15%

    What  about  the  binary  frac:on?  

    53±7%  

    eb  ≥  15+3-‐1  %  

    ©  2009  Adam  J.  Burgasser  

  • Conclusions  

    •  Spectral  binaries  comprised  of  L  dwarf/T  dwarf  pairs  can  measure  the  intrinsic  BD  binary  frac:on    

    –  Indep.  of  physical  separa:on  (:ght  pairs;  e.g.  2m0320)  

    –  Indep.  of  angular  separa:on  (distant  pairs,  large  samples)  

    –  Can  be  done  cheap  and  fast  with  low-‐res  spectral  data  

    •  We  have  uncovered  17  (+3)  probable  binaries;  a  few  confirmed,  most  awai:ng  follow-‐up  

    •  The  BD  binary  frac:on  is  ≥15%  independent  of  separa:on  distribu:on  

    ©  2009  Adam  J.  Burgasser  

  • Huddled  Masses  Yearning  to  Breathe  Free    Unresolved  Brown  Dwarf  Binaries  Iden:fied  with  Low  Resolu:on  Near-‐Infrared  Spectroscopy  

    Adam  J.  Burgasser  UC  San  Diego/MIT  

    ©  2009  Adam  J.  Burgasser