Http:// Berkeley Vision GroupNIPS Vancouver 20021 Learning to Detect Natural Image Boundaries Using...

17
NIPS Vancouver 2002 1 http://www.cs.berkeley.edu/projects/ vision UC Berkeley Vision Group Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues David Martin, Charless Fowlkes, Jitendra Malik {dmartin,fowlkes,malik}@eecs.berkeley.edu UC Berkeley Vision Group http://www.cs.berkeley.edu/projects/vision
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    214
  • download

    0

Transcript of Http:// Berkeley Vision GroupNIPS Vancouver 20021 Learning to Detect Natural Image Boundaries Using...

NIPS Vancouver 2002 1http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Learning to Detect Natural Image Boundaries Using Local Brightness,

Color, and Texture Cues

David Martin, Charless Fowlkes, Jitendra Malik{dmartin,fowlkes,malik}@eecs.berkeley.edu

UC Berkeley Vision Grouphttp://www.cs.berkeley.edu/projects/vision

NIPS Vancouver 2002 2http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

NIPS Vancouver 2002 3http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Multiple Cues for Grouping

• Many cues for perceptual grouping: – Low-Level: brightness, color, texture, depth, motion

– Mid-Level: continuity, closure, convexity, symmetry, …

– High-Level: familiar objects and configurations

This talk: Learn local cue combination rule from data

NIPS Vancouver 2002 4http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Non-Boundaries Boundaries

I

T

B

C

NIPS Vancouver 2002 5http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Goal and Outline

• Goal: Model the posterior probability of a boundary Pb(x,y,) at each pixel and orientation using local cues.

• Method: Supervised learning using dataset of 12,000 segmentations of 1,000 images by 30 subjects.

• Outline of Talk:

1. 3 cues: brightness, color, texture

2. Cue calibration

3. Cue combination

4. Compare with other approaches– Canny 1986, Konishi/Yuille/Coughlan/Zhu 1999

5. Pb images

NIPS Vancouver 2002 6http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Brightness and Color Features

• 1976 CIE L*a*b* colorspace• Brightness Gradient BG(x,y,r,)

2 difference in L* distribution

• Color Gradient CG(x,y,r,) 2 difference in a* and b*

distributions

i ii

ii

hg

hghg

22 )(

2

1),(

r(x,y)

NIPS Vancouver 2002 7http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Texture Feature

• Texture Gradient TG(x,y,r,) 2 difference of texton histograms

– Textons are vector-quantized filter outputs

TextonMap

NIPS Vancouver 2002 8http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Cue Calibration

All free parameters optimized on training data

• Brightness Gradient– Scale, bin/kernel sizes for KDE

• Color Gradient– Scale, bin/kernel sizes for KDE, joint vs. marginals

• Texture Gradient– Filter bank: scale, multiscale? – Histogram comparison: L1, L2, L, 2, EMD– Number of textons– Image-specific vs. universal textons

• Localization parameters for each cue (see paper)

NIPS Vancouver 2002 9http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Classifiers for Cue Combination

• Classification Trees– Top-down splits to maximize entropy, error bounded

• Density Estimation– Adaptive bins using k-means

• Logistic Regression, 3 variants– Linear and quadratic terms– Confidence-rated generalization of AdaBoost (Schapire&Singer)

• Hierarchical Mixtures of Experts (Jordan&Jacobs)– Up to 8 experts, initialized top-down, fit with EM

• Support Vector Machines (libsvm, Chang&Lin)

Range over bias/variance, parametric/non-parametric, simple/complex

NIPS Vancouver 2002 10http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

ClassifierComparison

NIPS Vancouver 2002 11http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Cue Combinations

NIPS Vancouver 2002 12http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Alternate Approaches

• Canny Detector– Canny 1986

– MATLAB implementation

– With and without hysteresis

• Second Moment Matrix– Nitzberg/Mumford/Shiota 1993

– cf. Förstner and Harris corner detectors

– Used by Konishi et al. 1999 in learning framework

– Logistic model trained on eigenspectrum

NIPS Vancouver 2002 13http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Two Decades of Boundary

Detection

NIPS Vancouver 2002 14http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Pb Images ICanny 2MM Us HumanImage

NIPS Vancouver 2002 15http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Pb Images IICanny 2MM Us HumanImage

NIPS Vancouver 2002 16http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Pb Images IIICanny 2MM Us HumanImage

NIPS Vancouver 2002 17http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision Group

Summary and Conclusion

1. A simple linear model is sufficient for cue combination– All cues weighted approximately equally in logistic

2. Proper texture edge model is not optional for complex natural images

– Texture suppression is not sufficient!

3. Significant improvement over state-of-the-art in boundary detection

– Pb useful for higher-level processing

4. Empirical approach critical for both cue calibration and cue combination

Segmentation data and Pb images on the webhttp://www.cs.berkeley.edu/projects/vision