HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material...

21
Dr. P J Masson Dr. P J Masson Panel Session Panel Session - - PES General Meeting 2007, Tampa, FL PES General Meeting 2007, Tampa, FL HTS Machines for Applications in All-Electric Aircraft Philippe Masson Cesar Luongo FAMU/FSU College of Engineering Center for Advanced Power Systems Tallahassee, FL University Research Engineering Technology Institute on Aeropropulsion & Power Technology U U niversity niversity R R esearch esearch E E ngineering ngineering T T echnology echnology I I nstitute on nstitute on A A eropropulsion eropropulsion & & P P ower ower T T echnology echnology Power Engineering Society General Meeting 2007 Power Engineering Society General Meeting 2007 Power Engineering Society General Meeting 2007

Transcript of HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material...

Page 1: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

HTS Machines for Applications in All-Electric Aircraft

Philippe MassonCesar Luongo

FAMU/FSU College of EngineeringCenter for Advanced Power Systems

Tallahassee, FL

University Research Engineering Technology Institute on Aeropropulsion & Power Technology

UUniversity niversity RResearch esearch EEngineering ngineering TTechnology echnology IInstitute on nstitute on AAeropropulsioneropropulsion & & PPower ower TTechnologyechnology

Power Engineering Society General Meeting 2007Power Engineering Society General Meeting 2007Power Engineering Society General Meeting 2007

Page 2: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

OutlineOutlineOutline

• Motivation• UAPT Project• More/All-Electric Aircraft• Applications and design examples• System Approach• Examples of electrical system sizing• Conclusion

Page 3: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

Motivation: Environment PreservationMotivation: Environment PreservationMotivation: Environment Preservation

• Need to develop environmentally friendly transportation systems (emissions and noise)

• Electrical energy is very attractive• Need to design high power density electrical components

Revolutionize Aviation

Increase Safety Reduce Noise

Increase Mobility

Reduce Emissions

Increase Capacity

Objective : Objective :

Page 4: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

URETI on Aeropropulsion and Power TechnologyURETI on URETI on AeropropulsionAeropropulsion and Power Technologyand Power Technology

AllAll--Electric AircraftElectric Aircraft

AeroSpace Design Laboratory (ASDL) @ GATech

Revolutionary Concepts, Architectures & Technology

Aircraft Design & Modeling

Aircraft DesignAircraft Design& Optimization& Optimization

GATech Research Institute

Solid Oxide Fuel Cells

Development of high power density

fuel cells

Power GenerationPower Generation

Florida A&M University / Center for Advance Power Systems

Integrated Power Management

High Power Density Superconducting Motors

Electrical Network simulationSuperconducting motor design

Power ManagementPower Management& Electric Propulsion /Actuation& Electric Propulsion /Actuation

0 500 1000 1500 2000 2500

28

30

32

34

36

FC Voltage (V)

0 500 1000 1500 2000 2500

50

100

150

FC Current (A)

Page 5: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

UAPT HTS Machine DevelopmentUAPT HTS Machine DevelopmentUAPT HTS Machine Development

HTS Motor Sizing Model

System Studies

ELECTROMAGNETICMODEL

THERMALMODEL

GLOBAL OPTIMIZATION

POWERRPMMATERIAL

OPTIMIZATION

CONSTRAINTS

20 40 60 80 100k

250500750

100012501500

best statesweight

MINIMUM WEIGHTOR VOLUME

HTS Motor Design-General Aviation- HALE ROA- Small Jet

All-Electric AircraftPropulsion

Page 6: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

Towards Electric Aircraft PropulsionTowards Electric Aircraft PropulsionTowards Electric Aircraft Propulsion

1974

1980

1994

2000

HALSOL

Gossamer Penguin

Solar Challenger

Pathfinder

Sunrise II

1998

Helios

Pathfinder Plus

Centurion

2006 and beyond 2004

Mars Flyer More

Airship

Electric Aircraft

Allows the inter-connected issues of noise, emissions and energy to be addressed simultaneously

Future

Power Optimized Aircraft

E-Plane

GT Fuel Cell Demonstrator

Challenges: power density of electric motors and aircraft design with new technology

Page 7: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

Modern All-Electric Aircraft SubsystemsModern AllModern All--Electric Aircraft SubsystemsElectric Aircraft Subsystems

Electric Drive AccessoriesEnvironmental Control SystemEngine Accessories

Fault Tolerant Electrical Power Distribution System

Electrical Power Generation

Thrust Generation

Electric Actuated Brakes

Electric Anti-Ice

Electric Actuation

Fuel System

Page 8: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

Electrical “gear box” conceptElectrical Electrical ““gear boxgear box”” conceptconcept

Turbo-generator motor drive

• Turbine main shaft speed not limited by fan (better efficiency)

• Redundancy should improve reliability

• Better control of thrust generation

• More flexibility in the turbine location Electrical “gear box” concept

Need high power density electric machines: HTS technology is an obvious choice

Page 9: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

What “Fuel”/ Energy Storage?What What ““FuelFuel””/ Energy Storage?/ Energy Storage?

• Liquid hydrogen exhibit the highest energy density

• Hydrogen can feed fuel cells or gas turbines

• Storage temperature is ideal for HTS material

12.2

6.4

39

0.03 0.2

2.65

0

5

10

15

20

25

30

35

40

Gasoline(maximum)

Methanol(maximum)

LiquidHydrogen

(maximum)

Lead AcidBattery

LithiumPolymerBattery

Jet Fuel in aSolid Oxide

Fuel Cell

Cryogenic machines represent the best solution and a good synergy

Page 10: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

LH2 Powered AircraftLH2 Powered AircraftLH2 Powered Aircraft

• Liquid Hydrogen (LH2) powered aircraft• Hydrogen cryogenically stored• Power generated by fuel cells or turbo-generators

Electrical “gear box” concept

Propulsion motor PMAD

Generator 1 Gas Turbine 1

H2 Tank

Generator 2 Gas Turbine 2

Controller

Ducted fan or propeller

Propulsion System

Power Management And

Distribution Power Generation

Energy Storage

Flow of LH2

Page 11: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

Electrical Ducted Fan / Thrust GenerationElectrical Ducted Fan / Thrust GenerationElectrical Ducted Fan / Thrust Generation

• Latest engines have very high bypass ratios• Most of the thrust comes from fan rotation• Replacing gas turbine by electrical motor should be

possible

SuperconductingDrive Motor

Bypass Fan Section of Aircraft Engine

Superconducting Motor Replaces Turbine

SuperconductingDrive Motor

Bypass Fan Section of Aircraft Engine

Superconducting Motor Replaces Turbine

High bypass turbofan Electrical Ducted Fan

Page 12: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

Cryogenic and HTS MotorsCryogenic and HTS MotorsCryogenic and HTS Motors

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10 100

Shaft Power and Equivalent Shaft Power (kHP)

Wei

ght (

klb)

Turbofan w/o Prop.Reciprocating engineIndustrial motorsSR motors non-cryoSR motor in LN2 expectedAxial-gap PM motorCryo generator testedCryo sync motor designHelios Motors1 hp/lb10 hp/lb

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Power (shp)

Spe

cific

pow

er (h

p/lb

)

Conventional machineCryogenic machineSuperconducting machineGas turbine• Cryogenic copper wound

motors could work• HTS machines would

provide better efficiency and lower weight and volume Model predictions

Improved heat transfer copper coils for cryogenic machines

Page 13: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

UAPT Designs for Electric Ducted Fan ApplicationUAPT Designs for Electric Ducted Fan ApplicationUAPT Designs for Electric Ducted Fan Application

Iron shield

Insulation layer

Superconducting coil

Stator support

Stator coils

Bulk HTS plates

Rotor support (Displayed as wireframe)

Shaft

Cryostat(Displayed as wireframe)

B (T)7.0

4.0

10-3

2.0

5.0

6.0

3.0

1.0

HALE – Hurricane tracker14 day mission450 kW @ 3000 RPMAxial flux configurationTrapped flux magnets (YBCO)

Small Jet Aircraft

Small Jet1.5 MW @ 3000 RPMFlux trapping and concentrationBi2223 coils and YBCO TFM

Page 14: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

Power Generation: Fuel cells or Turbo-generator?Power Generation: Fuel cells or TurboPower Generation: Fuel cells or Turbo--generator?generator?

• Fuel cells– No emissions (NOx and CO2)– Power density around 1 kW/kg (SOFC)– Low efficiency balance of plant– Efficiency ~ 55%– Too heavy for large aircraft

• Turbo-generators– Reduces emissions (high RPM)– High power density– Low efficiency (~30%)

• Hybrid systems may be a solution (heat recuperation)

Fuel in Oxidant in

Depleted fuel Depleted oxidantElectrolyte

(Ionic conductor)

CathodeAnode

H2O2

e’

Fuel n

Electrolyte

(Ionic conductor)

CathodeAnode

H2O2

e’

H+

H2OH2H+

H2OH2

AnionconductorH2O O2Hydrocarbon

Fuels

AnionconductorH2O O22O 2

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Power (hp)

Spec

ific

pow

er (h

p/lb

)

Conventional turbogeneratorCryo-turbogeneratorSuperconducting turbogenerator

Page 15: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

Superconducting turbo generatorsSuperconducting turbo generatorsSuperconducting turbo generators

• Requires:– development of high RPM HTS machines– Robust thermal insulation between gas turbine (1000C) and HTS

generator (-250C)

• Stationary HTS excitation coils are preferred to allow for high RPM (> 10 kRPM) such as HIA or Supersat configurations

Example of axial flux “supersat” configuration

Page 16: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

Example of Actuators: HTS/PM linear MotorExample of Actuators: HTS/PM linear MotorExample of Actuators: HTS/PM linear Motor

8.77Conventional

Superconducting

WeightWeight

≈5.97Conventional

Superconducting

VolumeVolume

Model 10001

Weight kgLength m

=⎧⎨ =⎩

Application: Nose Landing Gear

Conventional copper windingsRare earth permanent magnet

YBCO coated conductorsOperating temperature 77K (LN2)Rare earth permanent magnet excitation

Page 17: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

Power Management and DistributionPower Management and DistributionPower Management and Distribution

• Weight and volume of power converters and drive have to be maximized for airborne applications

• Off the shelf components exhibit ~ 11 kW/kg power density• Weight can be decreased

by modifying power quality (harmonicsfiltering)

• Cryocooling shouldgenerate a three fold increase of powerdensity

• Reliability needs tobe increased

Weight VS. Power for Converters

0.01

0.1

1

10

100

1000

1 10 100 1000 10000Shaft Power and Equivalent Shaft Power (kW)

Wei

ght (

kg)

9.2 kW/kgAirak Inc.DOE SBIR

11 kW/kg / Standard automobile 2003

10.04 kW/kg Namuduri et al. IEEE - 200411 kW/kg EE TECH TEAM ROADMAP - 2004

3 kW/kgGround baseAppl.

3 kW/kg IPT ELECTRONICSBALLARD

Page 18: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

System Approach / ReliabilitySystem Approach / ReliabilitySystem Approach / Reliability

• 100% of power is only needed during take off• Propulsion requires ~50-70 % of take off power during

cruise• Redundancy of components can lead to improved

efficiency• Different configurations possible

PMAD

PMADMotorGenerator

Motor

Generator Gas Turbine

Gas Turbine

Fan

Fan

Generator Gas Turbine

Generator Gas Turbine

Page 19: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

Sizing ExamplesSizing ExamplesSizing Examples

Boeing 737-200Thrust: 17 400 lb.t.Weight: 3 495 lb = 1585 kgVolume: 2 459 dm3

ELECTRIC SYSTEM SIZING FOR ALL-ELECTRIC BOEING 737-200 System Weight (kg) Volume (dm3)

Propulsion (motors) 1346 2149 PMAD (converters, busses) 960 (300) 960 (300)

Power plant (turbo-generator) 920 588 Total 3226 (2566) 3697 (3037)

Global Hawk:Thrust: 8 917 lb.t.Weight: 1 581 lb = 717 kgVolume: 2 594 dm3

ELECTRIC SYSTEM SIZING FOR ALL-ELECTRIC UAV (GLOBAL HAWK) System Weight (kg) Volume (dm3)

Propulsion (motors) 717 2594 PMAD (converters, busses) 690 (220) 690 (220)

Power plant (turbo-generator) 463 460 Total 1870 (1400) 3744 (3274)

Page 20: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

Available TechnologyAvailable TechnologyAvailable Technology

0 5 10 15 20 25 30 35 40

AMSC 36.5 MW @120RPM

AMSC 5 MW @230RPM

AMSC 3.7 MW @1800RPM

Siemens 400 kW @1500RPM

Siemens 4 MVA @3600RPM

GE HIA 5MVA @16000RPM

URETI cylindrical 170 kW @2700RPM

URETI axial flux 450 kW @3000RPM

URETI cylindrical 1.5 MW @3000RPM

Conventional 4 MVA @3600RPM

Oswald TF13 28kW @500RPM

Oswald TF20 63kW @500RPM

Oswald TF26 210 kW @400RPM

Oswald TF36 326kW @300RPM

Oswald TF46 506kW @200RPM

Oswald TF62 536kW @110RPM

Torque density (Nm/kg)

0 1 2 3 4 5 6 7 8

Power density (kW/kg)

Torque density (Nm/kg)Power density (kW/kg)

Conventional

Torque optimized commercial

HTSDesigned for airborne applications

Actual HTS motors

Page 21: HTS Machines for Applications in All-Electric Aircraftmasbret.com/docs/2007-PESGM.pdfHTS material 12.2 6.4 39 0.03 0.2 2.65 0 5 10 15 20 25 30 35 40 Gasoline (maximum) Methanol (maximum)

Dr. P J Masson Dr. P J Masson –– Panel Session Panel Session -- PES General Meeting 2007, Tampa, FLPES General Meeting 2007, Tampa, FL

ConclusionConclusionConclusion

• HTS machines can be design to match power density of gas turbine

• Many different topologies to fit different applications

• Liquid hydrogen as fuel and HTS components are in good synergy

• Hydrogen cooling should enable the use of fully superconducting motors (“free cooling system”)

• HTS is an enabling technology for all-electric aircraft propulsion