Hst motion inradiotherapy

78
Motion in Radiotherapy Martijn Engelsman

Transcript of Hst motion inradiotherapy

Page 1: Hst motion inradiotherapy

Motion in Radiotherapy

Martijn Engelsman

Page 2: Hst motion inradiotherapy

2

Contents• What is motion ?

• Why is motion important ?

• Motion in practice

• Qualitative impact of motion

• Motion management

• Motion in charged particle therapy

Page 3: Hst motion inradiotherapy

3

What is motion ?

Page 4: Hst motion inradiotherapy

4

Motion in radiotherapy

• Aim of radiotherapy– Deliver maximum dose to tumor cells and

minimum dose to surrounding normal tissues

• “Motion”– Anything that may lead to a mismatch between

the intended and actual location of delivered radiation dose

Page 5: Hst motion inradiotherapy

5

Radiotherapy treatment process

1) Diagnosis2) Patient immobilization3) Imaging (CT-scan)4) Target delineation5) Treatment plan design6) Treatment delivery (35 fractions)7) Patient follow-up

Page 6: Hst motion inradiotherapy

6

Why is motion important ?

Page 7: Hst motion inradiotherapy

7

PTV concept (1)

GTV (Gross Tumor Volume): = 5 cm, V = 65 cm3

CTV (Clinical Target Volume): = 6 cm, V = 113 cm3

PTV (Planning Target Volume): = 8 cm, V = 268 cm3

High dose region

(ICRU 50 and 62)

Page 8: Hst motion inradiotherapy

8

PTV concept (2)

• Margin from GTV to CTV– Typically 5 mm or patient and tumor specific– Improved by:

• Better imaging• Physician training

• Margin from CTV to PTV– Typically 5 to 10 mm– Tumor location specific– Improved by:

• Motion management• Smart treatment planning

GTVCTVPTVHigh Dose

Page 9: Hst motion inradiotherapy

9

Example source of motion

www.pi-medical.gr

35 Fractions=

35 times patient setup

Page 10: Hst motion inradiotherapy

10

Sources of motion

• Patient setup• Patient breathing / coughing• Patient heart-beat• Patient discomfort• Target delineation inaccuracies• Non-representative CT-scan• Target deformation / growth / shrinkage• Etc., etc. etc.

Page 11: Hst motion inradiotherapy

11

Subdivision of motion

• Systematic versus Random

• Inter-fractional versus Intra-fractional

• Treatment Preparation versus Treatment Execution– Less commonly used

Page 12: Hst motion inradiotherapy

12

Systematic versus Random

• Systematic– Same error for all fractions (possibly even all patients).

• Random– Unpredictable. Day to day variations around a mean.

• Known but neither– Breathing, heartbeat

Page 13: Hst motion inradiotherapy

13

x

y

Setup errors for three patients

Beam’s Eye View

Page 14: Hst motion inradiotherapy

14

Systematic (x)

Random (y)

Random (x)

Setup errors for a single patient

Systematic (y)

Page 15: Hst motion inradiotherapy

15

Inter-fractional versus Intra-fractional

• Inter-fractional– Variation between fractions

• Intra-fractional– Variation within a fraction

Page 16: Hst motion inradiotherapy

16

Treatment preparation versus treatment execution

2) Patient immobilization3) CT-scan4) Target delineation5) Treatment plan design6) Treatment delivery (35 fractions)

Treatment preparation

Treatment execution

Always systematic

Systematic and/or random

Page 17: Hst motion inradiotherapy

17

Motion in practice

Page 18: Hst motion inradiotherapy

18

Systematic Inter-fractional Treatment preparation

Random Intra-fractional Treatment execution

Target delineation

Steenbakkers et al.

Radiother Oncol. 2005; 77:182-90

Page 19: Hst motion inradiotherapy

19

Systematic Inter-fractional Treatment preparation

Random Intra-fractional Treatment execution

Patient setup

x

y

Page 20: Hst motion inradiotherapy

20

Systematic Inter-fractional Treatment preparation

Random Intra-fractional Treatment execution

Target deformation / motion 1/3

TargetBladder

Page 21: Hst motion inradiotherapy

21

Systematic Inter-fractional Treatment preparation

Random Intra-fractional Treatment execution

Target deformation / motion 2/3

TargetBladder

Page 22: Hst motion inradiotherapy

22

2) Patient immobilization3) CT-scan4) Target delineation5) Treatment plan design6) Treatment delivery (35 fractions)

Target deformation / motion 3/3

Page 23: Hst motion inradiotherapy

23

Breathing motion

Systematic Inter-fractional Treatment preparation

Random Intra-fractional Treatment execution

Movie by John Wolfgang

“ ”

Page 24: Hst motion inradiotherapy

24

Qualitative impact of motion

Page 25: Hst motion inradiotherapy

25

Importance of motion

• Breathing motion / heart beat

• Systematic errors

• Random errors

Raise your hand to vote

Let’s “prove” it

Most

Least

Almost least

Page 26: Hst motion inradiotherapy

26

Simulation parameters (1)

GTVCTVPTVHigh Dose

GTVCTV

High Dose

To enhance the visible effect of motion: High dose conformed to CTV

Page 27: Hst motion inradiotherapy

27

GTVCTV

High Dose

Parallel opposed beamsDirection of motion

Simulation parameters (2)

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 6050

60

70

80

90

10095 %

Dos

e (%

of p

resc

ribed

dos

e)

distance from beam axis (mm)

CTV

Page 28: Hst motion inradiotherapy

28

80 85 90 95 100 1050

5

10

15

20

25

30

35

Dose, % of ICRU reference dose

Vol

ume

a.u.

Amplitude of breathing motion:

0 mm

5 mm

10 mm

Page 29: Hst motion inradiotherapy

29

80 85 90 95 100 1050

5

10

15

20

25

30

35

Dose, % of ICRU reference dose

Vol

ume

a.u.

Standard deviation of random errors: 0 mm

5 mm 10 mm

Page 30: Hst motion inradiotherapy

30

80 85 90 95 100 1050

5

10

15

20

25

30

35

Dose, % of ICRU reference dose

Vol

ume

a.u.

Systematic error: 0 mm

5 mm 10 mm

Page 31: Hst motion inradiotherapy

310 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0

Dose (Gy)

TCP

DVH reduction into:

• Tumor Control Probability (TCP)• Assumption: homogeneous irradiation of the CTV to 84 Gy results in a

TCP = 50 %

Page 32: Hst motion inradiotherapy

32

Tumor motion and tumor control probability

Amplitude of breathing motion

(mm)

Random setup errors (1SD)(mm)

Systematic setup error(mm)

TCP(%)

0 0 0 47.3

5 - - 47.0

10 - - 46.3

15 - - 44.3

- 5 - 46.8

- 10 - 43.5

- 15 - 36.9

- - 5 45.5

- - 10 40.1

- - 15 6.0

Typical motion:

Page 33: Hst motion inradiotherapy

33

Importance of motion

• Breathing motion / heart beat

• Systematic errors

• Random errors

Therefore …

Most

Least

Almost least

Page 34: Hst motion inradiotherapy

34

Why are systematic errors worse ?

dose

CTV

Random errors / breathing blurs the cumulative dose distribution

Systematic errors shift the cumulative dose distribution

Slide byM. van Herk

Page 35: Hst motion inradiotherapy

35

• Systematic errors- Same part of the tumor always underdosed

• Random errors / Breathing motion / heart beat- Multiple parts of the tumor underdosed part of the time,

correctly dosed most of the time

But don’t forget: Breathing motion and heart beat can have systematic effects on target delineation

In other words…

Page 36: Hst motion inradiotherapy

36

Motion management

Page 37: Hst motion inradiotherapy

37

Radiotherapy treatment process

2) Patient immobilization3) CT-scanning4) Target delineation5) Treatment plan design6) Treatment delivery

Page 38: Hst motion inradiotherapy

38

Patient immobilization

Breast board

Intra-cranial mask

GTC frame

www.massgeneral.og

www.sinmed.com

www.sinmed.com

Leg pillow

Page 39: Hst motion inradiotherapy

39

Benefits of immobilization

• Reproducible patient setup

• Limits intra-fraction motion

Page 40: Hst motion inradiotherapy

40

Radiotherapy treatment process

2) Patient immobilization3) CT-scanning4) Target delineation5) Treatment plan design6) Treatment delivery

Page 41: Hst motion inradiotherapy

41

CT-scanning

• Multiple CT-scans prior to treatment planning- Reduces geometric miss compared to single CT-scan

• 4D-CT scanning- Extent of breathing motion- Determine representative tumor position

• See lecture “Advances in imaging for therapy”

Page 42: Hst motion inradiotherapy

42

Radiotherapy treatment process

2) Patient immobilization3) CT-scanning4) Target delineation5) Treatment plan design6) Treatment delivery

Page 43: Hst motion inradiotherapy

43

Target delineation

• Multi-modality imaging- CT-scan, MRI, PET, etc.

• Physician training and inter-collegial verification

• Improved drawing tools and auto-delineation

Page 44: Hst motion inradiotherapy

44

Radiotherapy treatment process

2) Patient immobilization3) CT-scanning4) Target delineation5) Treatment plan design6) Treatment delivery

Page 45: Hst motion inradiotherapy

45

Treatment plan design

• Choice of beam angles- e.g. parallel to target motion

• Smart treatment planning• Robust optimization• IMRT• See, e.g., lecture “Optimization with motion

and uncertainties”

Page 46: Hst motion inradiotherapy

46

Radiotherapy treatment process

2) Patient immobilization3) CT-scanning4) Target delineation5) Treatment plan design6) Treatment delivery

Page 47: Hst motion inradiotherapy

47

Magnitude of motion in treatment delivery• Systematic setup error

– Laser: = 3 mm– Bony anatomy: = 2 mm– Cone-beam CT: = 1 mm

• Random setup errors– = 3 mm

• Breathing motion– Up to 30 mm peak-to-peak– Typically 10 mm peak-to-peak

• Tumor delineation– See next slide

Page 48: Hst motion inradiotherapy

48

Tumor delineation• 22 Patients with

lung cancer• 11 Radiation

oncologists from 5 institutions

• Comparison to median target surface

Rad. Onc. # Mean volume(cm3)

Mean distance(mm)

Overall SD(mm)

1 36 -6.4 15.1

2 48 -3.7 11.6

3 53 -4.3 13.9

4 55 -2.4 7.0

5 58 -3.3 12.7

6 67 -1.6 10.0

7 69 -1.2 6.2

8 72 -1.0 6.6

9 76 -0.2 7.4

10 93 0.9 5.7

11 129 0.4 6.1

All 69 ( 25) -1.7 10.2

Steenbakkers et al.

Radiother Oncol. 2005; 77:182-90

5?

Page 49: Hst motion inradiotherapy

49

Motion management

Page 50: Hst motion inradiotherapy

50

Motion management for setup errors

• Portal imaging

Page 51: Hst motion inradiotherapy

51

Portal imaging

Obtained from Treatment Planning System

Obtained in treatment room

Page 52: Hst motion inradiotherapy

52

Setup protocol

• NAL-protocol (No Action Level)– Portal imaging for first Nm fractions– Calculate a single correction vector compared to

markers for laser setup

Lasers only

de Boer HC, Heijmen BJ.

Int J Radiat Oncol Biol Phys.

2001;50(5):1350-65

Page 53: Hst motion inradiotherapy

53

Motion management for breathing

• In treatment plan design- Margin increase- Overcompensating dose to margin- Robust treatment planning- See, e.g., lecture “Optimization with motion and

uncertainties”• Control patient breathing

- Breath-hold- Gated radiotherapy

Page 54: Hst motion inradiotherapy

54

Breathing tracesTrace PDF =

ProbabilityDensityFunction

1)

2)

3)

Page 55: Hst motion inradiotherapy

55

Margin increase

Page 56: Hst motion inradiotherapy

56

Effect of blurring on dose profile (conformal)

0 10 20 30 40 50 60 700.0

0.2

0.4

0.6

0.8

1.0Conformal beam

Unblurred Breathing Random setup errors Both

distance (from central axis, mm)

Dose

(rel

ativ

e)Only a limited shift in 95% isodose level

Page 57: Hst motion inradiotherapy

57

Margin for breathing (conformal)

5 10 15

Page 58: Hst motion inradiotherapy

58

Margin for breathing (IMRT)

0 10 20 30 40 50 60 700.0

0.2

0.4

0.6

0.8

1.0IMRT beam

distance (from central axis, mm)

Dose

(rel

ativ

e)

0 10 20 30 40 50 60 700.0

0.2

0.4

0.6

0.8

1.0Conformal beam

Unblurred Breathing Random setup errors Both

distance (from central axis, mm)

Dose

(rel

ativ

e)

HypotheticallySharpDose

Distribution

Page 59: Hst motion inradiotherapy

59

Margin for breathing (IMRT)

5 10 15

IMRT

Page 60: Hst motion inradiotherapy

60

Breath hold

Page 61: Hst motion inradiotherapy

61

Control / stop patient breathing

• Exhale position most reproducible

• Inhale position most beneficial for sparing lung tissue

Page 62: Hst motion inradiotherapy

62

Breath hold techniques

• Voluntary breath hold• Rosenzweig KE et al. The deep inspiration breath-hold technique in the treatment of

inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2000;48:81-7

• Active Breathing Control (ABC)• Wong JW et al. The use of active breathing control (ABC) to reduce margin for breathing

motion. Int J Radiat Oncol Biol Phys. 1999;44:911-9

• Abdominal press– Negoro Y et al. The effectiveness of an immobilization device in conformal radiotherapy for

lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy. Int J Radiat Oncol Biol Phys. 2001;50:889-98

Page 63: Hst motion inradiotherapy

63

Gating

Page 64: Hst motion inradiotherapy

64

Gated radiotherapy

• External or internal markers• Usually 20% duty cycle• Some residual motion

Gating window

Page 65: Hst motion inradiotherapy

65

Gating benefits and drawbacks• Less straining for patient than breath-hold• Increased treatment time

• Internal markers– Direct visualization of tumor (surroundings)– Invasive procedure / side effects of surgery

• External markers– Limited burden for patient– Doubtful correlation between marker and tumor position

• Intra-fractional• Inter-fractional

+

+

+

-

-

-

Page 66: Hst motion inradiotherapy

66

Motion in charged particle therapy

Page 67: Hst motion inradiotherapy

67

T. Bortfeld

Page 68: Hst motion inradiotherapy

68

Range sensitivity

Paralell opposed -photons

Single field -protons

Single field -photons

Spherical tumor in lung

Displayed isodose levels: 50%, 80%, 95% and 100%

Page 69: Hst motion inradiotherapy

69

Paralell opposed -photons

Single field -protons

Single field -photons

Spherical tumor in lung

Range sensitivity

Displayed isodose levels: 50%, 80%, 95% and 100%

Page 70: Hst motion inradiotherapy

70

Paralell opposed -photons

Single field -protons

Single field -photons

Spherical tumor in lung

Range sensitivity

Displayed isodose levels: 50%, 80%, 95% and 100%

Page 71: Hst motion inradiotherapy

71

Dose-Volume Histogram (protons)

PTV (static)CTVGTVCTV-GTV

Page 72: Hst motion inradiotherapy

72

SOBP Modulation

Aperture

High-DensityStructure

BodySurface

CriticalStructure

TargetVolume

Beam

RangeCompensator

Page 73: Hst motion inradiotherapy

73

+ =

Passive scattering system

Aperture Range Compensator

Lateral conformation

Distal conformation

Page 74: Hst motion inradiotherapy

74

Smearing the range compensator

Aperture

High-DensityStructure

BodySurface

CriticalStructure

TargetVolume

Beam

RangeCompensator

Page 75: Hst motion inradiotherapy

75

Smearing the range compensator

Aperture

High-DensityStructure

BodySurface

CriticalStructure

TargetVolume

Beam

RangeCompensator

Page 76: Hst motion inradiotherapy

76

SmearSetupError

A 0 0

B 0 10

C 10 0

D 10 10

A B C D

E F G HC D

Displayed isodose levels: 50%, 80%, 95% and 100%

Page 77: Hst motion inradiotherapy

77

Motion management in particle therapy

• Passive scattered particle therapy• For setup errors and (possibly) breathing motion

- Lateral expansion of apertures- Smearing of range compensators

• IMPT - See, e.g., lecture “Optimization with motion and

uncertainties”

Page 78: Hst motion inradiotherapy

78

Thank you for your attention