Howard Baer- SUSY and cosmology

download Howard Baer- SUSY and cosmology

of 45

Transcript of Howard Baer- SUSY and cosmology

  • 8/3/2019 Howard Baer- SUSY and cosmology

    1/45

    SUSY and cosmology

    Howard Baer

    Florida State University

    Cosmology

    Baryogenesis

    SUSY Dark matter , a, G models

    mSUGRA NUSUGRA MM-AMSB

    SO(10) SUSYGUTsHowie Baer, Aspen winter conference, January 16, 2008 1

  • 8/3/2019 Howard Baer- SUSY and cosmology

    2/45

    Pillars of Big Bang cosmology: Hubble expansion

    Theory: FRW universe

    Hubble expansion HST key project type Ia supernovae probe

    H0dL = z + 12 (1 q0)z2 + H0 = 72 km/sec/Mpc10% evidence for > 0!

    age of universe: 13.7 Gyrs

    Howie Baer, Aspen winter conference, January 16, 2008 2

  • 8/3/2019 Howard Baer- SUSY and cosmology

    3/45

    Big Bang nucleosynthesis (BBN)

    Thermal history

    of universe:

    Can compute light elementabundances: 4He, D, 3He, 7Li

    match to data: B nBn 6 1010 B from BBN

    consistent with CMB results

    ? ? ? ?

    ? ? ? ?

    @ @ @ @

    @ @ @ @

    3He/H p

    4

    He

    2 3 4 5 6 7 8 9 101

    0.01 0.02 0.030.005

    CM

    B

    BBN

    Baryon-to-photon ratio 1010

    Baryon density Bh2

    D___H

    0.24

    0.23

    0.25

    0.26

    0.27

    104

    103

    105

    109

    1010

    2

    5

    7Li/H p

    Yp

    D/H p

    Howie Baer, Aspen winter conference, January 16, 2008 3

  • 8/3/2019 Howard Baer- SUSY and cosmology

    4/45

    Cosmic microwave background (CMB)

    COBE/WMAP/WMAP3,

    anisotropies 105 can extract numerous

    cosm. params from power spectrum

    flat (k = 0) universe: = cas in inflation models

    contents of universe

    0.7

    baryons 0.04 CDM 0.25 tiny

    Howie Baer, Aspen winter conference, January 16, 2008 4

  • 8/3/2019 Howard Baer- SUSY and cosmology

    5/45

    Baryogenesis: explaining B

    SM electroweak baryogenesis: only if mHSM

  • 8/3/2019 Howard Baer- SUSY and cosmology

    6/45

    Dark Matter in the universe

    Binding of clusters

    Galactic rotation curves

    Gravitational lensing

    Hot gas in clusters

    CMB fluctuations

    Large scale structure

    flatness/BBN

    Howie Baer, Aspen winter conference, January 16, 2008 6

  • 8/3/2019 Howard Baer- SUSY and cosmology

    7/45

    Best fit cosmology: concordance (CDM) model

    Bh

    2 = 0.022

    0.001

    h2 < 0.007 95% CL h2 0.38 0.03

    CDMh2 = 0.105 0.01

    Howie Baer, Aspen winter conference, January 16, 2008 7

  • 8/3/2019 Howard Baer- SUSY and cosmology

    8/45

    Candidates for Dark Matter

    unseen baryons, e.g. BHs, brown dwarves, stellar remnants

    inconsistent with BBN element abundance calcn

    limits from MACHO, EROS, OGLE

    light neutrinos (= HDM)

    axions/axinos

    WIMPS

    superWIMPS

    Q-balls

    primordial BHs10

    -3310

    -3010

    -2710

    -2410

    -2110

    -1810

    -1510

    -1210

    -910

    -610

    -310

    010

    310

    610

    910

    1210

    1510

    18

    mass (GeV)

    10-39

    10-36

    10-33

    10-30

    10-27

    10-24

    10-21

    10-18

    10-15

    10-12

    10-9

    10-6

    10-3

    100

    103

    106

    109

    1012

    1015

    1018

    1021

    1024

    int

    (pb)

    Some Dark Matter Candidate Particles

    neutrinosneutralinoKK photonbranonLTP

    axion axino

    gravitinoKK graviton

    SuperWIMPs :

    wimpz

    illaWIMPs :

    BlackHoleRem

    nant

    Q-ball

    fuzzy CDM

    Howie Baer, Aspen winter conference, January 16, 2008 8

  • 8/3/2019 Howard Baer- SUSY and cosmology

    9/45

    Axions

    PQ solution to strong CP problem in QCD pseudo-Goldstone boson from

    PQ breaking at scale fa

    non-thermally producedvia vacuum mis-alignment

    ma 2QCD/fa 106 101eV

    ah2

    12 610

    6eVma

    7/6

    h2

    astro bound: stellar cooling ma < 101eV a couples to EM field: a coupling (Sikivie)

    axion microwave cavity searches

    10-6 10-5 10-4 10-3 10-2 10-1

    ma

    ( eV )10

    -6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    axionh2

    Howie Baer, Aspen winter conference, January 16, 2008 9

  • 8/3/2019 Howard Baer- SUSY and cosmology

    10/45

    Axion microwave cavity searches

    ongoing searches: ADMX experiment

    Livermore U Wash. Phase I: probe KSVZ

    for ma 106 105 eV

    Phase II: probe DFSZfor ma 106 105 eV

    beyond Phase II:probe higher values ma

    Howie Baer, Aspen winter conference, January 16, 2008 10

  • 8/3/2019 Howard Baer- SUSY and cosmology

    11/45

    WIMPs: the WIMP miracle!

    Weakly Interacting Massive Particles assume in thermal equiln in early universe Boltzman eqn:

    dn/dt = 3Hn vrel(n2 n20) h2 = s0c/h2

    45g

    1/2xfMPl

    1v

    0.1 pbv 0.1 mwimp100 GeV 2

    thermal relic new physics at Mweak!

    Howie Baer, Aspen winter conference, January 16, 2008 11

  • 8/3/2019 Howard Baer- SUSY and cosmology

    12/45

    Some WIMP candidates

    4th gen. Dirac (excluded)

    SUSY neutralino ( or Z1) UED excited photon B1

    little Higgs photon BH

    little Higgs (theory space) N1 (scalar)

    warped GUTS: LZP KK fermion

    branons

    Howie Baer, Aspen winter conference, January 16, 2008 12

  • 8/3/2019 Howard Baer- SUSY and cosmology

    13/45

    Most work done for SUSY theories

    SUSY divergence cancellation maintains hierarchy between GUT scaleQ = 1016 GeV and weak scale Q = 100 GeV

    gauge coupling unification!

    Lightest Higgs mass mh

  • 8/3/2019 Howard Baer- SUSY and cosmology

    14/45

    Supersymmetry: fermions

    bosons

    MSSM: doubling of spectra

    spin-0 squarks, sleptons

    spin-

    1

    2 charginos, neutralinos, gluino extra Higgses: h, H, A, H

    R-parity consn: LSP is stable

    LSP candidates sneutrinos (excluded)

    gravitinos (superWIMPs)

    neutralinos GMSB messengers

    hidden sector states

    axinos a

    Howie Baer, Aspen winter conference, January 16, 2008 14

  • 8/3/2019 Howard Baer- SUSY and cosmology

    15/45

    Neutralino dark matter

    Why R-parity? natural in SO(10) SUSYGUTS if properly broken, or brokenvia compactification (Mohapatra, Martin, Kawamura, )

    In thermal equilibrium in early universe

    As universe expands and cools, freeze out

    Number density obtained from Boltzmann eqn

    dn/dt = 3Hn vrel(n2

    n2

    0) depends critically on thermally averaged annihilation cross section times

    velocity

    many thousands of annihilation/co-annihilation diagrams several computer codes available

    DarkSUSY, Micromegas, IsaReD (part of Isajet)

    Howie Baer, Aspen winter conference, January 16, 2008 15

  • 8/3/2019 Howard Baer- SUSY and cosmology

    16/45

    Some neutralino (co)annihilation processes

    Howie Baer, Aspen winter conference, January 16, 2008 16

  • 8/3/2019 Howard Baer- SUSY and cosmology

    17/45

    Relic density in minimal SUGRA model

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    h2< 0.094

    0.094

  • 8/3/2019 Howard Baer- SUSY and cosmology

    18/45

    Main mSUGRA regions consistent with WMAP

    bulk region (low m0, low m1/2) stau co-annihilation region (m1 meZ1) HB/FP region (large m0 where || small )

    A-funnel (2meZ1 mA, mH) h corridor (2meZ1 mh) stop co-annihilation region (particular A0 values mt1

    meZ1

    )

    Howie Baer, Aspen winter conference, January 16, 2008 18

  • 8/3/2019 Howard Baer- SUSY and cosmology

    19/45

    SUSY reach of all colliders and relic density

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    0 1000 2000 3000 4000 5000 6000 7000 8000

    mSugra with tan = 10, A0

    = 0, > 0

    m0

    (GeV)

    m1/2

    (GeV)

    LHC

    Tevatron

    LC 500

    LC 1000

    G h2< 0.129

    G LEP2 excluded

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    0 1000 2000 3000 4000 5000 6000 7000

    mSugra with tan = 45, A0

    = 0, < 0

    m0

    (GeV)

    m1/2

    (GeV)

    LHC

    Tevatron

    LC 500

    LC 1000

    G h2< 0.129

    G LEP2 excluded

    HB, Belyaev, Krupovnickas, Tata

    Howie Baer, Aspen winter conference, January 16, 2008 19

  • 8/3/2019 Howard Baer- SUSY and cosmology

    20/45

    International linear e+e collider (ILC)

    A linear e+e collider with

    s = 0.5 1 TeV is highest priority project forHEP beyond LHC! Why?

    All beam energy

    collision (aside from brem/beamstrahlung losses)

    beam energy known clean collision environment

    low (electroweak) background levels

    adjustable beam energy (threshold scans) e and possibly e+ beam polarization

    ILC will be ideal machine to perform precision spectroscopy of any new (EWinteracting) matter states (provided they are kinematically accessible)!

    timeline: decision-2012; ready-2020

    Howie Baer, Aspen winter conference, January 16, 2008 20

  • 8/3/2019 Howard Baer- SUSY and cosmology

    21/45

    Precision sparticle measurements at a e+e linear collider

    Howie Baer, Aspen winter conference, January 16, 2008 21

  • 8/3/2019 Howard Baer- SUSY and cosmology

    22/45

    Role of ILC in DM physics

    Baltz, Battaglia, Peskin, Wizansky analysis fit all sparticle measurements to determine underlying SUSY parameters then plug in to theory to find relic density does eZ1h2 saturate measured value? possible mixed dark matter? Z1 decay to gravitino or axino?

    Howie Baer, Aspen winter conference, January 16, 2008 22

  • 8/3/2019 Howard Baer- SUSY and cosmology

    23/45

    Direct detection of SUSY DM

    Calculate neutralino-nucleus scattering

    calculate Z1 q or Z1 g scattering: take v 0 limit

    spin-dependent cross section couples to spin of nucleus: cancel

    spin-independent cross section A2: add results usually quoted in terms of SI( Z1p) so results from different

    target nuclei can be compared

    Howie Baer, Aspen winter conference, January 16, 2008 23

  • 8/3/2019 Howard Baer- SUSY and cosmology

    24/45

    Current best limit: new Xenon-10 result!

    WIMP Mass [GeV/c2]

    Cross-section[pb](n

    ormalisedtonucleo

    n)

    071107122201

    http://dmtools.brown.edu/Gaitskell,Mandic,Filippini

    101

    102

    103

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    071107122201

    Baer et. al 2003XENON1T (proj)LUX 300 kg LXe Projection (Jul 2007)SuperCDMS (Projected) 25kg (7-ST@Snolab)WARP 140kg (proj)DEAP CLEAN 150kg FV (proj)SuperCDMS (Projected) 2-ST@SoudanXENON10 2007 (Net 136 kg-d)CDMS (Soudan) 2004 + 2005 Ge (7 keV threshold)DAMA 2000 58k kg-days NaI Ann.Mod. 3sigma,w/o DAMA 1996 limitDATA listed top to bottom on plot

    Howie Baer, Aspen winter conference, January 16, 2008 24

  • 8/3/2019 Howard Baer- SUSY and cosmology

    25/45

    Indirect detection (ID) of SUSY DM: -telescopes

    Z1Z1 bb, etc. in core of sun (or earth): in telescopes

    flux is largest when ( Z1p) is largest e.g. low mq or HB/FP region for mSUGRA

    experiments: Amanda, Icecube, Antares

    Howie Baer, Aspen winter conference, January 16, 2008 25

  • 8/3/2019 Howard Baer- SUSY and cosmology

    26/45

    ID of SUSY DM: and anti-matter searches

    Z1Z1 qq, etc. in galactic core or halo

    Z1Z1

    qq, etc.

    e+ in galactic halo

    Z1Z1 qq, etc. p in galactic halo Z1Z1 qq, etc. D in galactic halo

    Howie Baer, Aspen winter conference, January 16, 2008 26

  • 8/3/2019 Howard Baer- SUSY and cosmology

    27/45

    Rates for s, e+s, ps vs. m0 for fixed m1/2 = 550 GeV, tan= 50

    0 1000 2000 3000 4000

    m0(GeV)

    105

    104

    103

    102

    101

    100

    S/B(e+)

    0 5 10 15

    r(kpc)

    0

    5

    10

    (G

    eVcm

    3)

    default

    NFW

    Moore et al

    Kravtsov et al

    0 1000 2000 3000 4000

    m0(GeV)

    109

    108

    107

    106

    105

    104

    d

    p/dEd(

    GeV

    1c

    m

    2s

    1

    sr

    1)

    0 1000 2000 3000 4000

    m0(GeV)

    1012

    1010

    108

    106

    104

    (c

    m

    2s

    1)

    a) b)

    c) d)

    rates enhanced in A-funnel and HB/FP region (MHDM)

    Howie Baer, Aspen winter conference, January 16, 2008 27

  • 8/3/2019 Howard Baer- SUSY and cosmology

    28/45

    Direct and indirect detection of neutralino DM

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    0 1000 2000 3000 4000 5000 6000 7000 8000

    mSUGRA, A0=0 tan=10, >0

    m0(GeV)

    m1/2

    (Ge

    V)

    LEP

    no REWSB

    Z~1notLSP

    (p-)=3x10

    -7GeV

    -1cm

    -2s

    -1sr

    -1

    (S/B)e+=0.01

    ()=10-10

    cm-2

    s-1

    sun

    ()=40 km

    -2

    yr

    -1

    G 0

  • 8/3/2019 Howard Baer- SUSY and cosmology

    29/45

    SuperWIMPs (e.g. G in SUGRA or G in UED)

    mG = F/3M TeV in Supergravity models usually G decouples (but see Moroi et al. for BBN constraints)

    if G is LSP, then calculate NLSP abundance as a thermal relic: NLSPh

    2

    Z1 hG, ZG, G or 1 G possible lifetime NLSP 104 108 sec constraints from BBN, CMB not too severe

    DM relic density is then G =mG

    mNLSPNLSP + TP

    G (TR) Feng, Rajaraman, Su, Takayama; Ellis et al; Buchmuller et al. G undetectable via direct/indirect DM searches

    unique collider signatures:

    1=NLSP: stable charged tracks can collect NLSPs in e.g. water (slepton trapping) monitor for NLSP G decays

    Howie Baer, Aspen winter conference, January 16, 2008 29

  • 8/3/2019 Howard Baer- SUSY and cosmology

    30/45

    SUGRA models with non-universal scalars

    Normal scalar mass hierarchy NMH: HB, Belyaev, Krupovnickas, Mustafayev m0(1) m0(2) m0(3) (preserve FCNC bounds)

    motivation: reconcile BF(b

    s) with (g

    2) anomaly

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    mSUGRA, tg=30, >0, A0=0, mtop=175 GeV,m01,2=100 GeV

    e+e

    -input for a G LEP2 excluded

    NO REWSB

    stau

    LSP

    sqrt

    (2)

    m03 (TeV)

    m1/2

    (Ge

    V)

    Howie Baer, Aspen winter conference, January 16, 2008 30

  • 8/3/2019 Howard Baer- SUSY and cosmology

    31/45

    SUGRA models with non-universal Higgs mass (NUHM1)

    m2Hu = m2Hd m2 = m0: HB, Belyaev, Mustafayev, Profumo, Tata motivation: SO(10) SUSYGUTs where Hu,d (10) while matter (16)

    m2

    m0 higgsino DM for any m0, m1/2 m2 < 0 can have A-funnel for any tan

    10-3

    10-2

    10-1

    1

    -3 -2 -1 0 1 2 m / m0

    h2

    0

    0.1

    0.20.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    -3 -2 -1 0 1 2 m / m0

    m(TeV)

    m0=300GeV, m

    1/2=300GeV, tan=10, A

    0=0, >0, m

    t=178GeV

    WMAPm

    A

    m

    Howie Baer, Aspen winter conference, January 16, 2008 31

  • 8/3/2019 Howard Baer- SUSY and cosmology

    32/45

    NUHM2 (2-parameter case)

    m2Hu = m2Hd = m0: HB, Belyaev, Mustafayev, Profumo, Tata motivation: SU(5) SUSYGUTs where Hu (5), Hd (5)

    can re-parametrize m2Hu , m

    2Hd

    , mA (Ellis, Olive, Santoso)

    large S term in RGEs light uR, cR squarks, meL < meRNUHM2: m

    0=300GeV, m

    1/2=300GeV, tan=10, A

    0=0, m

    t=178GeV

    100

    200

    300

    400

    500

    600

    700

    800

    900

    0 250 500 750 1000 1250 1500 1750 2000

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    mA

    (GeV)

    (GeV)

    LEP2

    sqrt(2)

    ~

    1

    Ah

    NUHM1

    HS

    mSUGRA

    GS

    Howie Baer, Aspen winter conference, January 16, 2008 32

  • 8/3/2019 Howard Baer- SUSY and cosmology

    33/45

    Gaugino mass non-universality

    M1 = M2 = M3: HB, TK, AM, EP, SP, XT motivation: SUSYGUTs where gauge kinetic function transforms non-trivially

    M2

    M1 at MGUT: mixed wino dark matter (MWDM)

    M2 M1 at MGUT: bino-wino co-annihilation (BWCA)

    -600 -400 -200 0 200 400 600

    M1

    (GeV)

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    103

    10

    4

    h

    2

    m0=300 GeV, m

    1/2=300 GeV, tan=10, A

    0=0, >0, m

    t=178 GeV

    -600 -400 -200 0 200 400 600

    M1

    (GeV)

    0

    0.2

    0.4

    0.6

    0.8

    1

    RB~

    ,W~

    w~

    B

    ~

    a) b)

    WMAP

    mSUGRA MWDMBWCA BWCA mSUGRA MWDM

    Howie Baer, Aspen winter conference, January 16, 2008 33

  • 8/3/2019 Howard Baer- SUSY and cosmology

    34/45

    Gaugino mass non-universality: low M3 case

    M3 < M1 M2: HB, TK, AM, EP, SP, XT motivation: mixed-moduli AMSB models lower M3 low mq low mixed higgsino DM

    -400 -200 0 200 400

    M3

    (GeV)

    10-4

    10

    -3

    10-2

    10-1

    100

    101

    102

    h

    2

    m0=300 GeV, m

    1/2=300 GeV, tan=10, A

    0=0, >0, m

    t=175 GeV

    -400 -200 0 200 400

    M3

    (GeV)

    0

    0.2

    0.4

    0.6

    0.8

    1

    RH~

    a) b)

    WMAP

    mSUGRA mSUGRAMHDM1 MHDM1

    LEP2

    Excluded

    LEP2

    Excluded

    MHDM2 MHDM2

    Howie Baer, Aspen winter conference, January 16, 2008 34

  • 8/3/2019 Howard Baer- SUSY and cosmology

    35/45

    Mixed higgsino DM from a high M2 (HM2DM)

    m0

    =300GeV, m1/2

    =300GeV, tan=10, A0

    =0, >0, mt=171.4GeV

    10-2

    10 -1

    1

    -3 -2 -1 0 1 2 3

    2007/07/07 11.40

    WMAP

    h2

    00.10.20.30.40.50.6

    0.70.80.9

    1

    -3 -2 -1 0 1 2 3

    r2

    = M2

    / m1/2

    RH

    high M2 low || so get mixed higgsino DM but high mqL HB, Mustafayev, Summy, Tata

    Howie Baer, Aspen winter conference, January 16, 2008 35

  • 8/3/2019 Howard Baer- SUSY and cosmology

    36/45

    Compressed SUSY (Steve Martin)

    in models with low M3 and A0 M1, the t1 becomes quite light Martin finds that if

    mt < meZ1 0 small SUSY breaking due to D3 brane

    mass hierarchy: mmoduli

    m3/2

    mSUSY

    MSSM soft terms calculated by Choi, Falkowski, Nilles, Olechowski, Pokorski

    phenomenology: Choi, Jeong, Okumura; Falkowski, Lebedev, Mambrini;Kitano, Nomura

    see also: HB, E. Park, X. Tata, T. Wang, JHEP0608, 041 (2006); PLB641,447 (2006); JHEP0706, 033 (2007);

    Howie Baer, Aspen winter conference, January 16, 2008 37

  • 8/3/2019 Howard Baer- SUSY and cosmology

    38/45

    =6, m3/2

    =12 TeV, tan=10, >0, mt=175 GeV

    200

    300

    400

    500

    600

    700

    800

    900

    103

    105

    107

    109

    1011

    1013

    1015

    1017

    M1

    M2

    M3

    a)

    Q (GeV)

    Mass(GeV)

    =6, m3/2

    =12 TeV, tan=10, >0, mt=175 GeV

    -600

    -400

    -200

    0

    200

    400

    600

    800

    103

    105

    107

    109

    1011

    1013

    1015

    1017

    Hd

    Hu

    R

    L

    bR

    tR

    tL

    eR

    ,e

    L,

    dR,

    uR

    uL b)

    Q (GeV)

    sign(mi2

    )|mi2

    |(Ge

    V)

    GUT scale AMSB splitting of soft terms cancelled by RGE running:soft terms unify at mirage unification scale

    MM-AMSB contains BWCA, MWDM, LM3DM scenarios!

    Howie Baer, Aspen winter conference, January 16, 2008 38

    ( ) ( )

  • 8/3/2019 Howard Baer- SUSY and cosmology

    39/45

    SO(10) SUSYGUTs and t b Yukawa unification (YU)

    superpotential: f f 161610 +

    YU not possible in mSUGRA YU can work in NUHM2 model! need A20 = 2m210 = 4m216

    inverted scalar mass hierarchy: BFPZ

    split Higgs: m2Hu < m2Hd mq,(1, 2) 10 TeV mt1 , mA,

    1

    2 TeV

    mg 350 500 GeV see Baer et al; Blazek et al.

    g1

    g2

    g3

    fb

    ft

    f

    MZ

    MG

    Co u p li n

    g s

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    tLtR

    bR

    LR

    uL,R

    ,dR

    eR

    eL

    At

    Ab

    A

    Hu

    Hd

    Q (GeV)

    S o ftPa r a

    me te r s

    ( Te V)

    10

    15

    5

    0

    -5

    -10

    -15

    -20

    1 10 10 10 10 10 10 10 10 102 4 6 8 10 12 14 16 18

    Howie Baer, Aspen winter conference, January 16, 2008 39

  • 8/3/2019 Howard Baer- SUSY and cosmology

    40/45

    Top-down scan of NUHM2 p-space

    New analysis: MCMC approach (HB, Kraml, Sekmen, Summy)

    Howie Baer, Aspen winter conference, January 16, 2008 40

  • 8/3/2019 Howard Baer- SUSY and cosmology

    41/45

    Problem reconciling DM with Yukawa unification

    one solution: axino DM instead of neutralino

    ah2

    mam eZ1

    eZ1h2

    : warm DM also thermal component depending on TR: CDM

    Howie Baer, Aspen winter conference, January 16, 2008 41

  • 8/3/2019 Howard Baer- SUSY and cosmology

    42/45

    MCMC scan: compromise solution with m16 3 TeV

    Z1 Z1 annihilate through h resonance

    Howie Baer, Aspen winter conference, January 16, 2008 42

  • 8/3/2019 Howard Baer- SUSY and cosmology

    43/45

    Can generate BDR solutions with both WS/GS BCs

    Z1 Z1 annihilate through A resonance comb. large tan 50 and low mA: excluded by Bs +

    Howie Baer, Aspen winter conference, January 16, 2008 43

  • 8/3/2019 Howard Baer- SUSY and cosmology

    44/45

    Prediction of new physics at LHC from SO(10) SUSYGUTs:

    gluino pair production with mg 350 450 GeV high b-jet multiplicity meZ2 meZ1 50 75 GeV dilepon mas edge

    Howie Baer, Aspen winter conference, January 16, 2008 44

  • 8/3/2019 Howard Baer- SUSY and cosmology

    45/45

    Conclusions

    Baryogenesis scenarios: constrained by /sparticle searches

    Overwhelming evidence for CDM in the universe: identity unknown

    Numerous candidate CDM particles from theory WIMPs: thermal relic from Big Bang

    SUSY

    Z1 is favored WIMP candidate, but many others

    Detection at colliders: Tevatron, LHC, ILC; direct/indirect DM

    SuperWIMPs: G in SUSY; G in UED

    models: mSUGRA; NUSUGRA; MMAMSB; SO(10) with YU

    We are on our way to unveiling the mysteries of baryogenesis and DarkMatter in next several years!

    Howie Baer, Aspen winter conference, January 16, 2008 45