HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION...

29
HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION CHOICE IN BOARD LEVEL RELIABILITY PERFORMANCE AUTHORS: B. VANDEVELDE, L. DEGRENDELE, M. CAUWE, B. ALLAERT, R. LAUWAERT, G. WILLEMS SPEAKER: M. TSURIYA (iNEMI)

Transcript of HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION...

Page 1: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

HOWTHEMOLDCOMPOUNDTHERMALEXPANSIONOVERRULESTHESOLDERCOMPOSITIONCHOICEINBOARDLEVELRELIABILITYPERFORMANCE

AUTHORS:B.VANDEVELDE,L.DEGRENDELE,M.CAUWE,B.ALLAERT,R.LAUWAERT,G.WILLEMS

SPEAKER:M.TSURIYA(iNEMI)

Page 2: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

OUTLINE

¡ Introduction

¡ Experimental Setup

¡ Results ofthe Thermal Cycling Experiment

¡ Cross-sectional Analysis

¡ Conclusions

2

Page 3: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

OUTLINE

¡ Introduction

¡ Experimental Setup

¡ Results ofthe Thermal Cycling Experiment

¡ Cross-sectional Analysis

¡ Conclusions

3

Page 4: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

USEOFLOW-CTEMOLD COMPOUND

¡ Drivingfactors:¡ toreduce thestressonthesiliconchip(CPI:chip-package-interaction)¡ tolowerthemoistureuptake:SiO2 based fillercanreduce theamountofhygroscopicresinto

decrease theMSLanditislessexpensive thanresinfiller¡ Tousehalogen-free “green” compounds which isachieved byhighamountofSiO particles

¡ Asaconsequence¡ theamountofSiO2 particlesintheepoxymatrixincreased uptoafillercontentof85%.¡ Thisleaded toareductionoftheCTEofthemoldcompoundbelow10ppm/°C(CTEofSiO2 is

0.5ppm/⁰C).

4

DRIVING FACTORSAND CONSEQUENCES

Page 5: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

USEOFLOW-CTEMOLD COMPOUND

¡ Formostpackages, themoldcompoundeasilytakesmorethan50%ofthetotalvolumeofthepackage

¡ So,themoldCTEhasahugeimpactontheaverageCTEofthecomponent

5

LOW-CTEMOLD COMPOUNDS

Page 6: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

USEOFLOW-CTE“GREEN”MOLD COMPOUNDS

6

THECHANGE-OVER TOOKPLACEBETWEEN 2005-2010

0%10%20%30%40%50%60%70%80%90%

Q1 2005

Q3 2005

Q1 2006

Q3 2006

Q1 2007

Q3 2007

Q1 2008

Q3 2008

Q1 2009

Q3 2009

(datafromaleadingsemiconductorsupplier)

Use ofGreenMouldCompounds for plasticpackagesThe introduction ofthe “green” mold compoundsisan indication for the introduction ofthe uselow-CTE versions inthat period. Inrecentyears,also greenmold compoundwithhigher CTEareused through changing the resinmaterials.

Page 7: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

USEOFLOW-CTEMOLD COMPOUND

¡ FEMSimulation,byassumingthesamepropertiesforPCB.¡ Testsample:

¡ UsePBGA27x27mm,1.27mmpitch¡ 6versionsofPBGAwithdifferentMoldCTE

¡ TestBoards:¡ Use4differentthicknessofPCBboard(incl.oneflexboard)

¡ SimulationResult:¡ At0.8mmPCBboardassembly,6versionsPBGAfailurerateareno

different.

¡ MoldCTEofthePBGAbecomesveryimportantwhenthePCBislessflexible

¡ AslocalbendingofthePCBbelowthecomponentcanlesscompensatefortheincreasedCTEmismatchbetweenPBGAandPCB.

7

INCREASED CTEMISMATCHWITH THE PCB

0

1000

2000

3000

4000

5000

6000

5 10 15 20

MTTF(cycle

s)MoldCTE(ppm/°C)

0.8mm

1.6 mm

2.4 mm

No PCB flexing

FEMSimulationResultExample:PBGA27x27areaarray1.27mmpitch

Page 8: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

LOW-CTEMOLD COMPOUNDS

¡ Highermoldstiffnesscanlead tobrittlefracture (inparticular inshockloadings)

¡ Low-CTE moldcompounds alsohaveahigherstiffnessduetothehigherSiOfillercontent

8

OTHER NEGATIVE IMPACTS

Each datapoint onthis graph represents acommercially available mold compound

Page 9: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

LOW-CTEMOLD COMPOUNDS

¡ Higher mold stiffness can lead to brittle fracture (inparticular inshockloadings)¡ Moreissueswith head-in-pillow due to packagewarpage

¡ ThedifferentCTEofthe mold changed the packagewarpage behaviour during solder reflow

9

OTHER NEGATIVE IMPACTS(2)

Page 10: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

LOW-CTEMOLD COMPOUNDS

¡ Higher mold stiffness can lead to brittle fracture (inparticular inshockloadings)¡ HigherCTEmismatchbetween copperwireandmoldCTE leadtowirefatiguefractures

10

OTHER NEGATIVE IMPACTS(3)

Page 11: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

OUTLINE

¡ Introduction

¡ Experimental Setup

¡ Results ofthe Thermal Cycling Experiment

¡ Cross-sectional Analysis

¡ Conclusions

11

Page 12: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

EXPERIMENTAL SETUP

¡ Test component:¡ 9x9mmQFNwith64pins¡ The solderable exposedpadisabouthalfofthepackage size.¡ Die sizeisroughly4x4mm2

¡ Itmakesthatthispackagehasaratherlowdietopackageratio.¡ Threeversions aremade:

12

PACKAGEDESCRIPTION

MoldCTE LeadTipPlating WettableFlank

QFN#1 7ppm/°C CuExposed Yes

QFN#2 7ppm/°C E’less Tinplating Yes

QFN#3 12ppm/°C CuExposed No

WettableFlank

Page 13: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

EXPERIMENTAL SETUP

¡ PCB:¡ 8-layerboardswiththe6innerlayers

completely filledwithcopper¡ tomaximizethestiffnessoftheboards¡ ToobtainaCTEasclosetothatofCuaspossible

¡ The totalthicknessis2.4mm.¡ Assembly:

¡ Twodifferent soldermaterials:SnPb andSn3%Ag0.5%Cu.

13

PCBANDBOARDASSEMBLY

2.4mmPCB

Page 14: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

EXPERIMENTMATRIX

QFNtypeMold CTELeadTip

Wettable Flank

SolderPaste

SnPb SAC305

QFN17ppm/ ⁰CCuExposed

WettableFlank0to 100°CTC 0to 100°CTC

QFN27ppm/⁰CTinplating

WettableFlank0to 100°CTC 0to 100°CTC

QFN312ppm/⁰CCuExposed

Non -Wettable0to 100°CTC 0to 100°CTC

14

Page 15: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

EXPERIMENTAL SETUP

15

THERMAL CYCLING TESTCONDITIONS

¡ The IPC-9701TC1test condition forsolder jointevaluation wasselected asthemostappropriate test.¡ 0to100⁰Cthermalcycling(air-to-air)¡ Totalcyclingtime=1hour

¡ rampuptime=10minutes¡ dwell-time=20minutes

¡ In-situmeasurement foropens

-20020406080100120

0 20 40 60 80 100 120 140 160 180 200

Tempe

rature

(°C)

Time(min.)

Page 16: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

OUTLINE

¡ Introduction

¡ Experimental Setup

¡ Results ofthe Thermal Cycling Experiment

¡ Cross-sectional Analysis

¡ Conclusions

16

Page 17: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

THERMAL CYCLING TESTRESULTS

17

WEIBULL DISTRIBUTIONSQFN type Solder N63% β

QFN #1 SnPb 971 4.4

QFN #2 SnPb 1720 4.8

QFN #3 SnPb 5323 3.0

QFN #1 SAC305 1682 6.3

QFN #2 SAC305 1901 3.7

QFN #3 SAC305 5604 3.0

The results clearly reveal that the mostdominant parameter is the CTE of themold.• For SAC305 assemblies, the difference

between 7 ppm and 12 ppm/C QFN’s isa factor three.

• Solder material and flank wettabilityhavemuch less on the BLR.

Page 18: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

OUTLINE

¡ Introduction

¡ Experimental Setup

¡ Results ofthe Thermal Cycling Experiment

¡ Cross-sectional Analysis

¡ Conclusions

18

Page 19: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

CROSS-SECTIONAL ANALYSIS

¡ Forallanalyzedsamples,oneorevenallfourcorner jointsshowedfractures leading tothedaisychainresistance increase. ¡ Thisconfirmsthatthefractureisinducedbythe

CTEmismatchbetweenQFNandPCB,whichishighestinthe4corners.

¡ The fracturewasalwaysinsidethesolderjoint,andnotattheintermetallic compoundsnorthecopperpaditself.

¡ The solderfracturesareinduced throughlow-cyclefatigueduringthetemperature cycling.

19

GENERAL FINDINGSCreep strain (-)

Page 20: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

CROSS-SECTIONAL ANALYSIS

20

QFN#1:MoldCTE:7ppm/°C; Cuexposedtip,Wettableflank

SnPb solder paste Failing after 971 cycles

• This assembly showed the earliest failures.• It is related to the non-optimal wetting resulting in almost all solder at the side,

however, not really functioning as a strong fillet.

Page 21: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

CROSS-SECTIONAL ANALYSIS

21

QFN#2:MoldCTE:7ppm/°C;E’less Tinplatingontip,WettableFlank

SnPb solder paste Failing after 1720 cycles

¡ Thankstothefillet,thissolderjointcanresistmorecycles

¡ Cross-section showsstrongdamagewhichisduetotherepeated largeexpansion mismatchbetween QFNandboardineach cycle,after ithasalready failedmuchearlier butwhilethetestwasstillongoing.

¡ Thiscanonlybeexplained bythelow-CTEmoldcompoundusedinthisQFNpackage.

Page 22: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

CROSS-SECTIONAL ANALYSIS

22

QFN#1:MoldCTE:7ppm/°C; Cuexposedtip,Wettableflank

SnAgCu solder paste Failing after 1682 cycles

¡ While theSnPb solderedQFNshowedverylowstand-offheightsatoneside,theSAC305solderedQFN’shasaquiteuniformstand-offheightresultinginaboutdoublelifetime

¡ The fracturesarefoundneartheinterfacewiththeleadofthecomponent, however,stillinthesolderjointitself(noIMCfailure).

¡ Alsohere, quitesomedamagewereseenwhichisrelated tothelarge expansionmismatchbetween QFNandPCB.

Page 23: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

CROSS-SECTIONAL ANALYSIS

23

QFN#2:MoldCTE:7ppm/°C;E’less Tinplatingontip,WettableFlank

SnAgCu Solder paste Failing after 1901 cycles

¡ Similarconclusion aswithnon-wettableflankQFN

¡ Andasthesolderjointshapeisalsosimilartothenon-wettable version,weindeed canexpect aboutthesamelifetime.

Page 24: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

CROSS-SECTIONAL ANALYSIS

24

QFN#3:MoldCTE:12ppm/°C;Cuexposed ontip,non-wettableflank

SnPb Solder paste Failing after 5323 cycles

¡ TheQFNwiththe12ppm/°Cmoldmaterialsurvivesaboutthreetimemoretemperature cycles.

¡ The fractureisvisible,butthere isnotsuchalargedamageasseenwiththepreviouscases.

Page 25: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

CROSS-SECTIONAL ANALYSIS

25

QFN#3:MoldCTE:12ppm/°C;Cuexposed ontip,non-wettableflank

SnAgCu Solder Paste Failing after 5604 cycles

¡ Atinycrackisseenoverthewholelength.¡ BothSnPb andSAC305solderpastecan

surviveslonger than5,000cycleswhen12ppmCTEmoldcompound isusedinencapsulation.

Page 26: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

OUTLINE

¡ Introduction

¡ Experimental Setup

¡ Results ofthe Thermal Cycling Experiment

¡ Cross-sectional Analysis

¡ Conclusions

26

Page 27: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

CONCLUSIONS

¡ The conclusionoftheelaborated testwasthattheimpactofthesoldermaterialandflankwettability(electroless vsCuexposed) wasminimum(lessthan20%ofdifference) whilethemoldcompoundhadahugeimpact. Thecharacteristic lifetimeoftheQFN’swith12ppm/⁰Cwas3timeshigher thantheQFN’swith7ppm/⁰C.¡ Adifference insolder qualitywasseenwithnon-uniform stand-offheightsforSnPbsoldered

versusuniformstand-offheightswithSAC305solder.¡ Thisresultedinatwotimeshigher lifetimefortheSAC305solderedQFN.This wasonly

experienced with the Cuexposed QFN’s.¡ Forhighreliabilityapplicationsandelectronics operatingunder severeconditions, thismold

compound change createsamajorreliability concern andrequiresthoroughevaluation.¡ The impactonelectronics reliabilityisconsiderably greaterthanthatofachange insolderalloy

butasyetdidnotgetasimilarlevelofattention.

27

Page 28: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL

NEXTSTEPS

¡ Perform abroader experimental programto demonstrate the impactofthe mold CTE, andbenchmark its effect to other parameterssuch asD2Pratio,boardstiffness and solder composition

¡ Characterisation techniques to measure the mold CTEofcommercial components¡ Explore mitigation techniques

Inordertogetabroaderandgeneric viewontheimpactofthemoldCTEonBLR, andtocreateawarenesswithintheworld-wide industry,INEMI initiatedaprojectonthistopicwithmajorplayersintheelectronics assemblyindustry.

28

INEMINEWCOLLABORATIVE EFFORTS

Page 29: HOW THE MOLD COMPOUND THERMAL EXPANSION OVERRULES THE SOLDER COMPOSITION …thor.inemi.org/webdownload/newsroom/Presentations/ICEP... · 2016. 5. 6. · HOW THE MOLD COMPOUND THERMAL