How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure...

34
How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the French hydro-agro-food system (1850-2050) NITROGEN, A cross-cutting Environmental Challenge Vienna, 27 februari 2019 Gilles Billen 1 , Julia Le Noë 1,2 , Josette Garnier 1 1 CNRS / Sorbonne-Université, Paris (France) 2 Institute of Social Ecology, BOKU, Vienna (Austria)

Transcript of How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure...

Page 1: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

How Agro-food System Structure impacts on the Nitrogen Cascade:

Lessons learned from the long term analysis of the French hydro-agro-food system (1850-2050)

NITROGEN,A cross-cutting Environmental ChallengeVienna, 27 februari 2019

Gilles Billen1, Julia Le Noë1,2, Josette Garnier1

1 CNRS / Sorbonne-Université, Paris (France)2 Institute of Social Ecology, BOKU, Vienna (Austria)

Page 2: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

aquifer

river

River network

estuary

Flood plain

riparianwetland

agriculture

Ville

costal sea

atmosphere

dam and reservoir

Pond and lakecity

Drinking water nitrate contamination

Atmospheric pollutionGreenhouse gas emission

Coastal eutrophication

N2

Agriculture:Providing soil with nutrients to enhance, and compensate for, their export throughharvest. = Intentional introduction of « new » reactive N

Because of the mobility of N, this initiates a Nitrogen Cascade, contaminating all environmental compartments.

Vorführender
Präsentationsnotizen
The N cascade and more prceisely the N losses to the environment are one of the most on of the major enviroenmental
Page 3: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

Bifurcations in the N cascadeProcesses which determines whether N flows toward

either desirable and useful,

or dispersive and non-manageable

pathways.

635

304

12

207

70261318

9185

Based on examples from the long term trajectory of French agriculture (1850-2015) (Le Noë et al., 2018)

Page 4: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

0

50

100

150

200

0 100 200 300 400

Surp

lus,

kgN

/ha/

yr

total soil N inputs, kgN/ha/yr

0

50

100

150

200

0 100 200 300 400N

Yie

ld, k

gN/h

a/yr

total soil N inputs, kgN/ha/yr

The fate of fertilizersHarvest or loss?

fert

ilisa

tion

yiel

d

cropland

Harvest

N cascade

Surplus (= N balance)

Y = Ymax. F/(F+Ymax)

Yield vs Fertilisation relationship(over the whole crop rotation cycle)

Ymax=300

Total N soil inputs

0

20

40

60

80

100

0 100 200 300 400N

UE,

%total soil N inputs, kgN/ha/yr

Surplus

N Use Efficiency

Intensification isthe first cause of N losses

and low NUE

Ymax=500

Page 5: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

Ymax, kgN/ha/yr

< 200200-400400-600600-800> 800

Br

N-PdC

L Am

LCL Av

Pic

B

Al

S

A

CCDL

MSM

COGde L

Gd J

AR

I-D-A

Gd MG-HGarPOcc

Lan

Gir

VC

AL

POrr

IdFE

E&L

0

50

100

150

200

250

0 100 200 300

Yiel

d, k

gN/h

a/yr

Total N inputs, kgN/ha/yr

Eure-et-Loir (Ht Loir)

700

0

50

100

150

200

250

0 100 200 300

Yiel

d, k

gN/h

a/yr

Total N inputs, kgN/ha/yr

Loire Aval

465

0

50

100

150

200

250

0 100 200 300

Yiel

d, k

gN/h

a/yr

Total N inputs, kgN/ha/yr

Yonne ('petites terres')

300

0

50

100

150

200

250

0 100 200 300

Yiel

d, k

gN/h

a/yr

Total N inputs, kgN/ha/yr

Ile de France 650

0

50

100

150

200

250

0 100 200 300

Yiel

d, k

gN/h

a/yr

Total N inputs, kgN/ha/yr

Poitou-Charente

370

0

50

100

150

200

250

0 100 200 300

Yiel

d, k

gN/h

a/yr

Total N inputs, kgN/ha/yr

Gers

500

In the same pedo-climaticcontext, organic crop rotations have similar Y vs F relationshipas conventional ones

Conventional Organic

Cropping systems

AlfAlf

Alf

WhTrit

Flax

Lent

WhBarl

Rape

Wh

Barl

Page 6: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

0

50

100

150

200

0 50 100 150 200

Yiel

d , k

gN/h

a/yr

N input, kgN/ha/yr

0

50

100

150

200

0 100 200

Yiel

d, k

gN/h

a/yr

total soil N input, kgN/ha/yr

Picardy

400

800

2012

1852

0

50

100

150

200

0 100 200

Yiel

d, k

gN/h

a/yr

Total soil N input, kgN/ha/yr

Burgundy

400

200 2012

18520

50

100

150

200

0 100 200

Yiel

d, k

gN/h

a/yr

total soil N inputs, kgN/ha/yr

Brittany

300

600

2012

1852

The historical trajectory of regional French cropping systems

0

50

100

150

200

1850 1900 1950 2000Yi

eld

, kgN

/ha/

yr0

50

100

150

200

1850 1900 1950 2000

N in

put c

rop,

kgN

/ha/

yr

200

1852

Post 1980

1980

An unprecedent intensification of cropping systems since the mid 20th century, with limited NUE improvements since the 1980’s.

Post 1980 situations

Page 7: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180ob

serv

ed le

achi

ng, k

gN/h

a/yr

surplus N, kgN/ha/yr

The fate of the surplusSoil storage or loss?

fert

ilisa

tion

yiel

d

cropland

Surplus (= N balance)

SoilOM pool

soil storage

leaching

denitrification

Leaching vs Surplus relationship(over the whole crop rotation cycle)

cropland withcover crop

Leaching is the major fate of surplus, unless conditions are met for significantsoil OM storage (grassland, covercrops, …)

Billen et al. (2013); Vertès et al. (2007).

Page 8: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

fert

ilisa

tion

yiel

d

cropland

Surplus (= N balance)

SoilOM pool

soil storageleaching

denitrification

in-streambenthicretentionAquifers

denitrificationin riparianwetlands

N2, N2O

N2, N2O

N2, N2O

riverDelivery at the outlet

The fate of N leaching‘retention’ or delivery at the watershed outlet?

1900 1950 2000

15

10

5

0

Nitr

ate

, mgN

/l

Page 9: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

How large is hydrosystem retention?

0

100

200

300

400

1850 1900 1950 2000

Soil

N b

alan

ce, k

tonN

/yr Paris

River Seine network

Clay & clayed rockBasalt & rhyoliteLimestoneChalkGneissGraniteSandstoneMicashistOphioliteSandSchist & ShaleLoess

0

100

200

300

400

1850 1900 1950 2000

N o

utpu

t flu

xes,

kto

nN/y

r export at outletin stream retentionriparian retentionaquifer retentionsoil denitrificationN soil sequestration

0 100 200 km

The case of the Seine watershed

Export to the sea1/3 of N surplus

Billen et al. (in press) HEC

Denitrification in soil & riparian wetlands1/3 of N surplusStorage in soil OM and aquifers1/3 of N surplus

Page 10: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

The fate of harvestFood or feed? (The human diet issue)

nb LU

livestockpermanent & semi-natural

grassland

PopulationAnimal pdcts

Vegetal pdcts

ferti

lisat

ion

yiel

d

cropland

surplus

NH3

foodfeed

0.0

0.1

0.2

0.3

1850 1900 1950 2000

conv

effi

cien

cy

Historical mixed crop & livestockfarming sytems

Intensive specializedlivestock farmingsystems

Low efficiencyLarge losses

Vorführender
Präsentationsnotizen
Let we come back to agricultural production. What is the fate of N imbedded in harvest? One major bifurcation there is between human nutrition or animal feeding. Because of the very low conversion efficiency of vegetal to animal protein, this bifurcation is of great importance with respect to the N cascade: animals occasionate large N losses to the atmosphere.
Page 11: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

The status of animal farming in 19th c. traditional agriculture

5

Population1.5 M inhab

3.4

1

3.2

2.4

21

0.717

25

3

17

3

-1

cropland

14 320 km²

42

5

N Surplus

Animal pdctsVeg. pdcts

Grassland1266km²

29

728

0.7

1

Urban sludges

Livestock0.3

LU/haUAA

Export animal prdcts

Export vegetalprdcts

Symb N fix, atm depos

1852

The case of Picardy, 1852 kgN/ha/yr

FishMilkMeatVegCereals

Die

t, kg

N/ca

p/yr

Grass based mixed crop & lvstck farmingFodder based mixed crop & lvstck farming

Fodder legumes ensure most N fertilization;Animals convert fodder into manure

Alf/Clo

Wh

Barl

Page 12: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

End 19th century: necessary connection between crop and livestock farming

Vorführender
Präsentationsnotizen
La fertilité des sols agricoles dans ce système dépend clairement des animaux, qui constituent certes une sourced de protéine animales (lait viande) le moyen de traction, mais surtout le moyen d’assurer la restitution au sols arables des nutriments prélevés par la récolte.
Page 13: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

1909: Fritz Haber discovers the process of ammonia synthesis from atmospheric N2 and H2

Industry becomes able to massively introduce reactive N into the biosphere

N2 + 3 H2 2 NH3 NO 2 HNO 3hightemperaturehighpressurecatalyst

→ → →

Industrial fixation of atmospheric nitrogen

1913: Carl Bosch brings the process at industrial scale

Vorführender
Präsentationsnotizen
Le concept d’anthropocène est né du constat que l’homme est devenu un agent biogéochimique majeur, bouleversant de manière quantitative le cycle des principaux éléments biogènes. De ce point de vue , la perturbation du cycle de l’azote est l’exemple le plus frappant, ce qui permet de dater précisément le début de l’Anthropocène: on a le choix des dates: 1903: découverte du procédé en laboratoire qui permet de fixer l’azote atmosphérique, inerte, en azote réactif, ammoniacal ou nitrique; 1909 : dépôt par Fritz Haber et Carl Bosch du brevet du procédé, qui servira d’abord pour fabriquer des explosifs, ce qui permettra le massacre de 18 M pers en Europe pendant la première guerre mondiale, ensuite pour faire des engrais.
Page 14: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

Second half 20th century: Agriculture becomes dependent on Chemical Industry

Vorführender
Präsentationsnotizen
30 ans plus tard, après Haber Bosch, tout a changé: …
Page 15: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

1852

Picardy 2010, kgN/haUAA/yrPicardy 1852, kgN/haUAA/yr

1970 20101955

Stockless cropping systems

Territorial specialization of agriculture Grass-based mixed crop & livestock farmingFodder-based mixed crop & lvstck farmingSpecialized cropping systemsDisconnected crop & livestock systemsIntensive specialized livestock systems

5

Population1.5 M inhab

3.4

1

3.2

2.4

21

0.717

25

3

17

3

-1

cropland

14 320 km²

42

5

N Surplus

Animal pdctsVeg. pdcts

Grassland1266km²

29

728

0.7

1

Urban sludges

Livestock0.3

LU/haUAA

Export animal prdcts

Export vegetalprdcts

Symb N fix, atm depos

22

Population2 M inhab

8.9

5.4

3.5

7

25

3.2102

3311

15

4

6

Cropland

11 780 km²

131

8

N Surplus

Animal pdcts

Vegetal pdcts

grassld1687km²

26

1540

2.1

1Urban sludges

Livestock0.4

LU/haUAA

Export animal pdcts

Export vegetal pdcts

Symbiotic fix& atm depos

3

112

Syntheticfertilizers

Page 16: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

1852

Grass-based mixed crop & livestock farmingFodder-based mixed crop & lvstck farmingSpecialized cropping systemsDisconnected crop & livestock systemsIntensive specialized livestock systems

1970

Britanny 2010, kgN/haUAA/yrBritanny 1852, kgN/haUAA/yr

1980 2010

Specialized livestock farming systems

Territorial specialization of agriculture

75

Population3.2 M inhab

4.3

7

4.5

59

77

20

138

10

95

5

11

Cropland

14 950 km²

101

15

Surplus N

Animal pdcts

Veg pdcts

grassld1900km²

19

9

19

1Urban sludges

Export animal pdctsSymb N fix &

atm depos

5

62

197

Synthfertilizers 111

Import feed

Export veg pdcts

38

33

Livestock1.6

LU/haUAA

Population2.3 M inhab

3.4

1.0

3.2

2.2

17

Export animal pdcts

0.5

248

11

5

4

Cropland

14 483 km²

20

5

Animal pdcts

Veg Pcdts

Grassld9677km²

8

1027

2

0.7

1

Urban sludges

Livestock0.28

LU/haUAA

Symb Fix & atm depos

N Surplus

Page 17: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

Densité bétailUGB/ha SAU

< 0.50.5-0.750.75-11-1.5> 1.5

MaghrebAsie min

25

8040

Espagne, Portugal, Italie

25 23 30

25

17 Benelux, Allemagne, UK et autres EU28

Amerique Latine

88

Asie

112

32

20

Flux d’azote totalktonN/an

1052

Le Noé et al. (2016). Cahiers Agricultures

Extreme opening of the French agro-food system (2006)

B, G, UK

Spain,Port,Italy Lvstck dens.

LU/haUAAN fluxesktonN/yr

Vorführender
Präsentationsnotizen
La céréaliculture est essentiellement tournée vers l’exportation, vers le Maghreb à partir des ports de Rouen, vers l’europe du Nord, vers l’europe du sud pour le mais du Sud-Ouest. La Bretagne nourrit de ses productions animales bas de gamme le reste du pays, mais dépend pour ce faire d’importations massives de soja brésilien ou argentin. Au total la France exporte à peine plus de protéines sous forme de céréales qu’elle n’en importe sous forme de soja.
Page 18: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

The need for crop and livestock farming reconnectionThe exemple of the Brie region (East of Paris)

1955: mixed crop and dairy farming

2016: Stockless cropping system

Garnier et al (2016). Envir Sci & Policy

Page 19: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

150

2016: stockless cropping system

2016: A few organic farm, withstockless cropping systems

Page 20: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

2025?: Possible organic mixed crop& lvstck system

2016: organic stockless farm

Page 21: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

The fate of human excreta‘Elimination’ or recycling?

PopulationAnimal pdcts

Vegetal pdcts

N2, N2O

wastewatertrtmt plant

cropland

hydrosystemEsculier, Le Noë et al, 2018. JoH

Current fate of human excreta in Paris City kgN/cap/yr

4.7 5.3

3.1

0.22.0

Sludge recycling

Other waste

0.6

CH3OH

Vorführender
Präsentationsnotizen
Today, the human excreta of a city such as Paris are collected in sewers together with all domestic wastewater and rainfall, treated in centralized wastewater trtmt plant, were org matter is first mineralized, the N is denitrified with added ethanol as an electron acceptor. The process requires 1ton fuel equivalent per ton N eliminated, ie about the same energy as initially required for producing this ton of reactive N through the Haber Bosch process. Only a few percent of the treated N is recycled to agriculture as sludge.
Page 22: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

PopulationAnimal pdcts

Vegetal pdcts

wastewatertrtmt plant

cropland

hydrosystemEsculier, 2019. Thesis

Source urine separation

4.7

3.8

1.5

Other waste

0.6

0.5Sludge recycling 1

Ecosanitation: source urine collection

Vorführender
Präsentationsnotizen
Yet, because most of N and P excreted by humans are present in urine, it would be technically easy to recycle most of it by a selective collection of this product before it is mixed with wastewater.
Page 23: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

Tentative Conclusions (1)The levers to control the N Cascade?

□ The introduction of reactive N into the biosphere and its dispersion into all environmental compartements has become a major thread at the planetary scale

□ A number of steps and bifurcations of the N cascade completely escape social management, being controlled by purely bio-physical processes.e.g. soil and wetland denitrification

ammonium volatilizationnitrate leaching

□ Other steps are completely under human control, but changing them requires deepstructural changes in the socio-ecological organization of the agro-food system,Including diversification of crop rotation with better use of legume crops

reconnection of animal and crop farmingreconnection of food production and consumptiondietary change toward less animal proteinrecycling of human excreta

Page 24: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

Dreaming of another future? A world without Haber-Bosch

An agro-ecological scenario for France in 2050

Activation of 3 levers

Billen, Le Noë & Garnier, 2018. STOTEN

1. Human diet

2. Reconnection of livestock and crop farming

3. Generalization of organic farming

635

304

12

207

70261318

9185

Page 25: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

1. Human diet

635

304

12

207

70261318

9185 43

322

150

76661

374

4975

158

Demitarian diet (Barsac declaration ) (http://www.nine-esf.org)

2018g/cap/dayg/cap/day

kgN

/cap

/yr

demitarian

35%

veg

etal

65%

ani

mal

60%

veg

etal

40%

ani

mal

Current French system Agro-ecological Scenario

0

2

4

6

8

1850 1900 1950 1960 1970 1980 1990 2000 2010

kgN

/cap

/yr

fishdairy productsmeatfruits and vegetablescereals

Page 26: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

Billen, Le Noë & Garnier, 2018. STOTEN

2. Reconnection of livestock and crop farming

Livestockdensity, LU/ha UAA

< 0.50.5-0.750.75-11-1.5> 1.5

N-PdC

L Am

LCL Av

Pic

S

CCDL

MSM

Gde L

Gd J

AR

I-D-A

Gd MG-HGarPOcc

Lan

Gir

VC

AL

POrr

IdFE

E&L AlBr

A

CO

B

N-PdC

L Am

LCL Av

Pic

S

CCDL

MSM

Gde L

Gd J

AR

I-D-A

Gd MG-HGarPOcc

Lan

Gir

VC

AL

POrr

IdFE

E&L AlBr

A

CO

B

% perm. grasslandin total agric. area

0 - 1010 - 2020 – 4040 - 60 60 - 80> 80

N-PdC

L Am

LCL Av

Pic

S

CCDL

MSM

Gde L

Gd J

AR

I-D-A

Gd MG-HGarPOcc

Lan

Gir

VC

AL

POrr

IdFE

E&L AlBr

A

CO

B

N-PdC

L Am

LCL Av

Pic

S

CCDL

MSM

Gde L

Gd J

AR

I-D-A

Gd MG-HGarPOcc

Lan

Gir

VC

AL

POrr

IdFE

E&L AlBr

A

CO

B

Livestock everywhere at the densitypermitted by local feed production, min 33% from permanent grassland. No import of feed!

Current French system Agro-ecological Scenario

Page 27: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

3. Generalization of organic farming

Long and diversified crop rotations, with legume cropsNo synthetic fertilizersRe-cycling of urban excreta

Current French system Agro-ecological Scenario

AlfAlf

Alf

WhTrit

Flax

Lent

WhBarl

Rape

Wh

Barl

Short crop rotations, Synthetic fertilizersPesticides

Page 28: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

Population62 inhab

232145

29

Export Importvegetal pdcts

540

Cropland

183 445 km² 2192

grassland93330 km²

livestock18.6 lu

Export animal pdcts

1888

Synthfertilizers 436

Symb Nfix& atm dep

Current French system:

Synthetic N fertilizers 2000 ktonN/yr

Imports 25% of livestock feed as soybeansExports 25% of its vegetal production as cereals

Population75 inhab

135

273

3

Export (or other use)vegetal pdcts

222

Cropland

180 682 km² 1550

grassland97 930 km²

livestock12 lu

Export animal pdcts

Symb Nfix

1170

365

344

Agro-ecological Scenario

No Synth N fertilizers ; Symb N fixation; urban recycling

No feed importExport of cereal (40% of current export)

ktonN/yr ktonN/yr

An agro-ecological scenario for France in 2050

Page 29: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

Current French system

Br

N-PdC

L Am

LCL Av

Pic

B

Al

S

A

CCDL

MSM

COGde L

Gd J

AR

I-D-A

Gd MG-HGarPOcc

Lan

Gir

VC

AL

POrr

IdFE

E&L

< 0.450.45 – 2.252.25 – 5.655.56 – 11.3>11.3

NO3, mgN/l

Bio-Local-Demitarien

Agro-ecological Scenario

< 0.450.45 – 2.252.25 – 5.655.56 – 11.3>11.3

NO3, mgN/l

kgN/ha/yr< 3535 - 5050 - 6565 - 80> 80

N surplus

River concentration

Assessing losses to the hydrosystem

Br

N-PdC

L Am

LCL Av

Pic

B

Al

S

A

CCDL

MSM

COGde L

Gd J

AR

I-D-A

Gd MG-HGarPOcc

Lan

Gir

VC

AL

POrr

IdFE

E&L

Page 30: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

Assessing greenhouse gas emissions by the agricultural sector

N-PdC

L Am

LCL Av

Pic

S

CCDL

MSM

Gde L

Gd J

AR

I-D-A

Gd MG-HGarPOcc

Lan

Gir

VC

AL

POrr

IdFE

E&L AlBr

A

CO

B

Agro-ecological scenario

N2O emissionkgN-N2O/km²/yr

<5050 - 7575 - 125125 - 175 175 - 250 > 250

N-PdC

L Am

LCL Av

Pic

S

CCDL

MSM

Gde L

Gd J

AR

I-D-A

Gd MG-HGarPOcc

Lan

Gir

VC

AL

POrr

IdFE

E&L AlBr

A

CO

B

Current French System

0 - 10001000-20002000-30003000-4000 4000-6000> 6000

CH4 emissionkgC-CH4/km²/yr

N-PdC

L Am

LCL Av

Pic

S

CCDL

MSM

Gde L

Gd J

AR

I-D-A

Gd MG-HGarPOcc

Lan

Gir

VC

AL

POrr

IdFE

E&L AlBr

A

CO

B

N-PdC

L Am

LCL Av

Pic

S

CCDL

MSM

Gde L

Gd J

AR

I-D-A

Gd MG-HGarPOcc

Lan

Gir

VC

AL

POrr

IdFE

E&L AlBr

A

CO

B

Nitrous oxide

Methane

Net Carbon dioxideCO2 net emissionkgC-CO2/ha/yr

>-200-200 to -100-100 to 00 to 100100 to 200200 to 300300 to 400400 to 500> 500

Garnier et al., 2019 STOTEN

Le Noë et al, in press Frontiers

Garnier et al., 2019 STOTEN

ktC-CO2equ / yr ktC-CO2equ / yr9000 3850

ktC-CO2equ / yr ktC-CO2equ / yr15200 8950

ktC-CO2equ / yr ktC-CO2equ / yr7400 2650

Page 31: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

0

50

100

150

0 10 20 30 40

tota

l N lo

sses

, TgN

/yr

total trade, TgN/yr

2009

1961

Popul

3 109 inhab

11

3.6

7

3.635

Syntheticfertilizers

12

Symbioticfixation & deposition

Cropland

10 106 km²

Animal pdct

Vegetal pdcts

TgN/yr

fisheries0.4

Internationaltrade

World, 1961

2.5

13

2415

10

Grassland31 106 km²

14

52livestock0.5 109 lu

48

2.5

2.5

Popul

3 109 inhab

11

3.6

7

3.635

Syntheticfertilizers

12

Symbioticfixation & deposition

Cropland

10 106 km²

Animal pdct

Vegetal pdcts

TgN/yr

fisheries0.4

Internationaltrade

World, 1961

2.5

13

2415

10

Grassland31 106 km²

14

52livestock0.5 109 lu

48

2.5

2.5

« Feeding the world »? Can this scenario be generalized at the global scale?

Lassaletta et al., ERL 2016

Population

7 M inhab

31

12

19

1162

Syntheticfertilizers

97

Symbioticfixation & deposition

Cropland

12 106 km²

Animal pdct

Vegetal pdcts

TgN/yr

fisheries1.7

Internationaltrade

World, 2009

21

1.4

88

7540

26

Grassland34 106 km²

36

118

105

livestock1.2 109 lu

20

20 1.4

36

2009

1961

Vorführender
Präsentationsnotizen
Dernier point. Ce type de scénario n’est il pas un scénario égoïste, pour pays riche? La population mondiale atteindra 9 M en 2050. Pour répondre à leurs besoins alimentaire il faut accroitre la prod agricole, et il est plus efficace, meilleur pour la planète, de le faire là où les conditions pédo climatiques sont favorables (chez nous donc!) et de compter sur le commerce international pour re distribuer les pdts agricoles là où on a a besoin. Plutôt que de produire localement de tout partout dans de moins bonnes conditions. Voici comment fonctionne le monde aujourd’hui, avec un commerce international qui intéresse plus du quart de la prod agricole totale, et dont près de la moitié de la production agricole est destinée à l’alimentation du bétail. Depuis 50 ans, les pertes d’azote ont augmenté parallèlement avzc l’accroissemnt du commerce international. Il y a un gd nombre de scénarios possible pour nourrir le monde en 2050. Nous en avons étudié deux: Le premier est la traduction d’un scénario éonomique, qui lié l’agriculture et le régime alimentaire humain au PIB. Spécialisation, intensification, conduisent à accroitre considérablement le commerce international eet la pollution. Le second, basé sur les mêmes principe que le scénario bio-loal et demitarien que nous avons élaboré pour le BP, est un sc de souveraineté aliemntaire, Il permet de nourrir le monde avzc nettement moins de commerce international et nettement moins de pollution. Penser global c’est manger local (et bio)
Page 32: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

0

50

100

150

0 10 20 30 40

tota

l N lo

sses

, TgN

/yr

total trade, TgN/yr

2009

1961

« Feeding the world »? Can this scenario be generalized at the global scale?

* Diet according to GDP in each country* Animal production specialized by country, with feed trade* Synthetic fertilisation adjusted to the needs and economicalpossibilities of each country, with environmental regulations* International trade fills the uncovered needs

2050 BAU scenario based on economic trends (SRES A1)

Lassaletta et al., 2016 ERL

Bodirsky et al, 2014 (MAgPIE model)Valin et al, 2014

2050 agro-ecological, food-sovereignty scenario* Equitable diet (4 kgN/cap/yr, 40% animal)* Ruminant production adjusted to grass production (+20% fodder production) * Symbiotic fixation adjusted to the needs and agronomical possibilities of each country by systematic introduction of legume crops in the rotations; recycling of human excreta* International trade fills the uncovered needs with excedents producedelsewhere over local requirements

Vorführender
Präsentationsnotizen
Dernier point. Ce type de scénario n’est il pas un scénario égoïste, pour pays riche? La population mondiale atteindra 9 M en 2050. Pour répondre à leurs besoins alimentaire il faut accroitre la prod agricole, et il est plus efficace, meilleur pour la planète, de le faire là où les conditions pédo climatiques sont favorables (chez nous donc!) et de compter sur le commerce international pour re distribuer les pdts agricoles là où on a a besoin. Plutôt que de produire localement de tout partout dans de moins bonnes conditions. Voici comment fonctionne le monde aujourd’hui, avec un commerce international qui intéresse plus du quart de la prod agricole totale, et dont près de la moitié de la production agricole est destinée à l’alimentation du bétail. Depuis 50 ans, les pertes d’azote ont augmenté parallèlement avzc l’accroissemnt du commerce international. Il y a un gd nombre de scénarios possible pour nourrir le monde en 2050. Nous en avons étudié deux: Le premier est la traduction d’un scénario éonomique, qui lié l’agriculture et le régime alimentaire humain au PIB. Spécialisation, intensification, conduisent à accroitre considérablement le commerce international eet la pollution. Le second, basé sur les mêmes principe que le scénario bio-loal et demitarien que nous avons élaboré pour le BP, est un sc de souveraineté aliemntaire, Il permet de nourrir le monde avzc nettement moins de commerce international et nettement moins de pollution. Penser global c’est manger local (et bio)
Page 33: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

Conclusion (2)Revisiting Haber-Bosch legacy?

□ The rapid adoption of the Haber-Bosch process as the basis of the ‘Green Revolution’ in the second half of the 20th century has moved the global agri-foodsystem towards an exclusively industrial and capitalistic trajectory,

…post-poning by one century the development of more sustainable agro-ecologicaloptions.

« …the lives of around half of humanity are made possible by Haber–Bosch nitrogen »Erisman et al., 2008.

□ These options would allow feeding the growing global population at a reasonable(and equitable) diet, composed of a maximum share of 40% animal protein.

Vorführender
Präsentationsnotizen
We don’t know however what would have happened if the Haber-Bosch process had not been invented! Maybe the simple agro-ecological practices that we re-discover today would have been developped more rapidly. Maybe Haber-Bosch has initiated an hegemonic and exclusive socio-ecological trajectory that we now, one century later, have many difficulties to escape! From the perspective I adopted in this talk, this might be viewed as a terrible waste of time
Page 34: How Agro-food System Structure impacts on the Nitrogen Cascade · How Agro-food System Structure impacts on the Nitrogen Cascade: Lessons learned from the long term analysis of the

• Anglade J, Billen G, Makridis T, Garnier J, Puech T et Tittel C. (2015). Nitrogen soil surface balance of organic vs conventional cash crop farming in the Seine watershed. Agricultural Systems 139:82-92.

• Billen G., Le Noë J., Garnier J. (2018). Two contrasted future scenarios for the French agro-food system. Science of the Total Environment 637–638: 695–705. doi.org/10.1016/j.scitotenv.2018.05.043.

• Esculier F., Le Noé J., Barles S., Billen G., Créno B., Garnier J., Lesavre J., Petit L., Tabuchi J.-P. (2018). The biogeochemical imprint of human metabolism in Paris Megacity: a regionalized analysis of a water-agro-food system. J. Hydrol. Doi.org/10.1016/j.jhydrol.2018.02.043

• Garnier J., Anglade J., Benoit M., Billen G., Puech T., Ramarson A., Passy P., Silvestre M., Lassaletta L., Trommenschlager J.-M, Schott C., Tallec G. (2016). Reconnecting crop and cattle farming to reduce nitrogen losses in river water of an intensive agricultural catchment (Seine basin, France). Environmental Science and Policy. 63: 76–90. doi.org/10.1016/j.envsci.2016.04.019

• Garnier J., Le Noë J., Marescaux A., Sanz-Cobena A., Lassaletta L, Silvestre M., Thieu V., Billen G. (2019). Long term changes in greenhouse gas emissions of French agriculture (1852-2014): from traditional agriculture to conventional intensive systems”. Sci. Tot. Environ. Doi.org/10.1016/j.scitotenv.2019.01.048.

• Lassaletta L., Billen G., Garnier J., Bouwman L., Velazquez E., Mueller N.D., Gerber J.S. (2016). Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 11 (2016) 095007 doi:10.1088/1748-9326/11/9/095007

• Lassaletta L., Billen G., Grizzetti B., Garnier J., Leach A. M., Galloway J.N. (2014). Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry, 118: 225-241, doi.org/10.1007/s10533-013-9923-4

• Le Noë J., Billen G., Lassaletta L., Silvestre M., Garnier J. (2016). La place du transport de denrées agricoles dans le cycle biogéochimique de 1 l’azote en France : un aspect de la spécialisation des territoires. Cahier agri., 25, 15004, doi.org/10.1051/cagri/2016002

• Le Noë J, Billen G, Garnier J (2017). How the structure of agro-food systems shapes nitrogen, phosphorus, and carbon fluxes: the Generalized Representation of Agro-Food System applied at the regional scale in France. Science of the Total Environment 586: 42–55. doi.org/10.1016/j.scitotenv.2017.02.040

• Le Noë J., Billen G., Esculier F., Garnier J. (2018). Long term socio-ecological trajectories of agro-food systems revealed by N and P flows: the case of French regions from 1852 to 2014. Agriculture, Ecosystems and Environment 265: 132–143. doi.org/10.1016/j.agee.2018.06.006

• Le Noë J., Billen G., Mary B., Garnier J. (2019). Drivers of long-term carbon dynamics in cropland: a bio-political history (France, 1852–2014). Environmental Science and Policy. 93: 53–65. doi.org/10.1016/j.envsci.2018.12.027

• Le Noë J, Billen G, Garnier J. (2019). Carbon dioxide emission and soil sequestration for the French agro-food system: present and prospective scenarios. Frontiers in Sustainability (in press)

References