Houston Ugm Phase Change Modeling

download Houston Ugm Phase Change Modeling

of 45

Transcript of Houston Ugm Phase Change Modeling

  • 8/13/2019 Houston Ugm Phase Change Modeling

    1/45

    2011ANSYS,Inc. June21,20131

    PhaseChangeModeling

    Vedanth Srinivasan

  • 8/13/2019 Houston Ugm Phase Change Modeling

    2/45

    2011ANSYS,Inc. June21,20132

    qqtqqq

    n

    p

    qpqpqqqqqqqqq

    qqqmp

    t ,vm,lif

    1

    FFFuRguuu

    MultifluidConservationEquations

    Continuity:

    Momentum for qth phase:

    The inter-phase exchange forces are expressed as:

    Energy equation for the qth phase can be similarly formulated.

    n

    p

    pqqqq

    qqm

    t 1u

    qppqpq K uuR

    transient convection pressure shear

    interphase

    forces

    exchange

    interphasemass

    exchange

    body external, lift, andvirtual mass forces

    Volume fraction for the qth phase

    Solids pressure term is

    included for granular model.

    PhaseChange!!

  • 8/13/2019 Houston Ugm Phase Change Modeling

    3/45

    2011ANSYS,Inc. June21,20133

    Solvesoneequationforcontinuityofmixture

    Solvesoneequationforthemomentumofthemixture

    Solvesforthetransportofvolumefractionofeachsecondaryphase

    MixtureModelConservationEquations

    r

    k

    r

    kk

    n

    kkm

    T

    mmmmm

    m

    uuFguupuut

    u

    1eff

    0

    mm

    m ut

    ).().()( rpppmpppp uut

    PhaseChangesourcesadded

    +Sp

  • 8/13/2019 Houston Ugm Phase Change Modeling

    4/45

    2011ANSYS,Inc. June21,20134

    Interfacialmasstransfer

    Masstransferrateperunitofvolume sourcetermsinphasemass

    conservationequation

    secm

    kg

    312 iiS Am

    Mass flux vector,

    kg/(m2 sec)

    Interfacial area

    density, 1/m

    Phase 1 Phase 2

    Interface

    12S

    Mass transfer

  • 8/13/2019 Houston Ugm Phase Change Modeling

    5/45

    2011ANSYS,Inc. June21,20135

    Masstransferdefinedthroughphaseinteractionpanel

    MasstransfermodelsavailablewithmixtureandEulermodels Cavitation

    Evaporationcondensationmodel

    Userdefinedmasstransfer

    Boiling

    Masstransferduetoheterogeneousreactions

    Nucleationandgrowthinpopulationbalancemodels

    Mass transfer

  • 8/13/2019 Houston Ugm Phase Change Modeling

    6/45

  • 8/13/2019 Houston Ugm Phase Change Modeling

    7/45

    2011ANSYS,Inc. June21,20137

    Latentheatisaccountedforwhenmasstransferis

    prescribedthroughstandard

    means. Latentheatiscalculatedfrom

    standardstateenthalpyof

    species/phaseparticipatingin

    massexchange.

    Materialtypemustbefluid

    Beawareofvaluesofstandard

    stateenthalpy only

    enthalpydifferencematters. For

    example,vaporenthalpy

    mustbelargerthanliquid

    enthalpy.

    Mass transfer

  • 8/13/2019 Houston Ugm Phase Change Modeling

    8/45

    2011ANSYS,Inc. June21,20138

    CavitationModeling

  • 8/13/2019 Houston Ugm Phase Change Modeling

    9/45

    2011ANSYS,Inc. June21,20139

    Cavitationoccursinmanyengineeringdevices.

    Aliquidatconstanttemperaturecanbesubjectedtoadecreasing

    pressure,whichmayfallbelowthesaturatedvapourpressure Theliquidalsocontainsnoncondensablegases(dissolvedoringested)

    Hydrofoils,Propellers,Inducers,Nozzles,Biomedical,

    Needforcavitationmodelswhichaccountfor

    Nphaseflowswithmultiphase

    speciestransport.

    Effectsofslipvelocitiesbetween

    theliquidandgasphases.

    Thermal

    effects

    and

    compressibilityofbothliquid

    andgasphases.

    CavitationModels

  • 8/13/2019 Houston Ugm Phase Change Modeling

    10/45

    2011ANSYS,Inc. June21,201310

    PhysicalChallenges

    PhaseChange(bubblegeneration&collapse)

    Largedensityratioofliquidtovapor(e.g. water300K,theratiois4e+4)

    Strongdependenceofgeometryandflowconditions

    Incavitating zones,staticpressureremainsaconstant (=saturationpressure)

    Turbulenceeffects

    Thermalinfluence

    Numericalchallenges:

    Handlethelargeliquidtovapordensityratios

    Dealwithcavitationmasstransferandpossiblyheattransfer

    Phasictransitionswithinthedomain(vaporflooding,liquid/vaporregimes)

    CavitationCharacteristics& NumericalChallenges

  • 8/13/2019 Houston Ugm Phase Change Modeling

    11/45

    2011ANSYS,Inc. June21,201311

    Cavitationzonesareprevalentlynotedinfluidpumps,valves,sharpedgedorifices,injectorsetc.

    Cavitationisanundesirable(mostly)andcancause: Significantdegradationinperformance,asmanifestedbyreducedmass

    flowrates,lowerheadriseinpumps,loadasymmetry,vibrationand

    noise.

    Physicaldamagetoadevice(duetobubbleimpactonsurfacesCavitationErosion)whichcanultimatelyaffectstructuralintegrity.

    CavitationModeling

  • 8/13/2019 Houston Ugm Phase Change Modeling

    12/45

    2011ANSYS,Inc. June21,201312

    EstimationoftherateofvapourproductionisbasedontheasymptoticgrowthrateofRayleighPlessetequation

    Zwartetal.Model

    Schnerr andSauerModel

    SinghalModel (Mixturemodelonly)

    TransportEquations

    cevv

    v RRvt

    )(

    InCavitation,theliquidvapor masstransfer(evaporationand

    condensation)isgovernedbythevapor transportequation

    Masstransfer

    due

    to

    growth

    and

    collapse

    of

    vapor

    bubbles

  • 8/13/2019 Houston Ugm Phase Change Modeling

    13/45

    2011ANSYS,Inc. June21,201313

    Singhals FullCavitationmodel

    CavitationModelCapability

    vPP

    vPP

    l

    vvl

    gv

    vap

    PPkFRe

    3

    20.1,1max

    l

    vvl

    vcond PPkFRc

    32,1max

    kPP satv 39.02

    1

    cevv

    v RRVt

    ).(

    )(

    Fvap=0.02,Fcond=0.01

    /solve/set/expert Singhal etal.module[No]Yes

    Variableproperties

    Turbulenceeffectsonsaturatio

  • 8/13/2019 Houston Ugm Phase Change Modeling

    14/45

    2011ANSYS,Inc. June21,201314

    Zwarts &Schnerrs CavitationModel

    VariablePsat

  • 8/13/2019 Houston Ugm Phase Change Modeling

    15/45

    2011ANSYS,Inc. June21,201315

    Zwarts andSchnerrs CavitationModels

    Cavitation Models Vapor Volume Fraction Transport Equation

    Zwart-Gerber-Belamri Model Schnerr-Sauer Model

    cevv

    v RRV

    t

    ).(

    )(

    l

    v

    B

    vvnuc

    vape

    PPFR

    )(

    3

    2)1(3

    vPP

    l

    v

    B

    vv

    condc

    PPFR

    )(

    3

    23

    v

    PP

    01.0

    50

    105

    10

    4

    6

    cond

    vap

    nuc

    B

    F

    F

    m

    l

    v

    B

    lv

    e

    PPR

    )(

    3

    23)1(

    vPP

    vPP

    l

    v

    B

    lv

    c

    PPR

    )(

    3

    23)1(

    1310

    1

    4

    3

    1

    B

    )3

    41/(

    3

    4 33BB

  • 8/13/2019 Houston Ugm Phase Change Modeling

    16/45

  • 8/13/2019 Houston Ugm Phase Change Modeling

    17/45

    2011ANSYS,Inc. June21,201317

    ForSchnerr andZwarts model

    Keepunderrelaxationforvaporto0.5orhigher

    KeepDensity/Vaporizationmassto1.0 Ifcoupledsolverisused,keepcourantnumberaround200(default),onlyfor

    complicatedgeometry/cases,considerreducingittotherangeof20 50

    ForSinghals model

    momentumrelaxationfrom0.050.4 Pressurerelaxation:0.2 0.4

    Vaporizationmass:0.1 1.0

    Tips/Tricks

  • 8/13/2019 Houston Ugm Phase Change Modeling

    18/45

    2011ANSYS,Inc. June21,201318

    NoneofthecavitationmodelscanbeusedwiththeexplicitVOFoptionbecausethesurfacetrackingschemesareincompatiblewiththe

    interpenetratingcontinuaassumptionofthecavitationmodels.

    Theycanonlybeusedforasinglecavitationprocess.

    TheSinghaletal.modelrequirestheprimaryphasetobealiquidandthesecondaryphasetobeavapour.

    Singhals modelisonlycompatiblewiththemultiphasemixturemodel.

    TheSinghaletal.modelisnotcompatiblewiththeLESturbulencemodel.

    LimitationofCavitationModels

  • 8/13/2019 Houston Ugm Phase Change Modeling

    19/45

    2011ANSYS,Inc. June21,201319

    WallBoilingModels

  • 8/13/2019 Houston Ugm Phase Change Modeling

    20/45

    2011ANSYS,Inc. June21,201320

    Threeboilingmodelavailable:

    RPIBoilingmodel Applicabletosubcoolednucleateboiling

    NonequilibriumBoiling ExtensionofRPItotakecareofsaturatedboiling

    CriticalHeatFlux ExtensionofRPItotakecareofboilingcrisis

    Contours of vapor volume fraction

    in a nuclear fuel assembly

    Boiling Model Options

  • 8/13/2019 Houston Ugm Phase Change Modeling

    21/45

    2011ANSYS,Inc. June21,201321

    BoilingModels

    Boilingmodels:

    RPIboilingmodel

    Nonequilibriumboiling

    CriticalHeatFlux

    InterfacialAreaandBubbleDiameter

    AlgebraicformulationsandUDFoptions

    IACequationcompatiblewithboilingmodelsInterfacialTransfermodels

    Arangeofsubmodelsfordragandlift,and

    turbulentdispersion

    Liquid/vaporinterfaceheatandmasstransfermodels

    Flowregimetransitions frombubblytodroplets

    Contours of vapor volume fraction

    in a nuclear fuel assembly

    Current ANSYS

    Capabilities

    Transitional

    or Unstable Film

    boiling

    Critical

    Heat

    Flux Minimum

    Heat Flux

    StableHea

    tFlux

    Wall Superheat (Twall - Tsat)

    Subcoole

    d

    Nucleate

    boiling

    Sa

    turated

    Single

    Phase

    3.0V

  • 8/13/2019 Houston Ugm Phase Change Modeling

    22/45

    2011ANSYS,Inc. June21,201322

    RPIWallBoilingModel

    Tw

    Tbulk

    Tsat

    bwdBubble nucleating site

    Departing bubbleHeated wall

    Thin superheated layer

    Subcooled boilingoccurswhenwallandthinliquidboundarylayer

    havetemperaturehigherthansaturationtemperatureatlocal

    pressure,i.e.,Superheated

    Ex:Heatexchangers,Heatedpipeflows,Coolingjackets,Quenchheat

    treatment..

  • 8/13/2019 Houston Ugm Phase Change Modeling

    23/45

    2011ANSYS,Inc. June21,201323

    ThemodelwasdevelopedatRensselaerPolytechnicInstituteandiscalledRPImodelforsubcooled boiling

    ThemodelisimplementedwithinEulermodel

    Itincludesatleasttwophases:liquid(primaryorcontinuousphase)andvaporbubbles(secondaryordiscretephase)

    TheRPIWallBoilingModelwasdevelopedduetothefailureofpurelysinglephaseconvectiveheattransferforwallboiling.

    RPIaccountsforsteambubblegenerationaswellasquenchingeffects:

    Nucleation,bubblegrowthanddeparturefromthewall

    KeystepsintheRPImodel

    Partitionthewallheatfluxintothreecomponents.

    Closureofeachcomponentusingsubmodels

    Canbeusedwithdifferentboundaryconditions.

    RPI Wall Boiling Model

  • 8/13/2019 Houston Ugm Phase Change Modeling

    24/45

    2011ANSYS,Inc. June21,201324

    Activating/WorkingwithRPIBoilingModel

  • 8/13/2019 Houston Ugm Phase Change Modeling

    25/45

    2011ANSYS,Inc. June21,201325

    DecidewhichBoilingmodeltochoose IfTbulkbelowTsat Subcooled flow

    UseRPIwallboilingmodel

    IfTbulkcloseto(within3K)Tsat Saturatedflow Usenonequilibriumwallboilingmodel

    ForCriticalHeatFlux/Burnout/DeparturefromNucleateBoiling(DNB)situation

    Usecriticalheatfluxmodel

    CommonmistakesinBoilingModel EnsuregravityisONtoseeanyheattransfer

    Ensuresurfacetensionisspecified

    Neededfornucleationandgrowthofbubbles

    Ensurecorrectphasesinmasstransfermechanism

    BoilingModels Tips&Tricks

    VaporVolumefraction

    Vertical location(m)

    dia

    meter=15.4mm

    length=2000mm

    Subcooled

    water

    Gravity

    Bartolemei & Chanturiya Validation

  • 8/13/2019 Houston Ugm Phase Change Modeling

    26/45

    2011ANSYS,Inc. June21,201326

    Solutionstrategies UselowerenergyURF(~0.6)

    Y+forRPIcanbe>30(standardwallfn apply)

    Youcanrunboilingcalculationinsteadystate

    CangoforcoupledsolverwithratherlowerCourantnumberslike10orevenlessattimesorpseudo

    transientsolver

    Ifyoufaceproblemswithcoupledsolvers,lowertheexplicitrelaxationfactorsforbothpressureand

    momentumto0.75orevenupto 0.5.

    Ifcoupledsolverdoesnotworkatall,goforSIMPLE.

    Ifsteadycalculationiscausingissues,checkifthe

    reverseflowiscausinganytrouble. Ifyouaresurethatthereisnoreverseflowinthefinal

    solution,specifyreverseflowquantitiessuchthatthey

    helpconvergence.

    BoilingModels Tips&Tricks

    VaporVolum

    efraction

    Vertical location

    (m)Bartolemei & Chanturiya Validation

  • 8/13/2019 Houston Ugm Phase Change Modeling

    27/45

    2011ANSYS,Inc. June21,201327

    Evaporation/Condensation

  • 8/13/2019 Houston Ugm Phase Change Modeling

    28/45

    2011ANSYS,Inc. June21,201328

    Evaporation/Condensation

    Evaporation/Condensationisasurfacephenomenaunlikeboiling(volumetric)

    Condensationisthetransformationofasubstancefromvaportoliquidresultingfromenergyremovalfromthevaporphase.

    Incondensationprocesses,thevaportemperatureisatorbelowthesaturationtemperature.

    Evaporationisthetransformationofasubstancefromliquidtovaporresultingfromenergyaddition.

    Condensationoccursinvariousmodes.

    Dropletformation

    in

    vapor

    Liquiddropletformationonacooledsurface

    Liquidfilmcondensationonacooledsurface

  • 8/13/2019 Houston Ugm Phase Change Modeling

    29/45

    2011ANSYS,Inc. June21,201329

    Mechanisticmodelwithaphysicalbasis

    Evaporation/CondensationModel

    lvvlvv

    v

    mmvt

    )(

    Tl>Tsat

    sat

    satvvvclv

    sat

    satlllcvl

    T

    TTm

    T

    TTm

    Tv

  • 8/13/2019 Houston Ugm Phase Change Modeling

    30/45

    2011ANSYS,Inc. June21,201330

    Evaporationcondensationmodel

    Positivemasstransferrateisdefinedas

    being fromliquidtovapor.

    Saturationtemperaturecanbeprovidedas

    functionofpressure.

    Ifsaturationtemperatureisafunctionof

    othervariablesuchasvolumefraction,

    pressureandothersolutions,aUser

    DefinedFunctions(UDFs)maybe

    necessarytodefinetheentirephase

    changemechanism

    Mass transfer

  • 8/13/2019 Houston Ugm Phase Change Modeling

    31/45

    2011ANSYS,Inc. June21,201331

    Masstransferfromliquidtovapor

    SpecifyLatentHeatasStandardStateFormationEnthalpy Standardstateenthalpyofvapor=latentheat(inj/kgmolunits)

    Standardstateenthalpyofliquid=0

    Samemolecularweightforliquidandvapor

    Referencetemperature=298.15K

    Calculationstrategy UsecoupledsolverwithlowCourant

    numbers

    Lowertheexplicitrelaxationfactors

    forpressureandmomentumto0.5

    Ensurereverseflowvolumefraction

    properlydefinedatoutletboundaries

    EvaporationCondensation Tips&Tricks

  • 8/13/2019 Houston Ugm Phase Change Modeling

    32/45

    2011ANSYS,Inc. June21,201332

    Tuningevaporationandcondensationfrequency

    Comparethenumericalresultswithexperimentalresults

    Usesimplecalculationtoestimateevaporation Evaporationexpected=(Htotal Hsensible)/LatentHeat

    Adjustevaporation/condensationfrequencies (0.001 100)

    InEvaporationCondensationModel,departurefromsaturationdeterminestherateofmasstransfer

    (TcellTsat)isthedrivingforce

    Formasstransfertohappen,Tcell>or

  • 8/13/2019 Houston Ugm Phase Change Modeling

    33/45

    2011ANSYS,Inc. June21,201333

    Dropletformationandvaporization(inpipelines,mixingTs,Valves,Pumpscompressingandexpandinggases)

    Volatilephasebehavior(evaporation/condensationintanksstoringvolatilecompoundsthatchangephasebasedonstoragepressure)

    ModelingFlashingbothusingCavitationmodel(Pdriven)andalsousingEvaporation/Condensation(Tdriven,superheatedflows)

    L.N.GFlashing CryogenicLiquidFlashing

    RefrigerantFlashing

    FuelTankflashing

    FlashTank

    PhysicsModelingusing

    Evaporation/Condensation

  • 8/13/2019 Houston Ugm Phase Change Modeling

    34/45

    2011ANSYS,Inc. June21,201334

    WetSteamModel

  • 8/13/2019 Houston Ugm Phase Change Modeling

    35/45

    2011ANSYS,Inc. June21,201335

    Duringtherapidexpansionofsteam,acondensationprocesswilltakeplaceshortlyafterthestatepathcrossesthevaporsaturationline.

    Theexpansionprocesscausesthesuperheateddrysteamtofirstsubcoolandthennucleatetoformtwophasemixture

    Theformationofliquiddropletsinahomogeneousnonequilibrium

    condensationprocess,isbasedontheclassicalnonisothermalnucleationtheory.

    Assumptions

    Thevelocityslipbetweenthedropletsandgaseousphaseisnegligible.

    Theinteractionsbetweendropletsareneglected. Massfractionof thecondensedphaseissmall(

  • 8/13/2019 Houston Ugm Phase Change Modeling

    36/45

  • 8/13/2019 Houston Ugm Phase Change Modeling

    37/45

    2011ANSYS,Inc. June21,201337

    WetSteamModel

    Ivt

    vt

    v

    1

    TTCRTh

    Pdtdr

    eM

    qI

    op

    llv

    TK

    r

    ml

    vc b

    21

    2

    2

    1

    3

    4

    3

    22

    Nucleationrate

    Dropletradius

    (growthrate)

    Mixturedensity

    MassFractionTransport

    NumberdensityTransport

    Droplettemperature

    NonEquilibriumCondensationProcess

    LoadMaterialbyTextCommand:Define/models/multiphase/wet steam/compileuserdefinedwetsteamfunctions

  • 8/13/2019 Houston Ugm Phase Change Modeling

    38/45

  • 8/13/2019 Houston Ugm Phase Change Modeling

    39/45

    2011ANSYS,Inc. June21,201339

    Adjusttemperaturelimits,minimumof273K

    Makesuremaximumwetnessfactorisnotbeyond0.2sincethepresent

    modelassumeslowwetnessfactor Withwetnessfactor,>0.1,solutionbecomeslessstable

    Forwetsteammodels,solveflowsolutioninitiallywithoutcondensationandoncepropersolutionisachieved,switchoncondensation

    SwitchingoffcondensationcanbedonebydeselectingWetsteamequationsinthesolutioncontrolpanel

    SolutionStrategiesforWetSteamModel

  • 8/13/2019 Houston Ugm Phase Change Modeling

    40/45

    2011ANSYS,Inc. June21,201340

    Melting/Solidification

  • 8/13/2019 Houston Ugm Phase Change Modeling

    41/45

    2011ANSYS,Inc. June21,201341

    SolidificationandMelting

    Solidificationisthetransformationofasubstancefromliquidtosolid

    Temperaturedecrease(morefrequentlyencountered)andchangeofstateoccursatthefreezingpoint

    Pressureincrease(inthiscasetemperatureremainsconstant)

    Thesolidificationprocessstartswithsmallsolidnucleationintheliquidthatincreasesinnumberwithtime(untilliquidiscompletelysolidified)

    Application Casting,Crystallization..

    Meltingisthetransformationofasubstancefromsolidtoliquid

    Temperatureincreases,thechangeofstateoccursatthemeltingpoint

    Ingeneral,themeltingpointisrelativelyinsensitivetopressure

    Application Decrystallization in

    pipes

    under

    low

    temperatures,

    Deicing

    windshields..

    Freezing&meltingpointareoftenequal(certainmaterialscanhavedifferentvalues)

  • 8/13/2019 Houston Ugm Phase Change Modeling

    42/45

  • 8/13/2019 Houston Ugm Phase Change Modeling

    43/45

    2011ANSYS,Inc. June21,201343

    Melting/SolidificationModeling

    Procedure Possibletomodelmeltingorsolidificationinasinglephaseorin

    multiplephases

    Forphasesthatarenotchangingphase,setLatentHeat,Liquidus andSolidusTemperaturetoZero

    ModelingThermal&Solutal Buoyancy

    ThermalandSolutal Buoyancy

    optionavailableonlywhensolving

    thephasechangeproblemwith

    SpeciesTransport

    TUIdefine/models/solidification-melting? yes

    Include Thermal Buoyancy? yes

    Include Solutal Buoyancy? yes

    Use reference mass fraction of solutes? yes

    Reference mass fraction of the species-i "value"

  • 8/13/2019 Houston Ugm Phase Change Modeling

    44/45

    2011ANSYS,Inc. June21,201344

    Recommendations

    MushyZoneParameter:Valuerangesaround104 to107.Highervalueswillassistin

    bringingdownlocalcellvelocitytozeroasmaterialsolidifiesbutmaycause

    oscillationsinsolutions.

    Notnecessarytousepullvelocitywithinthesolution moreimportantwhenmodelingcontinuouscastingwherevelocityboundaryconditionsarespecified

    Convergencedifficultiescanbeexpectedinsteadystatecalculations,continuous

    castingsimulations,simulationsinvolvingmulticomponentsolidification,and

    simulationswherealargevalueofthemushyzoneconstantisused.Inthatcase,considerreducingliquidfractionupdateinthesolvercontrols

  • 8/13/2019 Houston Ugm Phase Change Modeling

    45/45

    2011ANSYS,Inc. June21,201345

    UserDefinedFunctions

    DEFINE_CAVITATION_RATE(ModifyCavitationSourceterms)

    DEFINE_BOILING_PROPERTY(Modifyparameterslikebubbledepature diameter,

    frequencyofdeparture,nucleationsitedensity,areacoefficient&liquidref

    temperature)

    DEFINE_LINEARIZED_MASS_TRANSFER(Userdefinedmasstransfersourceterms)

    DEFINE_SOLIDIFICATION_PARAMS(modifymushyzoneandbackdiffusionparameters)