Homogenized trigonal models for biomechanical applications description copia

23
“Homogenized trigonal models for biomechanical applications” Relatore: Ch.mo Prof. Ing. MASSIMILIANO FRALDI Correlatore: GIANPAOLO PERRELLA Candidato: CIERVO MARCO Matr. 691/939 Università degli Studi di Napoli Federico II FACOLTA’ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA BIOMEDICA (CLASSE DELLE LAUREE IN INGEGNERIA DELL’INFORMAZIONE n.9)

description

 

Transcript of Homogenized trigonal models for biomechanical applications description copia

Page 1: Homogenized trigonal models for biomechanical applications description copia

“Homogenized trigonal models for biomechanical applications”

Relatore:Ch.mo Prof. Ing.

MASSIMILIANO FRALDI

Correlatore:GIANPAOLO PERRELLA

Candidato:CIERVO MARCO

Matr. 691/939

Università degli Studi di Napoli Federico II

FACOLTA’ DI INGEGNERIA

CORSO DI LAUREA ININGEGNERIA BIOMEDICA

(CLASSE DELLE LAUREE IN INGEGNERIA DELL’INFORMAZIONE n.9)

Page 2: Homogenized trigonal models for biomechanical applications description copia

Description

Ligaments: Anterior Cruciate Ligament (ACL)

Healing ACL ruptures: 6-cord wire-rope scaffold

Analytical model: George A. Costello’s theory of the wire rope

Homogenized Trigonal model: example of development

Hierarchical structures: importance in biomechanics

Page 3: Homogenized trigonal models for biomechanical applications description copia

Anterior Cruciate LigamentLigaments hierarchical structure

Viscoelastic behaviour

The AP displacement of the tibia was determined by the displacement of the origin of the tibial coor-dinate system on the APaxis of the tibia. Tibial rotation was determined by the projection of the medial–lateral (ML) axis of the tibia onto the

Page 4: Homogenized trigonal models for biomechanical applications description copia

A. Guadagno,Relatore Ch.mo Prof. Ing. A. Pepino e Correlatore Ing. A. RanavoloNapoli, 2004/2005.

VALUTAZIONE DELLE FORZE COMPRESSIVE E DI TAGLIO ALL’ARTICOLAZIONE DEL GINOCCHIO CON SISTEMA DI ANALISI COMPUTERIZZATA MULTIFATTORIALE DEL MOVIMENTO,

J Biomech. 2010 July 20; 43(10): 2039–2042. doi:10.1016/j.jbiomech.2010.03.015.A Knee-Specific Finite Element Analysis of the Human Anterior

Cruciate Ligament Impingement against the FemoralIntercondylar Notch

Hyung-Soon Park1,†, Chulhyun Ahn,†, David T. Fung, Yupeng Ren, and Li-QunZhang

ACL Kinematics

Flexion: 46.3 deg.Abduction: 0 deg.

External rotation: 0 deg.

Flexion: 44.8 deg.Abduction: 10.0 deg.

External rotation: 29.1 deg.

Page 5: Homogenized trigonal models for biomechanical applications description copia

ACL Kinematics

The AP displacement of the tibia was determined by the displacement of the origin of the tibial coor-dinate system on the APaxis of the tibia. Tibial rotation was determined by the projection of the medial–lateral (ML) axis of the tibia onto the

Journal of Biomechanics 38 (2005) 293–298Interactions between kinematics and loading during

walking for thenormal and ACL deficient knee

Thomas P. Andriacchia, Chris O. Dyrby

Page 6: Homogenized trigonal models for biomechanical applications description copia

Altman’s Scaffold

Biomaterials 23 (2002) 4131–4141Silk matrix for tissue engineered anterior cruciate

ligamentsGregory H. Altmana, Rebecca L. Horana, Helen H.

Lua, Jodie Moreaua, Ivan Martinb,John C. Richmondc, David L. Kaplana

Page 7: Homogenized trigonal models for biomechanical applications description copia

Analytical Model

h1 h3h2core wires

Page 8: Homogenized trigonal models for biomechanical applications description copia

axial tension in the wiretwisting moment in the wireshear force in the wire, along the local cooordinates system directionsbending moment in the wire in x and y directions, along the local coordina-tes system curvature of the wire in x and y directions, along the local coordinates system twist per unit length of the wire

THN, N’G, G’

κ, κ’

т

Kinematics of a wire

Mechanical Engineering Series, Springer - Theory of Wke Rope, 2nd ed. - George A. Costello

Page 9: Homogenized trigonal models for biomechanical applications description copia

3

//t

k kF AEk kM ERεε εβ

βε ββ

εβ

=

Simple straigth strand

Δαξw = ξc - Tg α

core radiusRcRwαR = Rc+2Rwr = Rc+RwEvξc = ε

ξwβr = Tg α - Δα + νr

Rc ξc + Rw ξwTg α

β т = r βr = R β

Δт’ = 1 - 2 Sin2αr

Δα + Rc ξc + Rw ξwr2ν Sin α Cos α

Δκ’ = - 2 Sin α Cos αr

Δα + Rc ξc + Rw ξwr2ν Cos2 α curve variation

Gw’ = E Rw4 Δκ’ �4

Hw = E Rw4 Δт’ �4 (1 + v)Nw’ = Hw Cos2 α

r- Gw’ Sin α Cos α

rTw = � E Rw2 ξw

Fw = mw (Tw Sin α + Nw’ Cos α) Mw = mw (Hw Sin α + Gw’ Cos α + r Tw Cos α + r Hw Sin α )

Fc = � E Rc2 ξc Mc = E Rc4 т’ �4 (1 + v)

Geometrical characteristics

Deformationscore axial strain

angle of twist per unit lenght

Material propertiesYoung ModulusPoisson’s ratio

Core Loads

Wire Loads

wire radiuswire helix anglestrand total radiusstrand helical radius

wire axial strain

helical rototional strain

total rototional strain

Costitutive assumptions

Hipothesis of small displacements: Δα<<1, ξ<<1

Page 10: Homogenized trigonal models for biomechanical applications description copia

30 Fibers

1 Bundle

Rf = 10.4067 10-5 m Equivalent fiber radius

R1 = [19 ± 2.8]10-6 mSilk fibroin average radius

On the right pilot-scale manu-facturing equipment for the fabrication of silk wire-rope matrices

Two particluars (B) and (C) of (i) and (iii), showing the extraction of the fibroins

On the left a close-up view of (i): the twisting machines showing the motor controlled spring-loaded clamps.

Biomaterials 24 (2003) 401–416Silk-based biomaterials

Gregory H. Altman,Frank Diaz,Caroline Jakuba,Tara Calabro,Rebecca L. Horan,

Jingsong Chen,Helen Lu,John Richmond, David L. Kaplan

Page 11: Homogenized trigonal models for biomechanical applications description copia

6 Bundles

Rch3 = R2 Rwh3 = R3αh3

Geometrical characteristics

E R34 Sin αh3 �2(2 + ν)Cos2 αh3Ach1wh2wh3 =

Gych1wh2wh3’ = Ach1wh2wh3 Δκch1wh2wh3’

Loads

ξch1wh2wh3βrch1wh2wh3 = Tg αh3- Δαch1wh2wh3 + ν

rh3 R3 ξch1wh2wh3 + R2 ξch1wh2ch3

Tg αh3

Δтch1wh2wh3’ = 1 - 2 Sin2αh3rh3

Δαch1wh2wh3 + R3 ξch1wh2wh3 + R2 ξch1wh2ch3rh32

ν Sin αh3 Cos αh3

Δκch1wh2wh3’ = - 2 Sin αh3 Cos αh3rh3

Δαch1wh2wh3 +rh32ν Cos2 αh3R3 ξch1wh2wh3 + R2 ξch1wh2ch3

ξch1wh2ch3 = ξch1wh2βrch1wh2h3 = Δтch1wh2’ Rh3

ξch1wh2wh3 Deformations

Page 12: Homogenized trigonal models for biomechanical applications description copia

Rch3 = R2 Rwh3 = R3αh3

ξwh1wh2wh3βrwh1wh2h3 = Tg αh3 - Δαwh1wh2wh3 + νrh3

R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3Tg αh3

Δтwh1wh2wh3’ = 1 - 2 Sin2αh3rh3

Δαwh1wh2wh3 + R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3rh32

ν Sin αh3 Cos αh3

Δκwh1wh2wh3’ = - 2 Sin αh3 Cos αh3rh3

Δαwh1wh2wh3 +rh32ν Cos2 αh3R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3

ξwh1wh2ch3 = ξwh1wh2

E R34 Sin αh3 �2(2 + ν)Cos2 αh3Awh1wh2wh3 =

Gywh1wh2wh3’ = Awh1wh2wh3 Δκwh1wh2wh3’

βrwh1wh2h3 = Δтwh1wh2’ Rh3

ξwh1wh2wh3

Geometrical characteristics

Loads

Deformations

6 Bundles

Page 13: Homogenized trigonal models for biomechanical applications description copia

3 Strands

Rch2 = 0 Rwh2rh2 =Rwh2 αh2

13 Sin2 αh2

1 +

Geometrical characteristics

mh3 E R34 Sin αh3 �2(2 + ν)Cos2 αh3Ach1wh2 = + E R24 �

4

Tch1wh2=Fch1wh2h3Hch1wh2=Mch1wh2h3

Fch1ch2=0Mch1ch2=0

Loads

ξch1wh2βrch1wh2 = Tg αh2 - Δαch1wh2 + νrh2

2 R3 ξch1wh2wh3 + R2 ξch1wh2ch3Tg αh2

Δтch1wh2’ = 1 - 2 Sin2αh2rh2

Δαch1wh2+ 2 R3 ξch1wh2wh3 + R2 ξch1wh2ch3rh22

ν Sin αh2 Cos αh2

Δκch1wh2’ = - 2 Sin αh2 Cos αh2rh2

Δαch1wh2 +rh22ν Cos2 αh22 R3 ξch1wh2wh3 + R2 ξch1wh2ch3

ξch1ch2 = ξch1βrch1h2 = Δтch1’ Rh2

Deformationsξch1wh2

Page 14: Homogenized trigonal models for biomechanical applications description copia

ξwh1wh2

3 Strands

Rch2 = 0 Rwh2rh2 =Rwh2 αh2

13 Sin2 αh2

1 +

Geometrical characteristics

mh3 E R34 Sin αh3 �2(2 + ν)Cos2 αh3Awh1wh2 = + E R24 �

4

Twh1wh2=Fwh1wh2h3Hwh1wh2=Mwh1wh2h3

Fwh1ch2=0Mwh1ch2=0

Loads

ξwh1wh2βrwh1wh2 = Tg αh2 - Δαwh1wh2 + νrh2

2 R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3Tg αh2

Δтwh1wh2’ = 1 - 2 Sin2αh2rh2

Δαwh1wh2+ 2 R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3rh22

ν Sin αh2 Cos αh2

Δκwh1wh2’ = - 2 Sin αh2 Cos αh2rh2

Δαwh1wh2 +rh22ν Cos2 αh22 R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3

ξwh1ch2 = ξwh1βrwh1h2 = Δтwh1’ Rh2

Deformationsξwh1wh2

Page 15: Homogenized trigonal models for biomechanical applications description copia

6 Cords

ξwh1βh1

ξwh1βrh1 = Tg αh1 - Δαh1 + νrh1

4 R3 ξwh1wh2wh3 + 2 R2 ξwh1wh2ch3 + 4 R3 ξch1wh2wh3 + 2 R2 ξch1wh2ch3Tg αh1

т = rh1 βrh1 = Rh1 βh1

Δтh1’ = 1 - 2 Sin2αh1rh1

Δαh1 + 4 R3 ξwh1wh2wh3 + 2 R2 ξwh1wh2ch3 + 4 R3 ξch1wh2wh3 + 2 R2 ξch1wh2ch3rh12

ν Sin αh1 Cos αh1

Δκh1’ = - 2 Sin α Cos αr

Δα +r2ν Cos2 α4 R3 ξwh1wh2wh3 + 2 R2 ξwh1wh2ch3 + 4 R3 ξch1wh2wh3 + 2 R2 ξch1wh2ch3

Rch1Rwh1αh1

Geometrical characteristics

Fwh1 = mh1 (Twh1 Sin αh1 + Nwh1’ Cos αh1)Mwh1 = mh1 (Hwh1 Sin αh1 + Gwh1’ Cos αh1 + rh1 Twh1 Cos αh1 + rh1 Hwh1 Sin αh1)

Awh1 = mh2 Awh1wh2Gywh1 = Awh1 Δκh1’

Hwh1 = Mh1Twh1 = Fh1 Loads

Deformationsξch1 = ε

Page 16: Homogenized trigonal models for biomechanical applications description copia

Analytical model Results and validation

0.05 0.10 0.15 0.20 0.25

200

300

400

500

600

Calculated

G. Vunjak-Novakovic et al.

Displacement (%)

Load

(N)

Root Mean Square Error Percentage

2

0.023

ni i

i i

x xx

RMSEPn

− = =

Annu. Rev. Biomed. Eng. 2004. 6:131–56 TISSUE ENGINEERING OF LIGAMENTS

G. Vunjak-Novakovic1, Gregory Altman2,3, Rebecca Horan2 and David L. Kaplan2

1 Massachusetts Institute of Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139; email: [email protected]

2 Department of Biomedical Engineering, Tufts University, Medford,Massa-chusetts 02155; email: [email protected], [email protected], [email protected]

3 Tissue Regeneration, Inc., Medford, Massachusetts 02155

Page 17: Homogenized trigonal models for biomechanical applications description copia

ΔL

Homogenized modelCostello’s constants Trigonal constants [Pa]

S11=5.02232*1010

S12=3.34821*1010

S22=5.02232x1010

S33=1.06738x109

S34=1.68011*109

S44=2.86704*107

S55=2.86704*107

S66=8.37054*109

kεε=0.52972

kββ=0.0160126

kεβ=0.0566074

kβε=0.122818⇔

11 12 13 14

12 22 23 24

33 13 23 33 34 33

3 14 24 34 44 3

3 55 56 3

56 66

0 00 00 0

.0 0 2

0 0 0 0 20 0 0 0 2

rr rr

r r

r r

S S S SS S S SS S S SS S S S

S SS S

θθ θθ

θ θ

θ θ

σ εσ εσ εσ εσ εσ ε

= ⋅

3

//t

k kF AEk kM ERεε εβ

βε ββ

εβ

=

Displacements along the z-axis [m] Rotations around the z-axis [deg]

Page 18: Homogenized trigonal models for biomechanical applications description copia

0.10 0.15 0.20 0.25

200

300

400

500

600 Analytical model

Homogenized model

Displacement (%)

Load

(N)

Homogenized model Results and validation

Root Mean Square Error Percentage

2

0.086

ni i

i i

x xx

RMSEPn

− = =

Root Mean Square Error Percentage

2

0.028

ni i

i i

x xx

RMSEPn

− = =

Displacement (%)R

otat

ion

(deg

)0.10 0.15 0.20 0.25

100

80

60

40

Analytical model

Homogenized model

Page 19: Homogenized trigonal models for biomechanical applications description copia

Conclusions andfuture developments

NON LINEAR BEHAVIOUR DEVELOPMENT

3D FEM JOINT IMPLEMENTATION WITH ON-SITE TESTS

IMPROVEMENT OF CURRENT SCAFFOLDS

DESIGN OF NEW STRUCTURES

Page 20: Homogenized trigonal models for biomechanical applications description copia

[12] D. Greenwald, S. Shumway, P. Albear e al., «Mechanical compari-son of ten suture materials before and after in vivo incubation,» J Surg

Res, p. 56:372– 7, 1994. [13] K. Inouye, M. Kurokawa, S. Nishikawa e al., «Use of Bombyx mori

silk fibroin as a substratum for cultivation of animal cells,» J Biochem Biophys Meth, p. 37:159– 64, 1998.

[14] A. Nova, S. Keten, N. M. Pugno, A. Redaelli e M. J. Buehler, «Molecular and Nanostructural Mechanisms of Deformation, Strength and Toughness of Spider Silk Fibrils,» Nano Letter, pp. 10, 2626–2634, 2010.

[15] J. Perez-Rigueiro, C. Viney, J. Llorca e M. Elices, «Mechanical properties of single-brin silkworm silk,» J Appl Polym Sci, p. 75:1270–7,

2000. [16] R. Postlethwait, «Long-term comparative study of nonabsorbable

sutures,» Ann Surg, p. 171:892–8, 1970. [17] T. Salthouse, B. Matlaga e M. Wykoff, «Comparative tissue

response to six suture materials in rabbit cornea, sclera, and ocular muscle,» Am J Ophthalmol, p. 84:224–33., 1977.

[18] S. Sofia, G. McCarthy, M. Gronowicz e al, «Functionalized silk-ba-sed biomaterials for bone formation,» J Biomed Mater Res, p. 54:139–

48., 2001. [19] G. Vunjak-Novakovic, G. Altman, R. Horan e D. L. Kaplan, Annu.

Rev. Biomed. Eng, 2004, pp. 6, 131–156.[20] P. Chowdhury, J. Matyas e C. Frank, «The "epiligament" of the

rabbit medial collateral ligament: a quantitative morphological study,» Connect Tissue Res, pp. 27:33-50, 1991.

[21] R. Bray, «Blood supply of ligaments: a brief overview.,» Orthopae-dics, pp. 3:39-48, 1995.

[22] P. Salo, «The role of joint innervation in the pathogenesis of arthri-tis,» Can J Surg, pp. 42:91-100, 1999;.

[23] H. Johansson, P. Sjolander e P. Sojka, «A sensory role for the cruciate ligaments,» Clin Orthop Relat Res, pp. 268:161-178., 1991.

[1] N. M. Pugno, F. Bosia e T. Abdalrahman, «Hierarchical fiber bundle model to investigate the complex architectures of biological mate-

rials,» PHYSICAL REVIEW E, 2012. [2] A. Carpinteri, P. Cornetti, N. Pugno e A. Sapora, «Strength of

hierarchical materials,» Microsyst Technol, p. 15:27–31, 2009. [3] G. A. Costello, Theory of Wke Rope, 2nd ed., Mechanical Enginee-

ring Series, Springer-Verlag New York, Inc., 1997. [4] M. Fraldi e S. Cowin, «Chirality in the torsion of cylinders with

trigonal symmetry,» Journal of Elasticity, pp. 69, 121-148, 2002. [5] G. Perrella, A. Cutolo, L. Esposito, S. Cotugno, M. P. Carbone, G. Mensittieri e M. Fraldi, «On the influence of tensile-torsion coupling in the

mechanical behaviour of rubber/cord composites,» in Conference on rubber reinforcement and property modification by fillers, fibres & textiles,

London, UK, 18-19 December, 2012. [6] G. Perrella, M. Fraldi, G. Mensittieri e C. Cotugno, Spurious stress regimes in rubber-cord composites reinforced with trigonal fibers, Submit-

ted 2012. [7] G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C.

Richmond e D. L. Kaplan, «Silk matrix for tissue engineered anterior cruciate ligaments,» Biomaterials, pp. 23, 4131–4141, 2002.

[8] Ethicon Inc., «Wound closure manual. The suture: specific suturing materials. Non-absorbable sutures,» Somerville, NJ, Copyright 2000, p.

Chapter 2.[9] G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen,

H. Lu, J. Richmond e D. L. Kaplan, «Silk-based biomaterials,» Biomate-rials, pp. 24, 401-416, 2003.

[10] S. W. Cranford, A. Tarakanova, N. M. Pugno e M. J. Buehler, «Nonlinear material behaviour of spider silk yields,» NATURE, vol. 482,

pp. 72-76, 2012. [11] J. Cunniff, S. Fossey, J. Song e al., «Mechanical and thermal

properties of Nephila clavipes dragline silk.,» Polymers for Advanced Technologies, p. 5:401–10, 1994.

References

Page 21: Homogenized trigonal models for biomechanical applications description copia

References[37] T. Andriacchi, E. Alexander, M. Toney, C. Dyrby e J. Sum, «Apoint

cluster method for in vivo motion analysis: appliedto a study of knee kinematics,» Journal of Biomechanical, pp. 120 (12), 743–749, 1998.

[38] M. LaFortune, P. Cavanagh, H. Sommer e A. Kalenak, «Three dimensional kinematics of the human knee during walking,» Journal of

Biomechanics, pp. 25, 347–357, 1992. [39] L. Blankevoort, R. Huiskes e A. Delange, «The envelope ofpassi-ve knee-joint motion,» Journal of Biomechanics, pp. 21, 705–720, 1988.

[40] M. Robson AW, «Ruptured crucial ligaments and their repair by operation,» Ann Surg, p. 37:716–8, 1903.

[41] J. D. Frank BC, «The science of reconstruction of the anterior cruciate ligament,» J Bone Joint Surg Am, p. 79:1556– 76, 1997.

[42] M. Murray, «Effect of the intra-articular environment on healing of the ruptured anterior cruciate ligament,» J Bone Joint Surg Am,, August

2001. [43] I. Lo, L. Marchik, D. Hart e al., «Comparison of mRNA levels for

matrix molecules in normal and disrupted anterior cruciate ligaments using reverse transcription-polymerase chain reaction,» J Orthop Res, p.

16:421–8, 1998. [44] M. Murray e M. Spector, «The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan rege-

neration templates in vitro,» Biomaterials, p. 22:2393–402, 2001. [45] M. Murray, S. Martin e M. Spector, «Migration of cells from human

anterior cruciate ligament explants into collagen-glycosaminoglycan scaffolds,» J Orthop Res, p. 18:557–64, 2000.

[46] A. Harrold, «The defect of blood coagulation in joints,» J Clin Path, p. 14:305–8, 1961.

[47] M. L. Cameron, Y. Mizung e A. J. Cosgarea, J. Musculoskeletal Med., 2000, pp. 17, 7–12.

[48] K. Miyasaka, D. Daniel, M. Stone e P. Hirshman, Am. J. Knee Surg., 1991, pp. 4, 6–10.

[24] M. Benjamin e J. Ralphs, «The cell and developmental biology of tendons and ligaments,» Int Rev Cytol, pp. 196:85-130, 2000.

[25] I. Lo, S. Chi, T. Ivie, C. Frank e J. Rattner, «The cellular matrix: a feature of tensile bearing dense soft connective tissues,» Histol Histopathol,

pp. 17:523-537, 2002. [26] D. Amiel, C. Chu e J. Lee, «Effect of loading on metabolism and

repair of tendons and ligaments,» in Repetitive Motion Disorders of the Upper Extremity, Am Acad Orthop Surg, Rosemont, pp. 1995:217-230.

[27] C. T. Laurencin e J. W. Freeman, Biomaterials, 2005, pp. 26, 7530–7536.

[28] H. E. Cabaud, W. G. Rodkey e J. A. Feagin, Am. J. Sports Med, 1979, pp. 7, 18–22.

[29] F. H. Silver, Biomaterials, medical devices, and tissue engineering: an integrated approach, London: Chapman & Hall, 1994.

[30] D. Amiel, E. Billings e J. a. F. L. Harwood, J. Appl. Physiol, 1990, pp. 69, 902–906.

[31] S. J. Cuccurullo, Physical Medicine and Rehabilitation Board Review, New York: Demos Medical Publishing, 2004.

[32] J. Diamant, A. Keller, E. Baer e M. L. a. R. G. Arridge, Proc. R. Soc., Ser. B, 1972, pp. 180, 293–315.

[33] D. J. McBride Jr, R. A. Hahn e F. H. Silver, Int. J. Biol. Macromol., 1985, pp. 7, 71–76.

[34] E. Mosler, W. Folkhard, E. Knorzer e H. Nemetschek-Gansler, J. Mol. Biol, 1985, pp. 182, 589–596.

[35] A. Guadagno, VALUTAZIONE DELLE FORZE COMPRESSIVE E DI TAGLIO ALL’ARTICOLAZIONE DEL GINOCCHIO CON SISTEMA DI ANA-

LISI COMPUTERIZZATA MULTIFATTORIALE DEL MOVIMENTO, A. Ch.mo Prof. Ing. Pepino e A. Ing. Ranavolo, A cura di, Napoli, 2004/2005.

[36] T. P. Andriacchi e C. O. Dyrby, «Interactions between kinematics and loading during walking for the normal and ACL deficient knee,» Journal of

Biomechanics, pp. 38, 293–298, 2005.

Page 22: Homogenized trigonal models for biomechanical applications description copia

[24] M. Benjamin e J. Ralphs, «The cell and developmental biology of tendons and ligaments,» Int Rev Cytol, pp. 196:85-130, 2000.

[25] I. Lo, S. Chi, T. Ivie, C. Frank e J. Rattner, «The cellular matrix: a feature of tensile bearing dense soft connective tissues,» Histol Histopathol,

pp. 17:523-537, 2002. [26] D. Amiel, C. Chu e J. Lee, «Effect of loading on metabolism and

repair of tendons and ligaments,» in Repetitive Motion Disorders of the Upper Extremity, Am Acad Orthop Surg, Rosemont, pp. 1995:217-230.

[27] C. T. Laurencin e J. W. Freeman, Biomaterials, 2005, pp. 26, 7530–7536.

[28] H. E. Cabaud, W. G. Rodkey e J. A. Feagin, Am. J. Sports Med, 1979, pp. 7, 18–22.

[29] F. H. Silver, Biomaterials, medical devices, and tissue engineering: an integrated approach, London: Chapman & Hall, 1994.

[30] D. Amiel, E. Billings e J. a. F. L. Harwood, J. Appl. Physiol, 1990, pp. 69, 902–906.

[31] S. J. Cuccurullo, Physical Medicine and Rehabilitation Board Review, New York: Demos Medical Publishing, 2004.

[32] J. Diamant, A. Keller, E. Baer e M. L. a. R. G. Arridge, Proc. R. Soc., Ser. B, 1972, pp. 180, 293–315.

[33] D. J. McBride Jr, R. A. Hahn e F. H. Silver, Int. J. Biol. Macromol., 1985, pp. 7, 71–76.

[34] E. Mosler, W. Folkhard, E. Knorzer e H. Nemetschek-Gansler, J. Mol. Biol, 1985, pp. 182, 589–596.

[35] A. Guadagno, VALUTAZIONE DELLE FORZE COMPRESSIVE E DI TAGLIO ALL’ARTICOLAZIONE DEL GINOCCHIO CON SISTEMA DI ANA-

LISI COMPUTERIZZATA MULTIFATTORIALE DEL MOVIMENTO, A. Ch.mo Prof. Ing. Pepino e A. Ing. Ranavolo, A cura di, Napoli, 2004/2005.

[36] T. P. Andriacchi e C. O. Dyrby, «Interactions between kinematics and loading during walking for the normal and ACL deficient knee,» Journal of

Biomechanics, pp. 38, 293–298, 2005.

[49] J. Freeman e A. L. Kwansa, Recent Pat. Biomed. Eng., 2008, pp. 1, 18-23.

[50] P. P. Weitzel, J. C. Richmond, G. H. Altman, T. Calabro e D. L. Kaplan, «Future direction of the treatment of ACL ruptures,» Orthop Clin N

Am, pp. 33, 653– 661, 2002. [51] J. P. Spalazzi, E. Dagher, S. B. Doty, X. E. Guo, S. A. Rodeo e H. H.

Lu, Conf Proc IEEE Eng Med Biol Soc, 2006, pp. 1, 525–528.[52] J. P. Spalazzi, E. Dagher, S. B. Doty, X. E. Guo, S. A. Rodeo e H. H.

Lu, J Biomed Mater Res A, 2008, pp. 86, 1–12.[53] H. H. Lu, S. F. El-Amin, K. D. Scott e C. T. Laurencin, J. Biomed.

Mater. Res., 2003, pp. 64, 465–474.[54] Y. Kato, M. Dunn, J. Zawadsky, A. Tria e F. Silver, «Regeneration of

Achilles tendon with a collagen tendon rosthesis. Results of a one-year implantation study,» J Bone Jt Surg, Am Vol, p. 73:561–74, 1991.

[55] T. Bucknall, L. Teare e H. Ellis, «The choice of a suture to close abdominal incisions,» Eur Surg Res, p. 15:59–66, 1983.

[56] R. L. Horan, J. C. Richmond, P. P. Weitzel, D. J. Horan, E. Mortarino, N. DeAngelis, I. Toponarski, J. Huang, H. Boepple, J. Prudom e G. H.

Altman, J Bone Joint Surg Br, 2009, pp. 91-B, 288.[57] G. H. Altman, R. L. Horan, P. Weitze e J. C. Richmond, J. Am. Acad.

Orthop. Surg, 2008, pp. 16, 177–187.[58] R. L. Horan, «SeriACL TM Device (Gen IB) Trial for Anterior Cruciate

Ligament (ACL) Repair,» Serica Technologies, Inc., 21 April 2009. [59] K. R. Stone, A. W. Walgenbach, J. T. Abrams, J. Nelson, N. Gillett e

U. Galili, Transplantation, 1997, pp. 63, 640–645.[60] J. W. Freeman, Bone and Tissue Regeneration Insights, 2009, pp. 2,

13–23.[61] F. Bonnarens e D. Drez, «Biomechanics of artificial ligaments and associated problems,» in The anterior cruciate deficient knee, new concepts

in ligament repair, St. Louis: C.V. Mosby, Jackson DW editor, 1987, pp. 239-53.

[62] M. Santin, A. Motta, G. Freddi e al., «In vitro evaluation of the inflammatory potential of the silk fibroin,» J Biomed Mater Res, p.

46:382– 9, 1999. [63] A. E. H. Love, A treatise on the mathematical theory of elasticity,

4th ed, New York: Dover Publications, 1944, pp. Chapter XVIII-XIX,381-426.

[64] W. Utting e N. Jones, «Response of wire rope strands to axial tensile loads. Part I: Experimental results and theoretical predictions,»

International Journal of Mechanical Science, pp. 29 (9), 605-61, 1987a. [65] W. Utting e N. Jones, « Response of wire rope strands to axial tensile loads. Part II: Comparison of experimental results and theoretical

predictions,» International Journal of Mechanical Science, pp. 29 (9), 621-36, 1987b.

[66] A. Nawrocki e M. Labrosse, «A finite element model for simple straight wire rope strand,» Computer and Structures, pp. 77, 345-369,

2000. [67] G. Costello, « Mechanical models of helical strands,» Applied

Mechanics Reviews, pp. 50, 1-14, 1990. [68] T. W. (Lord Kelvin), Baltimore Lectures on Molecular Dynamics

and the Wave Theory of Light, London, 1904. [69] C. McManus, The Origins of Asymmetry in Brains, Bodies, Atoms,

Left Hand, Right Hand, 2002. [70] Y. Song, R. E. Debski, V. Musahl, M. Thomas e S. L.-Y. Woo, «A

three-dimensional finite element model of the human anterior cruciate ligament:a computational analysis with experimental validation,» Journal

of Biomechanics, pp. 37, 383-390, 2004. [71] H.-S. Park, C. Ahn, D. T. Fung, Y. Ren e L.-Q. Zhang, «A

Knee-Specific Finite Element Analysis of the Human Anterior Cruciate Ligament Impingement against the Femoral Intercondylar Notch,» J

Biomech, 2010.

References

Page 23: Homogenized trigonal models for biomechanical applications description copia

[24] M. Benjamin e J. Ralphs, «The cell and developmental biology of tendons and ligaments,» Int Rev Cytol, pp. 196:85-130, 2000.

[25] I. Lo, S. Chi, T. Ivie, C. Frank e J. Rattner, «The cellular matrix: a feature of tensile bearing dense soft connective tissues,» Histol Histopathol,

pp. 17:523-537, 2002. [26] D. Amiel, C. Chu e J. Lee, «Effect of loading on metabolism and

repair of tendons and ligaments,» in Repetitive Motion Disorders of the Upper Extremity, Am Acad Orthop Surg, Rosemont, pp. 1995:217-230.

[27] C. T. Laurencin e J. W. Freeman, Biomaterials, 2005, pp. 26, 7530–7536.

[28] H. E. Cabaud, W. G. Rodkey e J. A. Feagin, Am. J. Sports Med, 1979, pp. 7, 18–22.

[29] F. H. Silver, Biomaterials, medical devices, and tissue engineering: an integrated approach, London: Chapman & Hall, 1994.

[30] D. Amiel, E. Billings e J. a. F. L. Harwood, J. Appl. Physiol, 1990, pp. 69, 902–906.

[31] S. J. Cuccurullo, Physical Medicine and Rehabilitation Board Review, New York: Demos Medical Publishing, 2004.

[32] J. Diamant, A. Keller, E. Baer e M. L. a. R. G. Arridge, Proc. R. Soc., Ser. B, 1972, pp. 180, 293–315.

[33] D. J. McBride Jr, R. A. Hahn e F. H. Silver, Int. J. Biol. Macromol., 1985, pp. 7, 71–76.

[34] E. Mosler, W. Folkhard, E. Knorzer e H. Nemetschek-Gansler, J. Mol. Biol, 1985, pp. 182, 589–596.

[35] A. Guadagno, VALUTAZIONE DELLE FORZE COMPRESSIVE E DI TAGLIO ALL’ARTICOLAZIONE DEL GINOCCHIO CON SISTEMA DI ANA-

LISI COMPUTERIZZATA MULTIFATTORIALE DEL MOVIMENTO, A. Ch.mo Prof. Ing. Pepino e A. Ing. Ranavolo, A cura di, Napoli, 2004/2005.

[36] T. P. Andriacchi e C. O. Dyrby, «Interactions between kinematics and loading during walking for the normal and ACL deficient knee,» Journal of

Biomechanics, pp. 38, 293–298, 2005.

[72] C. Frank, «Ligament structure, physiology and function,» J Muscu-loskel Neuron Interact, pp. 4(2):199-201, 2004.

[73] A. L. Kwansa, Y. M. Empson, E. C. Ekwueme, V. I. Walters e J. W. Freeman, «Novel matrix based anterior cruciate ligament (ACL) regenera-

tion,» Soft Matter, 2010. [74] G. Li, L. E. DeFrate, H. E. Rubash e T. J. Gil, «In vivo kinematics of the ACL during weight-bearing knee flexion,» Journal of Orthopaedic Resear-

ch, pp. 23,340–344, 2005. [75] T. Tischer, S. Vogt, S. Aryee, E. Steinhauser, C. Adamczyk, S. Milz,

V. Martinek e A. B. Imhoff, Arch. Orthop. Trauma Surg, 2007, pp. 127, 735–741.

[76] G. A. Costello, «Mechanics of Wire Rope,» 2003.[77] F. R. NOYES., D. L. BUTLER, E. S. GROOD e R. F. ZERNIKE, «Biomechanical Analysis of Human Ligament Grafts used in Knee-Ligament Repairs and Reconstructions,» The Journal of Bone and Joint Surgery, pp.

344-352, 1984. [78] S.-Y. Woo, J. Hollis, D. Adams, R. Lyon e S. Takai, «Tensile proper-ties of human femur–anterior cruciate ligament–tibia complex: the effects of

specimen age and orientation,» Am J Sports Med, 1991.

References