Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger...

24
1 Holger Flemming, GSI, EE FEE 2006 Perugia Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006

Transcript of Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger...

Page 1: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

1

Holger Flemming, GSI, EE

FEE 2006 Perugia

Front End Electronics for FAIR Experiments

Holger Flemming, GSI17.5.2006

Page 2: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

2Holger Flemming, GSI, EE

FEE 2006 Perugia

Overview

• The FAIR facility and the new experiments

• Requirements for FEE

• FEE development activities

• Activities at other sites

• Activities at GSI

• High resolution time measurement

Page 3: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

3Holger Flemming, GSI, EE

FEE 2006 Perugia

The FAIR Facility

GSI

FAIR

SIS 100/300

HESR

CBMPanda

Page 4: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

4Holger Flemming, GSI, EE

FEE 2006 Perugia

The Panda Experiment

• anti-Proton ANihilation at DArmstadt

• Physics Topics• Charmonium spectroscopy

• Search for exotic hadrons in the charm sector

• Charm mesons in nuclear matter

• Open charm physics

• Hypernuclei

• 4π detector

• Anti-protons on a hydrogen pellet target

Page 5: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

5Holger Flemming, GSI, EE

FEE 2006 Perugia

CBM - Compressed Baryonic Matter

• Physics Topics• In-medium modifications of

hadrons

• Strangeness in matter

• Indications for deconfinement at high ρ

B

• Critical point

• Fixed target heavy ion experiment

• Typical parameters:• ∼107 interactions rate

• ∼100 kHz channel hit rate

• few MByte/s per channel

• whole Detector: 1 TByte/s

Page 6: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

6Holger Flemming, GSI, EE

FEE 2006 Perugia

Architecture given by Physics Requirements

•Both Experiments:• For physics program trigger on open Charm (D0 D±) mandatory

• ⇒Displaced Vertex Trigger

• ⇒Track reconstruction in first level Trigger

•DAQ Architecture• Self triggered FEE

• Data-push architecture

• Compute node farms for track reconstruction and event selection

Page 7: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

7Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Requirements

• Autonomous detecton of all hits, no trigger signal

• Signal sampling and feature extraction

• Absolute time stamp for each FEE device

• Clock and Time distribution to each Front End channel

• Shipping of all hits to the next layer

• Some 100 kHz event rate per channel

Page 8: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

8Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities

• Design of general Purpose Front End Chips to use limited man power as effective as possible

• Common CMOS technology to be able to exchange functional blocks• in case of CBM: 180 µm CMOS by UMC

Page 9: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

9Holger Flemming, GSI, EE

FEE 2006 Perugia

0,18 µm CMOS for CBM Developements

•Reasons for decision:

• Experiance available at the involved groups• Costs for prototyping and production affordable• From technical point of view 0,18 µm seems to be sufficiant

•But:

• availability in some 5 years unclear• collaboration with other institutes could be a reason to migrate• availability of special libraries ( e.g. rad hard libraries )

• We are very interessted in other institutes activities!

Page 10: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

11Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities (Univ. Kaiserslautern)

•Developement of a widely usable Pipeline ADC IP Cell by David Muthers

•Design Aims:• 10 / 12 bit resolution• Sample Frequency f

S from few MS/s to 100 MS/s

• Low Power Consumption ∼ fS

• 0,18 µm CMOS

•First Testchip in 2005

Page 11: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

12Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities (Univ. Kaiserslautern)

• first Testchip with configurable 10 bit / 12 bit Pipline ADC

• maximum sampling frequency 75 MS/s

• Power @ 75 MS/s• 10 bit mode : 30 mW

• 12 bit mode : 53 mW

• ENOB in 12 bit mode : 10,9

• Input Range: ±1 V differential

• DNL < ±0,3 LSB

• INL < ±1 LSB

3 mm

1,5

mm

SRAMPipeline Core

Page 12: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

13Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities (Univ. Kaiserslautern)

• Second testchip submitted in February 2006

• careful design of clock path

• Added sample & hold at input to improve high frequency performance

• Serializer for Data Out

• I2C-Interface for Control

• Estimated performance• Sample Frequency: up to 100 MS/s

• Power Consumption @ 100 MS/s:• 10 bit mode: 40 mW

• 12 bit mode: 65 mW

• ENOB: > 11 bit

1,5

mm

Reference

1,5 mm

Pipeline Core

S&H

Serializer

I2C

Page 13: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

14Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities (Univ. Kaiserslautern)

•For time stamp generation absolute clock and time distribution to FEE necessary

• Idea: Using single GBit serial Link for control data uplink and clock- and time distribution

•Design Challenges:• For absolute time distribution serializer and deserializer needed with

clock cycle precise fixed latency ⇒ Univ. Mannheim• For clock distribution low jitter clock recovery mandatory ⇒ Univ.

Kaiserslautern

Page 14: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

15Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities (Univ. Kaiserslautern)

• First Testchips for low jitter clock recovery with on chip LC oscillators by Sitt Tontisirin

• Experimantal Jitter performance:• 2,3 ps rms @ 2,5 GBit/s PRBS 27-1

• 5,9 ps rms @ 2,5 GBit/s Input-jitter 280 ps pp modulation @ 10 MHz

• New Testchip submitted in February 2006• seperate clock recoverys for deserializing and clock distribution

• Expected jitter performance: ∼1 ps rms @ 2,5 Gbit/s

Page 15: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

16Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities at GSI

•Two main activities at GSI

• Low noise charge sensitive amplifier for the PANDA EMC• classical approach: Preamp / shaper close to the detector, sampling ADC and

DAQ outside

• Time to Digital Converter cores for a high resolution time of flight measurement at CBM• large experiance from previous time of flight systems• Evaluation of two concepts

• DLL based Time to Digital Converter• Time to Ampitude converter

Page 16: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

17Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities at GSI

• Low noise charge sensitive amplifier for PANDA EMC

• Design by Peter Wieczorek (phd student)

• well known approach with folded cascode input stage

• matching to PANDA EMC requirements

• First Testchip ready for submission in summer this year

PANDA EMC:

- PWO Crystals with APD readout- 300 pF detector capacitance- 13000 e-/MeV

- Shaping time 250 ns- Dynamic range < 1 MeV to > 1 GeV- Power dissipation < 50 mW / channel

Page 17: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

18Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities at GSI

Delay Locked Loop :

Closed regulation loop

Chain of N identical delay elements with adjustable delay, phase detector and charge pump.

Advantage:

Self Calibration to compensate temperature and process variations

Intrinsic resolution of a DLL isdetermined by the delay of a basic cell :

TBin = Tref / N

HERE: 128Bins => 97.65ps @ 80MHz

.

DLL based TDC core for time of flight measurements

Reference Clock

Hit Signal

N Delay Elements

Phasedetector

& Charge Pump

Register

Time

00………………..0001111111111000…..……………………….000

Hit resister stores a picture of the Hit-Signal

Clock driven architecture

OTA for Vctrl

Charge Pump with Loop Filter

Decoupling for VDDA

Delay Chain of the DLL

Hit Register and Decoder

Readout Circuit

Decoupling for VDDD

Chip submitted in july 2005

Page 18: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

19Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities at GSI

• Power consumption:• VDDIO: 5,5 mA @ 3,3 V ⇒ 18,5 mW

• VDDA: 6,5 mA @ 1,8 V ⇒ 11,7 mW

• VDDD: 1,5 mA @ 1,8 V ⇒ 2,7 mW

• Clock jitter at LastDummyOut: 6,8 ps rms

• Lock range: 65 to 95 MHz

• Time resolution: 31,8 ps ± 0,17 ps

• DNL: + 0,37 / - 0,81 LSB

• INL: + 0,66 / - 1,07 LSB

Page 19: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

20Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities at GSI

• Next step: improving time resolutionby using shifted array of DLLs

• 4 DLLs with 100 ps binning, shifted by 125 ps each

• ⇒ total binning of 25 ps

• design process started right now

Reference Clock

N Delay Elements

Array of

M DLL’s

M x N Bins

Hit SignalRegister

Page 20: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

21Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities at GSI

• Digital delay chain• Distributed RC-Network• Voltage on C

out increases linear with time

TDC core with a time to ampitude converter (TAC)

Benefits- Time resolution not limited by delay of a digital element- Time resolution below 10 ps possible- Zero power consumption in standby mode

Drawbacks- Calibration necessary- Deadtime during ramping and readout

Page 21: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

22Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities at GSI

• TAC-ASIC by GSI and FhG IMS in 0.8µm CMOS

• Used in FOPI RPC Readout

• Time resolution better than 10 ps

TAC based TDC already successfully implemented

Page 22: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

23Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities at GSI

• 2 TAC TDC Cores

• SC attenuator to avoid rail to rail signals

• Common clock and analog output

• LVDS inputs

• Some more teststructures

First TAC Testchip in 180 nm

3,24

mm

1,5 mm

clock distribution

TAC 1

TAC 2

SC attenuator 1

SC attenuator 2

analog output buffer

dual core control

Page 23: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

24Holger Flemming, GSI, EE

FEE 2006 Perugia

FEE Developement Activities at GSI

Simulation of First Testchip

Chip submitted in april 2006

Page 24: Holger Flemming, GSI, EE FEE 2006 Perugia 1 Front End Electronics for FAIR Experiments Holger Flemming, GSI 17.5.2006.

25Holger Flemming, GSI, EE

FEE 2006 Perugia

Summary and Outlook

• New heavy ion and anti proton facility FAIR will arise at GSI

• Two large experimental setups PANDA and CBM with similar requirements

• R&D on FAIR front end electronics has just started

• First examples for different developments have been presented

• Other projects not mentioned• MAPS for CBM vertex detector

• Silicon strip readout

• …