H.K. Moffatt- Simple Topological Aspects of Turbulent Vorticity Dynamics

9
TURBULENCE AND CHAOTIC PHENOMENA IN FLUIDS T. Tatsumi (editor) Elsevier Science Publishers B.V. (North-Holland) 8 IUTAM, 1984 SIMPLE TOPOLOGICAL ASPECTS OF TURBULENT VORTICITY DYNAMICS 223 H.K. Moffatt Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge, England The process by which turbulent vorticity i s inten- sified i s discussed, in relation to the dimension- ality of the subspace in which vorticity i s concen- trated. For a single, randomly twisted vortex filament, no vortex stretching can occur and the enstrophy remains bounded for all time. If the vorticity is distributed on a randomly convoluted surface, the total helicity of the flow being non- zero, then the enstrophy can, and in general will, increase without limit due to local instabilities of Kelvin-Helmholtz type, leading to spiral singular- ities of the vortex sheet. The relation between the structure of these spiral singularities and the spectral exponent in the inertial range of wave- numbers i s demonstrated. INTRODUCTION One of the essential features of the process of energy transfer in turbulent flow from large to small scales i s the associated tendency for enstrophy (i.e. mean-square vorticity) to increase. This increase i s ultimately balanced (in a statistically steady state) by viscous dissipation of enstrophy; but it i s legitimate to enquire what happens in the inviscid v -+ 0, and in particular to investigate the structure of the vorticity field that develops in this limit, as the enstrophy becomes unbounded. This structure (in physical space) pre- sumably has a bearing on the energy spectrum that i s established on scales at which viscous effects are negligible. The equation for mean-square vorticity in homogeneous turbulence i s where y = curl g. equation i s The most naPve closure enabling integration of this <?.(w,.V):> = A<;2>3/2 , ( 2 ) where A i s a positive dimensionless constant;with v = 0 , ( 1 ) then integrates to give - - V~ where <w2>o represents the enstrophy at t = O r a n d t = A-1<~2>i4 This sorution 'blows up' at time t = t o , a behaviour'that is-probably www.moffatt.tc

Transcript of H.K. Moffatt- Simple Topological Aspects of Turbulent Vorticity Dynamics

8/3/2019 H.K. Moffatt- Simple Topological Aspects of Turbulent Vorticity Dynamics

http://slidepdf.com/reader/full/hk-moffatt-simple-topological-aspects-of-turbulent-vorticity-dynamics 1/8

TURBULENCEAND CHAOTIC PHENOMENA IN FLUIDST. Tatsumi (editor)Elsevier SciencePublishers B.V. (North-Holland)8 IUTAM, 1984

SIMPLE TOPOLOGICAL ASPECTS O F TURBULENT V O R T I C I T Y DYNAMICS

223

H . K . M o f f a t t

Depar tmen t o f App l ied Mathemat ics and Th eo re t ic a l Phys icsUn iv er s i t y o f Cambridge

Cambridge, England

The p r o c e s s by w hich t u r b u l e n t v o r t i c i t y i s i n t e n -s i f i e d i s d i s c u ss e d , i n r e l a t i o n t o t h e d im ension-a l i t y of t h e s ub sp ac e i n which v o r t i c i t y i s concen-t r a t e d . F o r a s i n g l e , random ly t w i s t e d v o r t e xf i l a m e n t , no v o r t e x s t r e t c h i n g ca n o c c u r and t h een s t r o p h y rem a in s bounded f o r a l l t i m e . I f t h ev o r t i c i t y i s d i s t r i b u t e d on a r an dom ly co n v o lu t eds u r f a c e , t h e t o t a l h e l i c i t y o f t h e f l ow b e i ng non-z e r o , t h e n t h e e n st r o p h y c a n , and i n g e n e r a l w i l l ,i n c r e a s e w i t h o u t l i m i t due t o l o c a l i n s t a b i l i t i e so f K elv in -H elm ho ltz t y p e , l e a d i n g t o s p i r a l s i n g u l a r -

i t i e s of t h e v o r t e x s h e e t . The r e l a t i o n between t h es t r u c t u r e o f t h e s e s p i r a l s i n g u l a r i t i e s and t h es p e c t r a l e x po ne nt i n t h e i n e r t i a l r an g e of wave-numbers i s demons t ra ted .

I N T R O D U C T I O N

One o f t h e e s s e n t i a l f e a t u r e s of t h e p r oc e ss of e ne rg y t r a n s f e r i nt u r b u l e n t f lo w from l a r g e t o smal l s c a l e s i s t h e a s s o c i a t e d t en de nc yf o r e n s tr o p hy ( i . e . m ean-square v o r t i c i t y ) t o i n c r e a s e . T h i s i n c r e a s ei s u l t i m a t e ly b al an c ed ( i n a s t a t i s t i c a l l y s t e ad y s t a t e ) by v i sc o usd i s s i p a t i o n o f e n s tr op h y; b u t it i s l e g i t i m a t e t o e n q u i r e what h ap pe ns

i n t h e i n v i s c id l i m i t v -+ 0 , and i n p a r t i c u l a r t o i n v e s t i g a t e t h es t r u c t u r e o f t h e v o r t i c i t y f i e l d t h a t deve lops i n t h i s l i m i t , a s t h een s t r o p h y becomes unbounded. Th i s s t r u c t u r e ( i n p h y s i c a l s p ace ) p r e -su mably h a s a b ea r in g on t h e en e r g y sp ect r um t h a t i s e s t a b l i s h e d o ns c a l e s a t which v is co u s e f f e c t s a r e n e g l i g i b l e .

The eq ua t i on f o r mean-square v o r t i c i t y i n homogeneous tu rbu len ce i s

where y = c u r l g.e q u a t i o n i s

The m ost naPve c l o s u r e e n a b l i n g i n t e g r a t i o n o f t h i s

< ? . ( w , . V ) : > = A<;2>3/2 , ( 2 )

where A i s a p o s i t i v e d i m e n s i on l e s s c o n s t a n t ; w i t h v = 0 , (1) t h e ni n t e g r a t e s t o g iv e

- - V~

where < w 2 > o r e p r e s e n t s t h e en st ro ph y a t t = O r and t = A - 1 < ~ 2 > i 4T h i s s o r u t i o n ' bl ow s up' a t t i m e t = to, a behaviour ' tha t i s -proba blyf a i t h f u l t o t h e r e a l dynamics of tu rb ul en ce ( see , f o r e x am p le ,t her e c e n t d i s c u s s io n o f B r a ch e t e t a l . 1983) e ve n a l th o ug h t h e c l o s u r e( 2 ) i s known t o o v e re s t i m a te t h e v o r t i c i t y i n t e n s i f i c a t i o n p ro ce ss .

'

www.moffatt.tc

8/3/2019 H.K. Moffatt- Simple Topological Aspects of Turbulent Vorticity Dynamics

http://slidepdf.com/reader/full/hk-moffatt-simple-topological-aspects-of-turbulent-vorticity-dynamics 2/8

224 H.K.Moffatt

The same explosion of enstrophy at finite time occurs for a slightlymore sophisticated closure, in which we first decompose the vorticityfield into two ingredients, y = g l + c 2 , the idea being that eachingredient provides the rate-of-strain field that is responsible forthe intensification of the other ingredient. The inviscid enstrophyequations, with a closure analogous to ( Z ) , which encapsulate thisprocess of mutual interaction, are

d $ < g 2 ' > = <,w '>' )These equations have a first integral

<U '>f - <U 2 > $ = - c ,- 1 - 2

and the solution is then given by

(5)

<U1 '> = )exp(-CAt) - 1]-' , (6)

which (like ( 3 ) ) time (provided A > 0).

This behaviour is suggestive in relation to the toroidal vortex sheetmodel which will be discussed below.

RANDOMLY TWISTED VORTEX FILAMENT

Consider first the simplest possible three-dimensional example of a

random vorticity field, i.e. a single randomly twisted vortex fila-ment of strength r . Suppose (for simplicity) that the cross-sectionof the vortex filament is circular, with radius E , which is every-where small compared with the local radius of curvature of the fila-ment. As shown by Da Rios (1906) and Betchov (1965) the motion ofthe vortex filament is determined by the curvature K ( S ) and torsion~ ( s ) , here s is a parameter along the filament. In this approxi-mation, the velocity of the vortex filament is given by

) + cst.) %(s), ( 7 )V ( s ) ,-+ K ( S ) (in(-K ( S ) E

where $ is the unit binormal to the filament.

being the unit tangent vector) the filament behaves like an inexten-sible thread. If it is closed on itself, and its length is L, thenthe associated enstrophy is

Ig'dV = rLL2/V, ( 8 )

where V = ITE'L is the (constant) volume occupied by the vortex fila-ment. Clearly this enstrophy is also constant.

Consider now the further integral invariants associated with thistype of motion. Firstly, the kinetic energy is a conserved quantity.We may estimate this as follows. For points near the vortex filament,the velocity field is approximately that associated with an infiniteline vortex, i.e.

Since f . . V v = 0 ($

for IrK(s) << 1 (9)I l ? ( x ) % E

where r is the distance from the vortex. The corresponding contrib-ution to the kinetic energy of the flow is

(10)~ % pr2L <in(EIK(s)lJ> ,

where the average is over the length of the vortex filament. There*

8/3/2019 H.K. Moffatt- Simple Topological Aspects of Turbulent Vorticity Dynamics

http://slidepdf.com/reader/full/hk-moffatt-simple-topological-aspects-of-turbulent-vorticity-dynamics 3/8

Topological Aspects of Turbulent Vorticity Dynamics 225

I

is a second contribution (of order pi"%) to the kinetic energy ofthe flow from points that are more distant from the filament, but itis the contribution (10) which dominates. Since L is constant, it

then follows that < ki I €K ( s ) I-' > is constant also; invariance ofenstrophy implies that, in this sense, energy cannot be transferredto smaller scales, and progressive 'crinkling' of the vortex filamentis impossible.

There is one further invariant associated with the flow, and this isthe helicity

# = /g.$dV, (11)

which, in general, has a topological interpretation associated withthe degree of linkage of vortex lines (Moreau 1961, Moffatt 1969,Arnol'd 1974). This invariant takes a rather interesting form when

the vorticity is concentrated in a single closed filament. Usingthe Biot-Savart law to express in terms of p, we have the alter-native expression

R.gdVdV ,

R3

where f! = 5 - 5 ' .vanishingly small cross-section, this becomes

In going to the limit of a vortex filament of

( 1 3 )2a

i Q i- 2 (1 + - (s)ds) ,

where1 g.d&,,d&

R31 = F / i

(the Gauss integral) The second contribution in (13) involvingthe torsion 'I ( s ) , comes from pairs of points ,x,x,' for which R = O(E).The invariant expression (13) was obtained in a purely topologicalcontext by Calugareanu (1959). (Note that the integral I does con-verge, despite the apparent singularity in the integrand at R = 0 . )

Invariance of .& thus (in a sense) places a constraint on the develop-ment bf torsion in the filament, just as invariance of energy placesa constraint on the development of curvature.

A RANDOMLY CONVOLUTED VORTEX SHEET

The situation is rather different if the vorticity field is confinedto a neighbourhood of a closed surface S. Suppose first that S is atorus (the simplest possibility if the vortex lines are not to beclosed). We use the symbol S also for the area of S; the volume ofits 'E neighbourhood' is then

VE = E S , (15)

and we suppose thatw is non-zero only in V . The strength of thevortex sheet is then-

A U Q E I _ w I I (16)

and this represents the jump in fluid velocity as we cross frominside to outside the torus. Let Vin represent the volume inside thetorus. Then in the inviscid dynamical evolution of the vorticityfield, both Vil! and V, are constant.with the flow is clearly

, The kinetic energy associated

and so AU is also conserved (in order of magnitude). The enstrophyis given by

8/3/2019 H.K. Moffatt- Simple Topological Aspects of Turbulent Vorticity Dynamics

http://slidepdf.com/reader/full/hk-moffatt-simple-topological-aspects-of-turbulent-vorticity-dynamics 4/8

226 H. .Moffatt

Now, t h e c o n s t r a in t T = c s t . p la c es no r e s t r i c t i o n on fi which can

i n c r e a s e t hr ou gh i n c r e a s e o f S . An en s t r op hy ex pl os io n ( a -+ m) cani n p r i n c i p l e o cc ur i f a nd o n l y i f S +. -.What can o c c u r u nd er t h e s i n g l e c o n s t r a i n t of e ne rg y c o n s e r v a ti o n i sn o t o f c o u r s e n e c e s s a r i l y t h e same a s w hat d o e s o c c u r un de r t h e f u l lc o ns tr a in ts i m p l i e d by t h e E u l e r e q u a t i o n s . The above argument doeshowever s u g g es t t h a t t h e t o r o i d a l v o r t e x s h e e t i s a b e t t e r c a n d i d a t et h a n t h e c l o s e d v o r t e x l i n e a s t h e p r o t o t y p e s t r u c t u r e w hic h may b ea s s o c i a t e d w i th t h e p r o c es s of e n s tr o p h y e x p l o s i o n i n t u r b u l e n t f lo w.W e p u rs u e t h i s s u g g e st i on i n t h e f o l l o wi ng s e c t i o n s .

KELVIN-HELMHOLZ INSTABILITY AND ENSTROPHY INCREASE

A p la n e v o r te x s h e e t , a s i s well-known, i s a b s o l u t e l y u n s ta b l e t os i n u s o i d a l d i s t u r b a n c e s , t h e g ro wth r a t e o f weak d i s t u r b a n c e s o fwave-number k b e i n g

U Q k A U . (19)

T h is ty p e of d i s p e r s i o n r e l a t i o n s h i p , t o g e t h e r w i t h n o n - l i n e ar i n t e r -a c t i o n m ec ha nis ms ,l ea ds t o t h e a pp ea ra nc e a f t e r a f i n i t e t i m e of weaks i n g u l a r i t i e s ( e .g . d i s c o n t i n u i t i e s o f c u r v a t ur e ) i n t h e s u r f a c es h e e t geomet ry (Moore 1 9 7 9 , Meiron e t a l . 1 9 8 2 ) .

Exper im en ta l ob se r va t i o ns ( e .g . Thorpe 1 9 7 1 ) i n d i c a t e t h a t ani n i t i a l l y s i n u s o i d a l p e r t u r b a t i on of a p l an e v o r t e x s h e e t l e a d s t oa n o v e r tu r n in g p ro c es s ( a s i n d i c a t e d i n f i g u r e 1) a n d h e n c e q u i t er a p id l y t o t h e f orm at ion of s p i r a l s i n g u l a r i t i e s d i s t r i b u t e d a lo ngt h e s h e e t . A v o r te x c o n c en t r at i on t h e n a pp e ar s a t t h e ' e y e ' o feach s p i r a l .

y l

c--t A U

F i g u r e 1 *Development of s p i r a l s i n g u l a r i t i e s on a v o r t e x s h e e t due t oK e l v i n - H e l m h o l t z i n s t a b i l i t y

C l ea r ly t h e a r e a of t h e s h e e t i n c r e a s e s g r e a t l y d u r i n g t h e p ro c es sof s p i r a l f or ma ti on . I n a p u r e l y tw o- di me ns io na l S i t u a t i o n , t h e

3

8/3/2019 H.K. Moffatt- Simple Topological Aspects of Turbulent Vorticity Dynamics

http://slidepdf.com/reader/full/hk-moffatt-simple-topological-aspects-of-turbulent-vorticity-dynamics 5/8

Topological Aspe cts of Turbulent Vorticity Dynamics 227

I

ens t rophy i s c o n se r ve d , d e s p i t e t h i s i n c r e a s e o f a r e a . To u nd er -s ta nd t h i s , w e s ho ul d t a k e a cc ou nt o f t h e i n i t i a l s h e e t t h i c k n e s s ,s a y E . A s t i m e p r o gr e ss e s , t h e s h e e t g e t s t h i n n e r o v er t h e s e c t i o n

AB C o f f i g u r e 1, where it i s b e in g m ost s t r e t c h e d . Here t h e r e f o r et h e s h e e t s t r e n g t h d e c r e a se s and t h i s c om pe nsa te s t h e bu il d- up o fv o r te x co n c e nt r a t i on s n e a r t h e s p i r a l s i n g u l a r i t i e s D and E .

S up po se now t h a t , w i t h t h e co o r d i n a t e s y s t em o f f i g u r e 1, t h e r e i s asuperposed veloci ty component w i n t h e z - d i r e c t i o n which i s also d i s -c o n ti n uo u s a c r o s s t h e v o r t e x s h e e t . T h i s v e l o c i t y com ponent i ss im p ly co n vec ted by t h e f lo w in t h e ( x ,y ) p l an e an d so the jump Awi n W a c r o s s t h e s h e e t r em ai ns c o n s t a n t . The a s s o c i a t e d v o r t i c i t ycomponent i n t h e ( x f y ) p l an e p a r a l l e l t o t h e s h e e t t h e n i n c r e a s e s a tp o i n t s w here t h e s h e e t t h i c k n e s s E d ec r e a s e s : and t h e en s t ro p h y th eni n c r e a se s a l s o a s t h e s h e e t a r e a i n c r e a s e s . T h i s b e h av i o ur , a l t h o ug h

c o n c e i v a b l e , i s somewhat a r t i f i c i a l , b ec au se t h e m ost u n s t a b l e d i s -t u r b a n c e o f a p l a n e v o r t e x s h e e t i s a l w a y s o r i e n t e d so t h a t i t s wave-v e c t o r 16 i s p a r a l l e l t o t h e d i s co n t in u i ty o f t h e v e c t o r t a n g e n t i a lv e l o c i t y AU a cr os s t h e s h ee t . For t h i s most u n s t a b l e i s t u r b a n c e ,t h e abo ve G n st ro ph y in c r e a s e can n o t o cc u r .d i f f e r e n t when w e c o ns id e r i n s t a b i l i t i e s t o which a v o r t e x s h ee twrapped on a t o r u s may be su b j e c t .

KELVIN-HELMHOLZ INSTABILITY O F A T O R O I D A L VORTEX SHEET

W e now r e t u r n t o t h e t o r o i d a l c o n f i g u r a t i o n c o n s i d e re d above and w esup pose t h a t t h e v o r te x l i n e s c o ve r t h e se t of t o r u s e s n e s te d i n t h eneighbourhood V, o f S , i . e . e ac h v o r t e x l i n e f o l l o w s a h e l i c a l p a t hround a t o r u s , w i th i r r a t i o n a l p i t c h . I f 8 and Cp a r e a n g u l a r c o-o r d i n a t e s on t h e t o r u s , t h e n w e may a n t i c i p a t e u n s t a b l e d i s t u r b a n c e sp r o p o r t i o n a l t o exp[i(rnO + nCp)lwhere m and n a r e i n t e g e r s - the wavec r e s t s o f su ch d i s t u rb a n c e s a r e h e l i c e s which c l o s e on t h e t o r o i d -a 1 s u r f a c e . Hence t h e w a v e -c r es t s c a n no t now b e o r i e n t e d p a r a l l e l t ot h e vo r t e x l i n e s i n V E ; and by t h e Z n t f t h e p r e v i o u s p a ra g ra p h ,any i n s t a b i l i t y which l e a d s t o e x p l o s i v e grow th o f t h e t o r o i d a l s u r -f a c e a r e a S m ust a t t h e same t i m e l e a d t o e x p l o s i v e gro wt h o f t h et o t a l e ns tr op hy R o f t h e fl ow .

The most u n s t a b l e mode (m,n) w i l l , a s w e h ave s e e n, l ea d t o i n t e n s i f i -c a t i o n o f t h e component o f v o r t i c i t y i n t h e (m,n) d i r e c t i o n on t o r -o i d a l s u r f a c e s . The c o rr e sp o n di n g v e l o c i t y jump i s p r o g r e s s i v e l yo r i e n t e d i n t h e p e r p e n d i c u l a r d i r e c t i o n ( - n f m ) , and a s ec on d ar y modeo f i n s t a b i l i t y w i t h w ave-vec tor i n t h i s d i r e c t i o n t h en a pp ea rs l i k e l y .The v o r t i c i t y f i e l d y may be decomposed i n t o two f i e l d s w = g l + y,w i t h parallel t o (m ,n) and w p a r a l l e l t o ( -n ,m ) . The"prim ary i n -s t a b i l i t y a s s o ci a te d wi th t h e -k i e ld col l e a d s t o i n t e n s i f i c a t i o n o f2 : and t h e s ec on da ry i n s t a b i l i t y a s s o c i a t e d w i t h g 2 l e a ds t o i n t en -s i f i c a t i o n of col.t h i s m utual i n t e n s i f i c a t i o n pr oc e ss .

It i s an e s s e n t i a l f e a t u re o f t h i s p r oc e ss t h a t t h e v o r t ex l i n e s a r en o t c l o s e d , b u t do a c t u a l l y c o v er t o r o i d a l s u r f a c e s . The h e l i c i t y( s e e e q u a t i o n (11)) s s o c i a t e d w i t h s u c h a f l ow i s undoubtedly non-zero f and it might be thou gh t t h a t t h i s v o r t i c i t y d i s t r i b u t i o n i st h e r e f o r e u n t y p i c a l o f t h o s e e xa mp le s o f t u r b u l e n t f lo w ( e . g . g r i d

5.y i s n e v er i d e n t i c a l l y z e r o , and a p l a u s i b l e model o f t h e f l ow maybe provided by a random s up er po s i t i on of f un da m en ta l t o r o i d a l u n i t so f t h e above k i n d , some w i t h p o s i t i v e h e l i c i t y and some w i t h n e g a t i v e

t h e same t i m e s u b j e c t t o c on ve ct io n and d i s t o r t i o n by t h e v e l o c i t y

T h e s i t u a t i o n i s however

Equa t ions ( 4 ) p ro vid e t h e s i m p le s t i d e a l i s a t i o n o f

I t u r b u l e n c e ) f o r which <g.w_>= 0 . However, i n any tu r bu le n t f low,

8 h e l i c i t y , eac h u n i t s u b j e c t t o i t s own i n t r i n s i c i n s t a b i l i t i e s and a t

8/3/2019 H.K. Moffatt- Simple Topological Aspects of Turbulent Vorticity Dynamics

http://slidepdf.com/reader/full/hk-moffatt-simple-topological-aspects-of-turbulent-vorticity-dynamics 6/8

228 H.K. Moffatt

f i e l d s a ss o c i a te d w i t h t h e o t h e r u n i t s . T h is i s r e m i n i s c e n t o fa t t e m p t s t o p o r t r a y t u r b u l e n c e a s a random s u p e r p o s i t i o n o f H i l l ' s

s p h e r i c a l v o r t i c e s : b u t t h e non-zero h e l i c i t y o f t h e t o r o i d a l v or-

t i c e s i s h e r e a n e s s e n t i a l c on co m it an t o f t h e p r o c es s o f r a p i di n c r e a s e o f e n s t r o p h y ; t h e u n i t s may mo re ov er b e l i n k e d and t a n g l e dw i t h e a c h o t h e r i n a manner n o t a v a i l a b l e t o H i l l ' s v o r t i c e s .

I t i s o f c o u r s e w e l l known t h a t h e l i c i t y p la y s a c r u c i a l r o l e i nm agn etoh yd rod yn am ic t u r b u l e n ce , i n t h a t , when t h e mean h e l i c i t y i snon-zero, t h e medium i s s u b j e c t t o magne t ic i n s t a b i l i t i e s on a l ls c a l e s l a r g e compared w i t h t h e e n e r gy - c o nt a i ni n g s c a l e s o f t h e t u r -b ul en ce ( f o r f u l l a cc o u n ts o f t h i s i m p o r t an t p ro ble m, see M o f f a t t1978, Krause & R a d l e r 1 9 8 0 ) . I t i s a l s o known t h a t h e l i c i t y c a n ha vea s t r o n g i n f l u e n c e on t h e e f f e c t i v e t u r b u l e n t d i f f u s i v i t y of a con-v e c t ed p a s s i v e s c a l a r f i e l d (K ra ich na n 1 9 7 6 , Drummond, Duane &

Horgan 1983) . The a s s e r t io n made he re i s t h a t h e l i c i t y may be o fp r of o un d i m p or ta n ce a l s o i n t h e n o n - li n e a r dynam ics o f t u r b u l e n c e ;and t h a t ev en when t h e mean h e l i c i t y i s z er o , l o c a l h e l i c i t y f l uc t u -a t i o n s a s s o c i a t e d w i t h t o r o i d a l v o r t i c i t y s t r u c t u r e s ( o r p o s s ib l yw i t h s t r u c t u r e s t h a t a r e t o p o l o g i c a l l y much more com plex) a r e a s s o c i -a t e d i n a n e s s e n t i a l way w i t h t h e f un da me nt al p r o c es s o f i n c r e a s e o fe n s t r o p h y .Lev ich & T s i n o b e r ( 1 9 8 3 ) .

A s i m i l a r c on ce pt is deveLoped i n t h e r e c e n t p a p e r of

SPECTRAL ANALYSIS OF SPIRAL SINGULARITIES

A random s u p e r p o s i t i o n o f p l a n e v o r t e x s h e e t s ( f i g u r e 2 ) p r o v i d e s ap r im i t i v e mode l o f t u rb u l en ce (Townsend 1Y51 ) f o r wh ic h t h e e ne rg yspectrum i s

E ( k ) 0: k- ' f (kRv) ( 2 0 )

where R i s t h e mean t h i c k n e s s of t h e s h e e t s ( c o n t r o l l e d by v i s c o s i t y )and f (x y i s a f u n c t i o n T e p r e s e n t i n g an e x p o n e n t i a l- t y p e v i s c o u s c u t -o f f ( f ( 0 ) = 1 ) . The k- f a c t o r i n ( 2 0 ) i s a s s o c i a t e d w i t h t h e f a c tt h a t any s t r a i g h t l i n e c u t s a f i n i t e number of v o r t e x s h e e t s per u n i tl en gt h; t h e v e l o c i t y f i e l d on t h i s t r a n s v e r s a l th en h f s a f i n i t enumber o f d i s c o n t i n u i t i e s p e r u n i t l e n g t h , a nd t h e k- f a c t o r i n ( 2 0 )

i s a s i m p l e c on se qu en ce o f t h i s f a c t .

F i g u r e 2Random v o r t e x s h e e t s ; t h e v e l o c i t y f i e l d on a t r a n s v e r s a lh a s a f i n i t e number o f d i s c o n t i n u i t i e s on any s e c t i o n A B ,

l e ad in g t o a k-' s p e c t r a l power law .

The s lo w e r f a l l - o f f r ep r e s e n t ed by t h e k '5 /~ -K olm og or ov s p ec tr u ms u gy e st s t h a t , a t l e a s t on s c a l e s o n whiah v is c ou s e f f e c t s a r e neg-l i g i b l e , t h e v o r t i c i t y s t r u c t u r e must i n some s e n s e b e worse t h a nt h a t a s s o c i a t e d w i t h random v o r t e x s h e e t s . T h i s w or se ni ng i s con- L

v e n i e n t l y p r ov id ed by t h e s p i r a l s i n g u l a r i t i e s which d eve lo p a s ar e s u l t o f t h e Kelvin-Helmholz i n s t a b i l i t y , I f t h e s e o c c u r more o rl e ss wherever t h e v o r t e x s h e e t s oc c ur , t he n a s t r a i g h t l i n e t r a n s -v e r s a l w i l l o c c a s i o n a l l y p a ss v er y n e a r a s p i r a l s i n g u l a r i t y . L e t *

8/3/2019 H.K. Moffatt- Simple Topological Aspects of Turbulent Vorticity Dynamics

http://slidepdf.com/reader/full/hk-moffatt-simple-topological-aspects-of-turbulent-vorticity-dynamics 7/8

Topological Asp ects of Turbulent Vo rticity Dynam ics 229

us a na ly se t h e e f f e c t t h a t t h i s w i l l have o n t h e r e s u l t i n g e ne rg yspectrum

L e t x be a c o o r d i n a t e al on g t h e t r a n s v e r s a l , and l e t u ( x ) b e av e l o c i t y component p e r p e n d i c u l a r t o t h e t r a n s v e r s a l . Suppose t h i st r a n s v e rs a l p a s s e s n e a r a s p i r a l s i n g u l a r i t y s i t u a t e d on t h e p l an ex = 0 ( f i g u r e 3 ) .

b

F i g u r e 3

T r an sv e rs a l p a ss i n g n e a r a s p i r a l s i n g u l a r i t y ; t h e r e i s t h e na l a r g e number of d i s c o n t i n u i t i e s of t r a n s v e r s e v e l o c i t y n e a rt h e p o i n t 0 .

Then u ( x ) h a s d i s c o n t i n u i t i e s a t a se qu en ce of p o i n t s x o , x , , . . . % ,say , where N i s l a r g e . The F o u r t e r cosine c o e f f i c i e n t s of t h ef u nc t io n u ( x ) i n t h e ra ng e 0 < x 7~ a re g iv en b y

v

0

an = 1 u ( x ) co s nx d x ( 2 1 )

and t h e b eh a vi ou r f o r l a r g e n i s g iven by

I f we now suppose n f i x e d , and con s i de r t h e l i m i t N + m, w e see ' t h a tw e g e t a s i g n i f i c a n t c o n t r i bu t io n t o t h e se r i e s ( 2 2 ) o n ly f r o m th o s eterms f o r which nx = O ( 1 ) o r g r e a t e r . L e t M be t h e number of suchterms .values between -1 and +l, ( 2 2 ) g i v e s i n o r d e r o f m a g ni tu de

Due t o t h e r f a c t o r s i n n x r, w hich i n e f f e c t t a k e s random

( 2 3 )

where Au i s a n a ve ra g e v a l u e o f t h e jump i n / u ( x ) a c r o s s t h e s h e e t .

S up po se , f o r ex am ple, t h a t t h e j um ps o ccu r a t x r=

r-' fo r some s>O.Then M i s given by

n/MS = 0 ( 1 ) , i . e . M % n /S , ( 2 4 )

The cor respond ing s p e c t r a l power law i s

(26)E ( k ) % k-' where A = 2 - ;

The Kolmogorov exponent A = 5 / 3 cor responds t o s = 3 , i . e . t o

v e l o c i t y jumps a t x = z ' ~ , 3 - 3 , 4 - 3 , e t c .

T h i s t y p e o f a n a l y s i s i s i nc om pl et e i n t h a t c l e a r l y t h e d e n s i t y andp r o ba b i l i t y d i s t r i b u t i o n o f s p i r a l s i n g u l a r i t i e s sho uld a l s o p l ay ap a r t i n d e te rm i ni ng t h e r e s u l t i n g e n e rg y sp ec tr um . I t i s n e v e r t h e -l ess i l l u m i n a t i n g , i n t h a t it shows how t h e s t r u c t u r e o f t h e t y p i c a ls p i r a l s i n g u l a r i t y c an h av e a d et er m in in g i n f l u e n c e on t h e s p e c t r a lpower law i n t h e i n e r t i a l ra ng e.known, fro m in dep end en t co n s i d e r a t i o n s , t h e n t h i s g iv e s i n f o r m a t io n

b

C o nv e rs el y, i f t h i s power l a w i s

I abou t t h e s t r u c t u r e and d i s t r i b u t i o n o f s p i r a l s i n g u l a r i t i e s ,

8/3/2019 H.K. Moffatt- Simple Topological Aspects of Turbulent Vorticity Dynamics

http://slidepdf.com/reader/full/hk-moffatt-simple-topological-aspects-of-turbulent-vorticity-dynamics 8/8

230 H. .Moffatt

1

assuming that these are indeed the dominant physical feature ofturbulent flows.

FOOTNOTE.

I am indebted to Dr. M. German0 who drew my attention to this early,and little known, paper.

REFERENCES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Arnol'd, V . I . , The asymptotic Hopf invariant and its applications(In Russian), Proc. Sununer School in Differential Equations,Erevan 1974, Armenian SSR Acad. of Sciences (1974).

Betchov, R., On the curvature and torsion of an isolated vortexfilament, J . Fluid Mech. 22 (1965) 471-479.

Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morf,R.H.and Frisch, U., Small-scale structure of the Taylor-Green vortex,J . Fluid Mech. 130, (1983) 411-452.

Calugareanu, G., L'Integrale de Gauss et 1'Analyse des noeudstridimensionelles, Rev. Math. Pures Appl. 4, (1959) 5.

Da Rios, L.S., Sul moto di un liquid0 indefinito con un f:letO

vorticoso di forma qualunque, Rend. Circ. Mat. Palermo 22

Drumond, I . J . , Duane,S. and Horgan, R.R., Scalar diffusion insimulated helical turbulence with molecular diffusivity,J . Fluid Mech. (to appear),

Kraichnan, R., Diffusion of passive-scalar and magnetic fieldsby helical turbulence, J . Fluid Mech. 77 (1976) 753-768.

Krause, F. and Radler, K.H., Mean Field Magnetohydrodynamics andDynamo Theory (Pergamon, 1981).

Levich, E. and Tsinober, A., Helical structures, fractal dimen-

sions and renormalization-group approaches in homogeneousturbulence, Phys. Lett. 96A (1983) 292-298.

Meiron, D.I., Baker, G.R. and Orszag, S.A., Analytical structureof vortex sheet dynamics, Part I. Kelvin-Helmholz instabilityJ . Fluid Mech. 114 (1982) 283-298.

(1906) 117-135.

Moffatt, H.K., The degree of knottedness of tangled vortex lines,J . Fluid Mech. 35 (1969) 117.

Moffatt, H.K., Magnetic Field Generation in Electrically Con-ducting Fluids (Cambridge University Press, 1978).

Moore, D.W., The spontaneous appearance of a singularity in theshape of an evolving vortex sheet, Proc. R. Soc. Lond. A365(1979) 105.

Moreau, J . J . , Constantes d'un flot tourbillonnaire en fluidparfait barotrope, C.R. Acad. Sci. Paris 252 (1961) 2810.

Thorpe, S.A., Experiments on the instability of stratified shearflows: miscible fluids, J . Fluid Mech. 46 (1971) 299-319.