HIGH SPEED SILICON OPTICAL MODULATORsilicon-photonics.ief.u-psud.fr/wp-content/uploads/2009/...Soref...

1
Gilles Rasigade 1 , Delphine Marris-Morini 1 , Laurent Vivien 1 , Eric Cassan 1 , Paul Crozat 1 Philippe Lyan 2 , Pierrette Rivalin 2 , Jean-Marc Fédéli 2 1 Institut d'Electronique Fondamentale, CNRS UMR 8622, Université Paris-Sud - CNRS, 91405 Orsay Cedex, FRANCE 2 CEA LETI, Minatec, 17 rue des Martyrs, 38054 Grenoble Cedex 9, FRANCE HIGH SPEED SILICON OPTICAL MODULATOR Electrical signal Optical signal ACTIVE REGION PIN modulator design ISE electrical simulations Holes density n(V) 0 V 1 V 2 V 3 V 4 V 2.0x10 -4 1.5 1.0 0.5 0.0 n eff 5 4 3 2 1 0 Voltage (V) Effective index variation Phosphorus doped (~1.10 18 cm -3 ) Boron doped (~1.10 18 cm -3 ) Boron doped (~5.10 17 cm -3 ) =0 = 2 n eff L L Si n-doped p-doped active p-doped metal Low capacitance (0.3 fF/µm) Reduced and control optical loss No electrode loss contribution Simple fabrication process Good overlap factor Fabrication Numerical resolution of Poisson, carrier continuity, and drift-diffusion equations ISE Soref and Bennett 1 Mode solver N x,y P x,y n x,y x,y n eff eff SPLITTER I in I out,1 I out,2 < 2 µm Low wavelength dependent transmission and ultra-compact. EXPERIMENTAL RESULTS 50 DC+RF 50 DC+RF Current < 1 µA Insertion loss of 5 dB Contrast up to 15 dB V π L π of 5 V.cm Asymetric DC Mach-Zehnder transmission RF optical response -3 dB cut-off frequency of 15 GHz = -6 -5 -4 -3 -2 -1 0 1 Normalized optical response (dB) 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 2 3 Frequency (GHz) λ = 1557nm - polarization TE - V DC = 1V -3dB 15GHz CONCLUSION Experimental results Further improvements (→ 40 Gbit/s) Increase of the modulation efficiency to decrease the footprint. Optimization of the RF coplanar electrodes to improve the electrical signal propagation. Contrast : 15 dB Insertion loss : 5 dB -3 dB cut-off frequency : 15 GHz pH otonics EL ectronics functional I ntegrations O n CMOS European Community’s Seventh Framework Program (FP7) INTRODUCTION Applications Photonic benefits Silicon opportunity Optical interconnects Telecommunications Low signal distortion Low propagation loss Wavelength multiplexing (WDM) Mature technology High production volume High density integration Electro-refraction methods All-silicon high speed optical link Electro-refraction n V n eff V V interferometer I V Variation of carrier concentration N, P Accumulation Injection Depletion Gilles Rasigade | CMOS Photonics Winter School | March 2009 1. R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon”, IEEE Journal of Quantum Electronics, QE-23 (1), 123-129 (1987).

Transcript of HIGH SPEED SILICON OPTICAL MODULATORsilicon-photonics.ief.u-psud.fr/wp-content/uploads/2009/...Soref...

  • Gilles Rasigade1, Delphine Marris-Morini1, Laurent Vivien1, Eric Cassan1, Paul Crozat1Philippe Lyan2, Pierrette Rivalin2, Jean-Marc Fédéli2

    1 Institut d'Electronique Fondamentale, CNRS UMR 8622, Université Paris-Sud - CNRS, 91405 Orsay Cedex, FRANCE2 CEA LETI, Minatec, 17 rue des Martyrs, 38054 Grenoble Cedex 9, FRANCE

    HIGH SPEED SILICON OPTICAL MODULATOR

    Electrical signal Optical signal

    ACTIVE REGIONPIN modulator design ISE electrical simulations

    Holes density ∆n(V)

    0 V

    1 V

    2 V

    3 V

    4 V

    2.0x10-4

    1.5

    1.0

    0.5

    0.0

    ∆nef

    f

    543210Voltage (V)

    Effective index variation

    Phosphorus doped(~1.1018 cm-3)

    Boron doped(~1.1018 cm-3)

    Boron doped(~5.1017 cm-3)

    =0

    =2neff L

    L

    Sin-dopedp-doped activep-dopedmetal

    Low capacitance (0.3 fF/µm)

    Reduced and control optical loss

    No electrode loss contribution

    Simple fabrication process

    Good overlap factor

    Fabrication

    Numerical resolution of Poisson, carrier continuity, and drift-diffusion equations

    ISE

    Soref and Bennett1

    Mode solver

    N x , y P x , y

    n x , y x , y

    neffeff

    SPLITTER

    IinIout,1Iout,2

    < 2 µmLow wavelength dependent transmission and ultra-compact.

    EXPERIMENTAL RESULTS

    50 Ω

    DC+RF

    50 Ω

    DC+RF

    Current < 1 µA Insertion loss of 5 dB Contrast up to 15 dB VπLπ of 5 V.cm

    Asymetric DC Mach-Zehnder transmission

    RF optical response

    -3 dB cut-off frequency of 15 GHz

    =

    -6

    -5

    -4

    -3

    -2

    -1

    0

    1

    Nor

    mal

    ized

    opt

    ical

    resp

    onse

    (dB

    )

    0.12 3 4 5 6 7 8 9

    12 3 4 5 6 7 8 9

    102 3

    Frequency (GHz)

    λ = 1557nm - polarization TE - VDC = 1V

    -3dB

    15GHz

    CONCLUSIONExperimental results

    Further improvements (→ 40 Gbit/s)Increase of the modulation efficiency to decrease the footprint.Optimization of the RF coplanar electrodes to improve the electrical signal propagation.

    Contrast : 15 dBInsertion loss : 5 dB-3 dB cut-off frequency : 15 GHz

    pHotonics ELectronics functional Integrations On CMOS

    European Community’s Seventh Framework Program (FP7)

    INTRODUCTIONApplications Photonic benefits Silicon opportunity

    Optical interconnects TelecommunicationsLow signal distortion

    Low propagation loss

    Wavelength multiplexing (WDM)

    Mature technology

    High production volume

    High density integration

    Electro-refraction methods

    All-silicon high speed optical link

    Electro-refraction

    nV neff V V interferometer I V

    Variation of carrier concentration ∆N, ∆P

    Accumulation Injection Depletion

    Gilles Rasigade | CMOS Photonics Winter School | March 20091. R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon”, IEEE Journal of Quantum Electronics, QE-23 (1), 123-129 (1987).