High Precision Experiments with Cold and Ultra-Cold Neutrons

46
High Precision Experiments with Cold and Ultra-Cold Neutrons Hartmut Abele Vienna, 1 December 2012 qBOUNCE: Spectroscopy of Gravity a, A, B, C

description

High Precision Experiments with Cold and Ultra-Cold Neutrons. q Bounce : Spectroscopy of Gravity . |3 > 3.32 peV. a, A, B, C. |1 > 1.4 peV. Hartmut Abele Vienna, 1 December 2012. Show Case I: Test of Gravitation at Short Distances with Quantum I nterference. - PowerPoint PPT Presentation

Transcript of High Precision Experiments with Cold and Ultra-Cold Neutrons

Page 1: High Precision Experiments  with Cold and Ultra-Cold Neutrons

High Precision Experiments with Cold and Ultra-Cold Neutrons

Hartmut AbeleVienna, 1 December 2012

qBOUNCE: Spectroscopy of Gravity

a, A, B, C

Page 2: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Show Case I: Test of Gravitation at Short Distances with Quantum Interference

Julio Gea-Banacloche, Am. J. Phys.1999

Quantum interference: sensitivity to fifth forces

Hartmut Abele, Atominstitut, TU WienTim

eRafael Reiter, Bernhard Schlederer, David Sepp

Simulation: Reiter, Schlederer, Seppi

Height, 40 µm

Page 3: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Key Technique: Gravity Resonance Spectroscopy

3

E h

• atomic clocks• nuclear magnetic resonance spectroscopy• spin echo technique• quantum metrology• gamma resonance spectroscopy

Test Newton‘s law at short distances:• String Theories• Dark Matter• Dark Energy

|1 > 1.4 peV

|3 > 3.32 peV

Nature Physics, 1 June 2011

High Precision - Low EnergyHartmut Abele, Atominstitut, TU Wien

Page 4: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Rabi-Gravity-Spectroscopy

GRS: T.J., H.A. et al., Nature Physics 2011

4

|1 > 1.4 peV

|3 > 3.32 peV

a 2-level system can be considered as a Spin ½ - System

Vibrating mirrorAlternating Magnetic gradient

fields

QS: V.N., H.A. et al.,Nature 2002

Page 5: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Side-band excitation

Gähler, Felber, Golub et al.

5

Page 6: High Precision Experiments  with Cold and Ultra-Cold Neutrons

The kicked rotor

M. Bienert, F. Haug and W. P. Schleich, Raizen

6Hartmut Abele, Vienna University of Technology

Page 7: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Gravity Resonance Spectroscopy- Quantum states in the gravity potential of the earth and

coherence superposition

Search for deviations from Newtons gravity law at short distances- Large extra dimensions- Dark matter particles- Dark energy

Tests of weak interaction with neutron beta-decay experiments- Experiment PERC

Scientific Programme for ESS /Broad overview of the field

Outline

7

Page 8: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Spallation SourceReactor source

Neutron sources

Page 9: High Precision Experiments  with Cold and Ultra-Cold Neutrons

9Hartmut Abele, Technische Universität Wien

Page 10: High Precision Experiments  with Cold and Ultra-Cold Neutrons

10

Neutron Production

10-7

Velocity v [m/s]

Page 11: High Precision Experiments  with Cold and Ultra-Cold Neutrons

The future: FRM2, ESS

11

Page 12: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Tool: Ultra-Cold Neutrons

Strong Interaction: V ~ 100 neV

Kinetic Energy: < 100 neV 3m/s < v < 20m/s

Magnetism, Zeeman splitting : 120 neV/T

Energy in the earth‘s gravitational field:

E = mgh 100neV/m

Page 13: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Hartmut Abele, Technische Universität München 13Hartmut Abele 13

Quantum Bounce ?Cold-Source at 40 K

Hydrogen Atom- Electron bound in proton

potential- Bohr radius <r> = 1 A- Ground state energy of 13 eV- 3 dim.- Schrödinger Equ.

- Legrendre Polynomials

System Neutron & Earth- Neutron bound in the gravity

potential of the earth- <r> = 6 µm- Ground state energy of 1.4 peV- 1 dim.- Schrödinger Equ.

- Airy Functions

Page 14: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Gravity and Quantum Mechanics

14

)()(2 2

22

zEzmgzzm nnn

Schrödinger equation:

0)0( n

boundary conditions:

0)( lnwith 2nd mirror at height

l

Solutions: Airy-functions: Ai & Bi

En En

1st state 1.41peV

1.41peV

2nd state 2.46peV

2.56peV

3rd state 3.32peV

4.2 peV

V [peV]

Page 15: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Show Case I: Rabi-type Spectroscopy of Gravity

15

Resonance Spectroscopy Technique to explore gravity

T. Jenke, SPP1491-Treffen 2012, Frauenchiemsee

Page 16: High Precision Experiments  with Cold and Ultra-Cold Neutrons

neutronmirror

UCN

State Selection by a rough neutron mirror

• 4.5 days of beam time

• 3600 events (background subtracted)

n

nn ztc 221

2 )()(

)()(2 tfPSFN • fit:

• free parameters:

• result:0

21 ,,,)( zNltcn

track detector

00,0)(

30,0)(

70,0)(

213

212

211

tc

tc

tc

rough mirror

T. Jenke, ÖPG 2012

Page 17: High Precision Experiments  with Cold and Ultra-Cold Neutrons

6 m/s < vx < 7.2 m/s

Horizontal velocity

17Hartmut Abele, Technische Universität München T. Jenke, Diploma thesis, 2008

Page 18: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Frequency Reference for Gravitation

Hartmut Abele, Vienna University of Technology 18

|1 > 1.4 peV

|3 > 3.32 peV

3/2

0 41

nEn

pqpq

pq

EE

Based on 2 natural constants: ⁻ Mass of the neutron m⁻ Planck constant ħPlus Acceleration of earth g

3/122

0 89

mg

Page 19: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Discoveries: the dark universe

Spectroscopy of Gravity- It does not use

electromagnetic forces- It does not use coupling to

em Potential

Hyothetical gravity-like forces- Axions?- Chameleons?

constraint on any possible new interaction 19

Axion

10-14 eV Scale

Page 20: High Precision Experiments  with Cold and Ultra-Cold Neutrons

20

Page 21: High Precision Experiments  with Cold and Ultra-Cold Neutrons

21Felicitas Pauss

Page 22: High Precision Experiments  with Cold and Ultra-Cold Neutrons

The cosmological Parameters

Page 23: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Neutrons test Newton

Strength aRange l

23

/1 2( ) (1 )rm mV r G er

la

Hypothetical Gravity Like ForcesExtra Dimensions: The string and Dp-brane theories predict the existence of extra space-time dimensions Infinite-Volume Extra Dimensions: Randall and Sundrum Exchange Forces from new Bosons: a deviation from the ISL can be induced by the exchange of new (pseudo)scalar and (pseudo)vector bosons

• Axion - - - - - - - - - - - - - - - - - - - → 0.2 µm < l < 0.2 cm• Scalar boson. Cosmological consideration • Bosons from Hidden Supersymmetric Sectors• Gauge fields in the bulk (ADD, PRD 1999) - - - - →106 < a < 109

Supersymmetric large Extra Dimensions (B.& C.) - - - - → a < 106

Chameleon fields-

Page 24: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Show Case: Rabi-type Spectroscopy of Gravity

24

Rabi-type experiment:

Resonance Spectroscopy Technique to explore gravity

• realization of gravity resonance method possible• simple setup, no steps• high(er) transmission• upper mirror introduces 2nd boundary condition

Rabi-type experiment with damping

T. Jenke, SPP1491-Treffen 2012, Frauenchiemsee

Page 25: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Gravity Resonance Spectroscopy 2012

25

50 days of beam time, 116 measurements

1 2 , 1 3 , 2 3 and 2 4

• stat. Significance:• stat. accuracy:

• contrast:

%2.2Hz5.679%5.0Hz1.539%0.1Hz4.280%8.0Hz2.258

24

13

23

12

48

%68

pq

T. Jenke, Dissertation (TU Wien, 2011)T. Jenke et.al., arXiv:1208.3875 (2012)

[data 2010]

pq

T. Jenke, ÖPG 2012 10-14 eV Scale

Page 26: High Precision Experiments  with Cold and Ultra-Cold Neutrons

AXION: PDG Exclusion Ranges

26

Page 27: High Precision Experiments  with Cold and Ultra-Cold Neutrons

PDG Exclusion Ranges on Axion masses

27

2 cml

0.2 µml

Page 28: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Applications I: Spin-dependant short-ranged interactions

28

2axion

118 rr

ncm

ggV

n

ps

l

dayscgg ps

16103/

discovery potential [Setup 2010]:

C.L.%68,µm10l

J.E. Moody, F. Wilczek, Phys. Rev. D30, 131-138 (1984)

3 days of beamtime

T. Jenke et.al., arXiv:1208.3875 (2012)T. Jenke, ÖPG 2012

Page 29: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Chameleon fields, Brax et al. PRD 70, 123518 (2004)

2 Parameters , n

Dark Energy – Scalar Fields

29

Page 30: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Mirrors at z ~ ± d/2Fit to numerical solution

qBounce and Chameleons

Page 31: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Bounds on coupling - By comparing transition

frequency with theoretical expectation:

- as long as > 105 - Cite as: arXiv:1207.0419v1

qBounce and Chameleons

Page 32: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Applications II: Strongly coupled chameleons

32

A.N. Ivanov et.al., arXiv:1207.0419 (2012)T. Jenke et.al., arXiv:1208.3875 (2012)

22

22

Chameleon 222

n

Pl

zdd

nMmV

T. Jenke, ÖPG 2012

Page 33: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Feedback from FUNDAMENTAL PHYSICS

Convener: T. Soldner, O. Zimmer, H. Abele

Page 34: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Chameleon fields, Brax et al. PRD 70, 123518 (2004)

2 Parameters , n

Dark Energy – Scalar Fields

34

Page 35: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Casimir ForceAtom

Example Rb

r = 1 Micron

Neutron: Casimir force absent

Polarizability extremely small:

35

04

3( ) 2c aV rr

peV

230

04

2,3 103( ) 20.6

ac aV rr

fm

VeVm

peV

4 3

0

41

18

11.6 104

6 10

10

n

n

aD a E

E

Page 36: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Grand Challenges

36

Sensitive to any forceDark energy search- chameleon fields

Dark matter searchLarge extra dimensions Hypothetical gravity like forces

Page 37: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Participating Institutions:

• IST Braunschweig• Univ. Heidelberg• ILL• Univ. Jena • Univ. Mainz

• Priority Areas• CP-symmetry violation and particle physics in the early universe. • The structure and nature of weak interaction and possible extensions of the

Standard Model. • Tests of gravitation with quantum objects • Charge quantization and the electric neutrality of the neutron.

• New Infrastructure (UCN-Source, cold Neutrons)- * Coordinators (S. Paul, H.A. )

DFG/FWF Priority Programme 1491

• Exzellenzcluster ‚Universe‘ München• Techn. Univ. München*

• PTB Berlin• Vienna University of Technology*

Page 38: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Priority Programme 1491

Research Area A: CP-symmetry violation and particle physics in the early universe- Neutron EDM E = 10-23 eV

Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model - Neutron -decay V – A Theory

Research Area C: Relation between gravitation and quantum theory - Neutron bound gravitational quantum states

Research Area D: Charge quantization and the electric neutrality of the neutron- Neutron charge

Research Area E: New measuring techniques- Particle detection- Magnetometry- Neutron optics

Page 39: High Precision Experiments  with Cold and Ultra-Cold Neutrons

39

Parameters• Strength: GF • Quark mixing: Vud

• Ratio: l = gA/gV

5 41 2 2 2

3 7(1 3 ) 2ud

Re

FfV mG c

hl

ObservablesLifetime Correlation ACorrelation BCorrelation CCorrelation aCorrelation DCorrelation NCorrelation QCorrelation RBeta SpectrumProton SpectrumPolarized SpectraBeta Helicity

Electron

Proton

Neutrino

Neutron SpinA

B

C

a

D

R N

Neutron Alphabet deciphers the SM

High Precision - Low Energy• Hartmut Abele, Atominstitut, TU Wien

RQ

Page 40: High Precision Experiments  with Cold and Ultra-Cold Neutrons

v- selector

Spin flipper

PolarizerDecay Volume, 8m

Chopper

Beam stop

Analyzing area

A clean, bright and versatile source of neutron decay products Univ.Heidelberg & TU Wien, Mainz, ILL,FRM2,TU Munich

n-guide + solenoid: field B0

polarized, monochromatic n-pulse n + γ-beam stop

solenoid, field B1

solenoid, field B2

p+ + e− window-framep+ + e− beam

B. Maerkisch talk Berlin 2012

Key Instrument: PERC

• High Flux : = 2 x 1010 cm-2s-1

Decay rate of 1 MHz / metre• Polarizer: 99.7 ± 0.1 %• Spin Flipper: 100.05 ± 0.1 %• Analyzer: 100 % 3He-cells

Page 41: High Precision Experiments  with Cold and Ultra-Cold Neutrons

4141

Origin of nature’s lefthandednessStandard Model: Elektroweak interaction 100% lefthanded

Grand unified theories:Universe was left-right symmetric at the beginningParity violation = 'emergent' Order parameter <100%

Neutron decay: Correlation B + A:Mass right handed W-Boson: mR > 280 GeV/c2

Phase: -0.20 < < 0.07

WL WR

Page 42: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Grand Challenges

42

Sensitive to any theory beyond the Standard ModelLeft Right SymmetrySupersymmetryTensor or scalar interactions GUT

Page 43: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Priority Programme 1491

Research Area A: CP-symmetry violation and particle physics in the early universe- Neutron EDM

Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model - Neutron -decay

Research Area C: Relation between gravitation and quantum theory - Neutron bound gravitational quantum states

Research Area D: Charge quantization and the electric neutrality of the neutron- Neutron charge

Research Area E: New measuring techniques- Particle detection- Magnetometry- Neutron optics

Page 44: High Precision Experiments  with Cold and Ultra-Cold Neutrons

The Future: Ramsey-Method

Hartmut Abele, Vienna University of Technology 44

Page 45: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Since the Standard Model value for qn requires extreme fine tuning, the smallness of this value may be considered as a hint for GUTs, where qn is equal to zero.Improve limit by two orders of magnitude

Charge quantization and the electric neutrality of the neutron.

Page 46: High Precision Experiments  with Cold and Ultra-Cold Neutrons

Progress Report with Galileo in Quantum Land- qBounce: first demonstration of the quantum bouncing ball

- Dynamics: time evolution of coherent superposition of Airy-eigenfunctions- Realization of Gravity Resonance Spectroscopy:

- Coherent Rabi-Transitions, - |1> |2>- |1> |3>, see Nature Physics, 1 June 2011- |2> |3>, |2> |4>

- New Tool for - A Search for a deviation from Newton‘s Law at short distances, where

polarizability effects are extremely small , see H.A. et al., PRD 81, 065019 (2010) [arXiv:0907.5447 ]

- A quantum test of the equivalence principle- Direct limits on axion coupling / chameleons at short distances,

qBOUNCE Summary

46Hartmut Abele, Vienna University of Technology