High-order numerical methods for Large Eddy Simulation

68
High-order numerical methods for Large Eddy Simulation INRIA Seminar Palaiseau, France, November 24, 2016 J. Vanharen Joint work with G. Puigt, M. Montagnac, X. Vasseur, J.-F. Boussuge and P. Sagaut

Transcript of High-order numerical methods for Large Eddy Simulation

Page 1: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

INRIASeminarPalaiseau,France,November24,2016

J.Vanharen

JointworkwithG.Puigt,M.Montagnac,X.Vasseur,J.-F.BoussugeandP.Sagaut

Page 2: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulationINRIASeminarPalaiseau,France,November24,2016

J.VanharenJointworkwithG.Puigt,M.Montagnac,X.Vasseur,J.-F.BoussugeandP.Sagaut.

INTRODUCTION

2

Page 3: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Introduction

3

Folie 8 > AIAA/CEAS-2008-AFN > Dobrzynski

Major Sources of Airframe Noise

◆ Trackvorticesoverlongdistance◆ Turbulence◆ Generationandpropagationofsoundwaves◆ Complexgeometries

Creation

Propagation

Interaction

DoorruptureseemstobecausedbytheNLGwake/MLGinterac:on.

Page 4: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Industrialneeds

4

1)Gotowardscomplexgeometries, includingmoreandmoretechnologyeffect.

2)Captureunsteadyflowphysics.

3)Needforimprovementinhighperformancecomputingcapability.

Page 5: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Standardmeshforindustrialproblems

5

◆ Structuredapproach(S):

▪ Standardtechniquetoalignmeshlinesandflowphysics,especiallyintheboundarylayertocaptureliftanddragcoefficients.

▪ Initialtechniqueintroducedinindustry.

▪ Directdataaddressing.▪ Efficientalgorithms(multigrid,linear

solvers…)usingadirectionalapproachfollowingmeshlines(i,j,k).

▪ Timeconsumingmeshgenerationprocess:

• Fromacoupleofhourstomanyweeks.• Dedicatedtoolsforspecific

configurations.

Page 6: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Advancedmeshforindustrialproblems

6

◆ Chimera/Oversetgrid:▪ Assemblemeshesgeneratedseparately.▪ Quickermeshgeneration:independentmeshes.▪ AppliedtoexternalaerodynamicswithRANS/URANS.

▪ Dataexchangebetweengridsbyinterpolation:notconservative.▪ Inaccurateforinternalaerodynamics:massflowrateloss.

Page 7: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Advancedmeshforindustrialproblems

7

◆ Nonconforminggridinterface(NGI)betweenstructuredblocks:▪ Meshesgeneratedseparatelyshareageometricinterface.▪ Geometricinterfacediscretizationsdiffer.▪ Conservativeapproachforplaneinterface.

▪ Usedformanyapplicationswithexternalandinternalflows.

Page 8: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Advancedmeshforindustrialproblems

8

◆ Unstructuredapproach(U):▪ Quickgenerationofthemeshonregularcomputers,

evenforacomplexgeometry.▪ Less control on mesh quality and mesh can be inaccurate in some

specificpartsofthedomain.▪ IndirectdataaddressinginducesanincreaseofCPUcost.

◆ Hybridapproach(H):▪ Blend(S)and(U)blocksinasinglemesh.▪ Blend(S)and(U)algorithms

inasinglesolver.

▪ Takebenefitofanyapproachinits bestdomainofaccuracy.

▪ IntroduceNGIat(S)/(U)interface. Onera

Page 9: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Overview

Introduction

I)Nonconforminggridinterfaceforunsteadyflows

II)LimitsinaFiniteVolumeFormalism

III)Alternative:theSpectralDifferenceMethod

Conclusion&perpectives

9

Page 10: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulationINRIASeminarPalaiseau,France,November24,2016

J.VanharenJointworkwithG.Puigt,M.Montagnac,X.Vasseur,J.-F.BoussugeandP.Sagaut.

I)NONCONFORMINGGRIDINTERFACEFORUNSTEADYFLOWS

10

Page 11: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Spectralanalysis

11

◆ Mathematicalframework:cell-centeredfinitevolumeapproximation

◆ Modelproblem:linearadvectionequationonaregularstructuredgridwithfluxdensity

◆ In1D:

d(fV)dt

+ (cSf)i+1/2 � (cSf)i�1/2 = 0

d

dtfi + c ·

fi+1/2 � fi�1/2

�x= 0

Page 12: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 12

◆ In,needtodefineaninterfacevalue.Introduceacenteredsecond-orderapproximation:

◆ Andfinally:

◆ Thesameapproximationofthedivergencetermisconsideredinthefollowing.

d

dtfi + c ·

fi+1/2 � fi�1/2

�x= 0

fi+1/2 � fi�1/2

�x' fi+1 � fi�1

2�x

@f

@x

����i

' fi+1 � fi�1

2�x= 0

Spectralanalysis

Page 13: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 13

◆ Lastpoint:performaVonNeumann(orFourier)localanalysis.▪ Assumethatwithissolutionof

thelinearadvectionequation.▪ Injectthesolutionintheadvectionequationandconsider

auniformgrid:thestandardequivalentwavenumberisrecovered:

j2 = �1f = exp(jkx)

f 0i ' exp[jk(i+ 1)�x]� exp[jk(i� 1)�x]

2�x

' jk exp(jk · i�x) exp(jk�x)�exp(�jk�x)2jk�x

' jkfisin(k�x)

k�x

kmk

=sin(k�x)

k�x

Spectralanalysis

km =f 0ij fi

Page 14: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 14

Spectralanalysisforsecond-ordercenteredscheme.Thisschemeisnotdissipacve(centered)butdispersive.

Theoretical

SpectralanalysisR

e(k

mD

x )

Im(k

mD

x )

Page 15: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Spectralanalysis

15

Page 16: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 16

◆ Ourgoal:▪ Performasimilaranalysisforan

unsteadyflowinthepresenceofaNGI.

▪ UnderstandtheunsteadybehaviouroftheNGI.

▪ Correctspuriouseffects.

▪ ThisanalysiswaspublishedintheJournalofComputationalPhysics[1].

Spectralanalysis

[1] J. Vanharen, G. Puigt,M.Montagnac. Theoreccal and numerical analysis of nonconforming grid interface forunsteadyflows.JournalofComputaconalPhysics,285:111–132,2015.

Page 17: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 17

Toyproblem

◆ In2D,linearadvectionequationisconsideredasin1D,withasecond-ordercentered(structured)approximation.

◆ Meshcomposedofrectangularelementsparametrisedby,andonsides.

◆ meansstandardjoininterface.

◆ Keypoint:computingtherightcontributionforthefluxincell.

�zh

h = 0, �zR = �zL

(m,n)

h = 0, �zR = �zL

Page 18: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Toyproblem

18

◆ Toensureconservation,thefluxonisdecomposedintotwocontributions:onand.with

◆ Asaconsequence,theprincipleis:▪ Todefineintersectionfacets.▪ Tobuildtheinterfacefluxonfacets

usinganaverageofRandLcontributions.

[AB][AM ] [MB]

fAM =fm,n + fm0,n0+1

2, fMB =

fm,n + fm0,n0+2

2

fm+1/2,n =AM

AB· fAM +

MB

AB· fMB

Page 19: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

2Dspectralanalysis

Butthenonconforminggirdinterfacerequiresatwo-dimensionalstudy.Otherquanccesshouldbeploiedtoachievespectralanalysis.

characterisesdissipaRon(if<1)oramplificaRon(if>1).

characterisesdispersion(=0foranon-dispersivescheme).

tocomplytheNyquist-Shannonsamplingtheorem.

19

A (�x)

A(�x) = exp [=m [kxm + kym ]�x]

�(�x) =kx + ky �<e [kxm + kym ]

⇡�x

� (�x)

k�x 2 [0,⇡]

Page 20: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

2Dspectralanalysis

20

◆ OnaNGI,theapproachisvalidonLandRblocks.

◆ Breakinguptheanalytictime-integrationintotheleftandrightparts sequentially to show the combined effects of a wavetravellingtheNGI,theoveralleffectoftheNGIisintroduced:

◆ Amplitudeandphasedependonlocalmetrics.

f(t, x, z) = AL exp⇥j⇡�L

⇤| {z }

Left contribution

· AR exp⇥j⇡�R

⇤| {z }

Right contribution

· exp [j (kxx+ kzz � !t)

Page 21: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Coarseningalongthez-axis

21

Left Block200 x 400

Right Block200 x 103

Page 22: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 22

0.0 0.5 1.0 1.5 2.0 2.5 3.0k · �x [�]

0.0

0.2

0.4

0.6

0.8

1.0

�L,R

( �x)

[�]

u = 1 Left Block

u = 1 Right Block

u = 2 Left Block

u = 2 Right Block

u = 4 Left Block

u = 4 Right Block

0.0 0.5 1.0 1.5 2.0 2.5 3.0k · �x [�]

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

AL,R

( �x)

[�]

Coarsening along the z-axis. Propagation non-orthogonal to the interface.

Coarseningalongthez-axis

Page 23: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

NGI-COVO

23

0.0 0.5 1.0 1.5 2.0x [m]

0.0

0.5

1.0

1.5

2.0

z[m

]

Initial V ortex Convected V ortex

Boundary conditions

Subsonic inlet

Subsonic outlet

Periodic

Join

-1.400

-1.145

-0.891

-0.636

-0.382

-0.127

0.127

0.382

0.636

0.891

1.145

1.400

u�

U0

[m/s

]

COnvection of a compressible and isentropic

VOrtex (CO-VO): exact solution of Euler equations.

An analytical solution is available.

Error analysis.

⇠ = kfanalytical � fcomputedk1

⌘ =kfanalytical � fcomputedk1

kfanalyticalk1

Page 24: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Spuriousreflection

24

Aspectratiointhex-&z-direction:32

Thisspuriousreflectioncanbe correctedbyametric-dependentinterpolationforRiemannsolver

Page 25: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Spuriousreflection

25

Page 26: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulationINRIASeminarPalaiseau,France,November24,2016

J.VanharenJointworkwithG.Puigt,M.Montagnac,X.Vasseur,J.-F.BoussugeandP.Sagaut.

II)LIMITINAFINITEVOLUMEFORMALISM

26

Page 27: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

elsAHworkflow

27

Hybridmesh

Pre-

elsAH

Post-processing

Hybridsplitter

1. Hybridmeshgeneration.▪ Notooltomanagehybridgrids.▪ Basealgebra:A+B=C,eitherbygeometric

reconstructionorbyfamilies.2. Hybridsplitterforparallelcomputation.

▪ Couplingofunstructuredandstructuredsplitter3. Pre-processing4. elsaH&co-processing.

▪ Co-processingismandatoryforLEScomputations.5. Post-processing.

▪ Antareslibrary.

Page 28: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

elsAHworkflow

28

Unstructured

Structured

Hybridnonconforminggridinterface

Page 29: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Necessityofhigh-ordermethods

Convecconofanisentropicvortexinaboxwithperiodicboundarycondicons.Highorderversusloworderapproach,same#DOF.

Forthesameaccuracy,mul:plythe#DOFby64fora2ndorderscheme.

29

Page 30: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Extensiontohigh-ordermethods

Forstructuredblocks,thehigh-orderschemeisasixth-ordercompactFiniteVolumescheme.

30

Page 31: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Forunstructuredblocks,thesituationismuchmorecomplicated.

31

Extensiontohigh-ordermethods

ENO/WENO,k-exact&Least-Squares:definitionofalocalpolynomialrepresentationofquantitiestocomputethefluxesainterface.

DifficulttoimplementinelsAforgeneralunstructuredgrids.StenciltoolargeforHPC.

5thorder:104cells

6thorder:167cells

Page 32: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Forunstructuredblocks,thesituationismuchmorecomplicated.

32

Extensiontohigh-ordermethods

INRIAapproachintroducedbyDervieuxetal.foracell-vertexcode.Schemesfromthesecond-ordertothesixth-order(forCartesiangrid).Reverttoasecond-orderontetrahedrabutwithlimiteddissipation&dispersion.

A PhD at Cerfacs investigated these schemes to adapt them in a cell-centered FiniteVolumeformalismbutwithoutsuccess.

Theaccuracyisdrivenbythegradientsonthecompactstencil.Asecond-ordergradientneedsathird-orderextrapolationofthesolution.Athird-orderofthesolutionneedsextendedstencilonunstructuredgrid.

AndthisleadstoHPC-inefficientschemes.[3]P.Cayot,G.Puigt,J.Vanharen,J.-F.Boussuge,P.Sagaut.Towardssecond-orderfinite-volumecell-centereddiffusionschemeonhybridunstructuredmeshes.Inpreparacon,AIAAJournal.

Page 33: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulationINRIASeminarPalaiseau,France,November24,2016

J.VanharenJointworkwithG.Puigt,M.Montagnac,X.Vasseur,J.-F.BoussugeandP.Sagaut.

III)ALTERNATIVE:THESPECTRALDIFFERENCEMETHOD

33

Page 34: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 34

◆ TheSpectralDifferenceMethodconsistsinprojectingequationsonthebasisofLagrange polynomials.

◆ Thesolutioniscontinuousinside acellbutcanbediscontinuous atcellinterfaces.

◆ Letusdefinep+1solutionpoints andp+2fluxpoints.

SpacetimediscretisationforSpectralDifferenceMethod

�x

Page 35: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 35

TheSpectralDifferenceMethoddiscretisestheadvectionequationwiththreesteps:

1)Extrapolationfromthesolutionpointstothefluxpoints(matrixE),

2)Fluxcomputationinfluxpoints(matrixF),

SpacetimediscretisationforSpectralDifferenceMethod

Page 36: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 36

3)Fluxpolynomialderivationtoobtainthefluxderivativeatsolutionpoints(matrixD),

Combiningallthesematrices,oneobtains:

whereisthevectorofsolutionspoints.

SpacetimediscretisationforSpectralDifferenceMethod

@Ui

@t= DFE · Ui

Ui

Page 37: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 37

Thegeneratingpatternforaone-dimensionalproblemisgivenbyonecell.Tointroduceanormalmode,onehastomultiplytheDFEmatrixbytheLmatrix:toobtain:

whereM=DFEL.Thissystemoflinearequationsissolvedwiththelow-storagesecond-ordersix-stageRunge-KuttaschemeofBogeyandBailly[5]tosolvetheadvectionequation.

SpacetimediscretisationforSpectralDifferenceMethod

[5]C.BogeyandC.Bailly.Afamilyoflowdispersiveandlowdissipacveexplicitschemesforflowandnoisecomputacons,J.Comput.Phys.194(1)(2004)194–214.

Page 38: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 38

◆ Thisequationcanbeseenasageometricprogression.

◆ Consideringtheeigenvalueproblem:

◆ Onefindstheeigenvalues:

◆ Onefindstheassociatedeigenvectorsspanning:

TheMatrixPowerMethod

Figure 6: Illustration of the spectral analysis. The mesh is composed of four cells. Each cell is delimited by the dotted lines.The black crosses + represent the solution point for each cell. The symbols • represent the initial solution at each solutionpoint and � the computed solution at each solution point.

4.5. Spectral analysis: the Matrix Power Method215

Using properties of geometric progessions and (34), one obtains:

Uni = Gn · U0

i . (38)

Carrying out an unsteady computation with the Spectral Di↵erence Method simply consists in computingthe matrix G to the nth power to obtain the solution at the nth iteration from the initial solution. Itis somewhat reminiscent of the Matrix Power Method. For estimating and computing eigenvalues, thisMethod generally gives the eigenvalue with the greatest absolute value of a given matrix. It consists incomputing the nth power of this matrix. The proof of this theorem can be found in [33]. The followingproof is considerably inspired from the previous reference but it will allow us to establish a general resultfor the spectral analysis of the Spectral Di↵erence Method. Note that this method could be applied apriori for other high-order methods which consider several degrees of freedom inside each cell. Considerthe eigenvalue problem G · Ui = �Ui, Ui 6= 0, G 2 Mp+1 (C), Ui 2 Cp+1, � 2 C, which we assume hasa complete normalized eigenvector space (v1,v2, ...,vp+1) spanning Cp+1, with corresponding eigenvalues

(�1,�2, ...,�p+1) where |�1| < |�2| < ... < |�p+1|. We assume that U0i is a given vector, for which

U0i =

p+1X

j=1

↵(0)j · vj , (39)

where ↵(0)n 6= 0. Let

8n 2 {1, 2, ...} , Uni = G · Un�1

i .

To analyze the convergence of the sequence Uni , one obtains

Uni =

p+1X

j=1

↵(0)j Gn · vj .

15

Un+1i = G · Un

i

Figure 6: Illustration of the spectral analysis. The mesh is composed of four cells. Each cell is delimited by the dotted lines.The black crosses + represent the solution point for each cell. The symbols • represent the initial solution at each solutionpoint and � the computed solution at each solution point.

4.5. Spectral analysis: the Matrix Power Method215

Using properties of geometric progessions and (34), one obtains:

Uni = Gn · U0

i . (38)

Carrying out an unsteady computation with the Spectral Di↵erence Method simply consists in computingthe matrix G to the nth power to obtain the solution at the nth iteration from the initial solution. Itis somewhat reminiscent of the Matrix Power Method. For estimating and computing eigenvalues, thisMethod generally gives the eigenvalue with the greatest absolute value of a given matrix. It consists incomputing the nth power of this matrix. The proof of this theorem can be found in [33]. The followingproof is considerably inspired from the previous reference but it will allow us to establish a general resultfor the spectral analysis of the Spectral Di↵erence Method. Note that this method could be applied apriori for other high-order methods which consider several degrees of freedom inside each cell. Considerthe eigenvalue problem G · Ui = �Ui, Ui 6= 0, G 2 Mp+1 (C), Ui 2 Cp+1, � 2 C, which we assume hasa complete normalized eigenvector space (v1,v2, ...,vp+1) spanning Cp+1, with corresponding eigenvalues

(�1,�2, ...,�p+1) where |�1| < |�2| < ... < |�p+1|. We assume that U0i is a given vector, for which

U0i =

p+1X

j=1

↵(0)j · vj , (39)

where ↵(0)n 6= 0. Let

8n 2 {1, 2, ...} , Uni = G · Un�1

i .

To analyze the convergence of the sequence Uni , one obtains

Uni =

p+1X

j=1

↵(0)j Gn · vj .

15

Figure 6: Illustration of the spectral analysis. The mesh is composed of four cells. Each cell is delimited by the dotted lines.The black crosses + represent the solution point for each cell. The symbols • represent the initial solution at each solutionpoint and � the computed solution at each solution point.

4.5. Spectral analysis: the Matrix Power Method215

Using properties of geometric progessions and (34), one obtains:

Uni = Gn · U0

i . (38)

Carrying out an unsteady computation with the Spectral Di↵erence Method simply consists in computingthe matrix G to the nth power to obtain the solution at the nth iteration from the initial solution. Itis somewhat reminiscent of the Matrix Power Method. For estimating and computing eigenvalues, thisMethod generally gives the eigenvalue with the greatest absolute value of a given matrix. It consists incomputing the nth power of this matrix. The proof of this theorem can be found in [33]. The followingproof is considerably inspired from the previous reference but it will allow us to establish a general resultfor the spectral analysis of the Spectral Di↵erence Method. Note that this method could be applied apriori for other high-order methods which consider several degrees of freedom inside each cell. Considerthe eigenvalue problem G · Ui = �Ui, Ui 6= 0, G 2 Mp+1 (C), Ui 2 Cp+1, � 2 C, which we assume hasa complete normalized eigenvector space (v1,v2, ...,vp+1) spanning Cp+1, with corresponding eigenvalues

(�1,�2, ...,�p+1) where |�1| < |�2| < ... < |�p+1|. We assume that U0i is a given vector, for which

U0i =

p+1X

j=1

↵(0)j · vj , (39)

where ↵(0)n 6= 0. Let

8n 2 {1, 2, ...} , Uni = G · Un�1

i .

To analyze the convergence of the sequence Uni , one obtains

Uni =

p+1X

j=1

↵(0)j Gn · vj .

15

Figure 6: Illustration of the spectral analysis. The mesh is composed of four cells. Each cell is delimited by the dotted lines.The black crosses + represent the solution point for each cell. The symbols • represent the initial solution at each solutionpoint and � the computed solution at each solution point.

4.5. Spectral analysis: the Matrix Power Method215

Using properties of geometric progessions and (34), one obtains:

Uni = Gn · U0

i . (38)

Carrying out an unsteady computation with the Spectral Di↵erence Method simply consists in computingthe matrix G to the nth power to obtain the solution at the nth iteration from the initial solution. Itis somewhat reminiscent of the Matrix Power Method. For estimating and computing eigenvalues, thisMethod generally gives the eigenvalue with the greatest absolute value of a given matrix. It consists incomputing the nth power of this matrix. The proof of this theorem can be found in [33]. The followingproof is considerably inspired from the previous reference but it will allow us to establish a general resultfor the spectral analysis of the Spectral Di↵erence Method. Note that this method could be applied apriori for other high-order methods which consider several degrees of freedom inside each cell. Considerthe eigenvalue problem G · Ui = �Ui, Ui 6= 0, G 2 Mp+1 (C), Ui 2 Cp+1, � 2 C, which we assume hasa complete normalized eigenvector space (v1,v2, ...,vp+1) spanning Cp+1, with corresponding eigenvalues

(�1,�2, ...,�p+1) where |�1| < |�2| < ... < |�p+1|. We assume that U0i is a given vector, for which

U0i =

p+1X

j=1

↵(0)j · vj , (39)

where ↵(0)n 6= 0. Let

8n 2 {1, 2, ...} , Uni = G · Un�1

i .

To analyze the convergence of the sequence Uni , one obtains

Uni =

p+1X

j=1

↵(0)j Gn · vj .

15

Page 39: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 39

◆ Projectingtheinitialsolutionontheeigenvectorsbasis:

◆ Usingthediagonalizationproperties:

◆ Factorising:

TheMatrixPowerMethod

n ! +10

Figure 6: Illustration of the spectral analysis. The mesh is composed of four cells. Each cell is delimited by the dotted lines.The black crosses + represent the solution point for each cell. The symbols • represent the initial solution at each solutionpoint and � the computed solution at each solution point.

4.5. Spectral analysis: the Matrix Power Method215

Using properties of geometric progessions and (34), one obtains:

Uni = Gn · U0

i . (38)

Carrying out an unsteady computation with the Spectral Di↵erence Method simply consists in computingthe matrix G to the nth power to obtain the solution at the nth iteration from the initial solution. Itis somewhat reminiscent of the Matrix Power Method. For estimating and computing eigenvalues, thisMethod generally gives the eigenvalue with the greatest absolute value of a given matrix. It consists incomputing the nth power of this matrix. The proof of this theorem can be found in [33]. The followingproof is considerably inspired from the previous reference but it will allow us to establish a general resultfor the spectral analysis of the Spectral Di↵erence Method. Note that this method could be applied apriori for other high-order methods which consider several degrees of freedom inside each cell. Considerthe eigenvalue problem G · Ui = �Ui, Ui 6= 0, G 2 Mp+1 (C), Ui 2 Cp+1, � 2 C, which we assume hasa complete normalized eigenvector space (v1,v2, ...,vp+1) spanning Cp+1, with corresponding eigenvalues

(�1,�2, ...,�p+1) where |�1| < |�2| < ... < |�p+1|. We assume that U0i is a given vector, for which

U0i =

p+1X

j=1

↵(0)j · vj , (39)

where ↵(0)n 6= 0. Let

8n 2 {1, 2, ...} , Uni = G · Un�1

i .

To analyze the convergence of the sequence Uni , one obtains

Uni =

p+1X

j=1

↵(0)j Gn · vj .

15

Figure 6: Illustration of the spectral analysis. The mesh is composed of four cells. Each cell is delimited by the dotted lines.The black crosses + represent the solution point for each cell. The symbols • represent the initial solution at each solutionpoint and � the computed solution at each solution point.

4.5. Spectral analysis: the Matrix Power Method215

Using properties of geometric progessions and (34), one obtains:

Uni = Gn · U0

i . (38)

Carrying out an unsteady computation with the Spectral Di↵erence Method simply consists in computingthe matrix G to the nth power to obtain the solution at the nth iteration from the initial solution. Itis somewhat reminiscent of the Matrix Power Method. For estimating and computing eigenvalues, thisMethod generally gives the eigenvalue with the greatest absolute value of a given matrix. It consists incomputing the nth power of this matrix. The proof of this theorem can be found in [33]. The followingproof is considerably inspired from the previous reference but it will allow us to establish a general resultfor the spectral analysis of the Spectral Di↵erence Method. Note that this method could be applied apriori for other high-order methods which consider several degrees of freedom inside each cell. Considerthe eigenvalue problem G · Ui = �Ui, Ui 6= 0, G 2 Mp+1 (C), Ui 2 Cp+1, � 2 C, which we assume hasa complete normalized eigenvector space (v1,v2, ...,vp+1) spanning Cp+1, with corresponding eigenvalues

(�1,�2, ...,�p+1) where |�1| < |�2| < ... < |�p+1|. We assume that U0i is a given vector, for which

U0i =

p+1X

j=1

↵(0)j · vj , (39)

where ↵(0)n 6= 0. Let

8n 2 {1, 2, ...} , Uni = G · Un�1

i .

To analyze the convergence of the sequence Uni , one obtains

Uni =

p+1X

j=1

↵(0)j Gn · vj .

15

Furthermore, 8j 2 {1, 2, ..., p+ 1}, Gn · vj = �nj vj yields

Uni =

p+1X

j=1

↵(0)j �n

j vj

or

Uni = ↵(0)

p+1�np+1

2

4vp+1 +pX

j=1

↵(0)j

↵(0)p+1

✓�j

�p+1

◆n

vj

3

5 .

Hence, using��� �j

�p+1

��� = 1� |�p+1|�|�j ||�p+1| , we find

�����

�����vp+1 �1

↵(0)p+1�

np+1

Uni

�����

�����1

6pX

j=1

�����↵(0)j

↵(0)p+1

����� (1� ap+1)k ,

where ap+1 = minj 6=p+1

��� |�p+1|�|�j |�p+1

���, that is, Uni is approximated by ↵(0)

p+1�np+1vp+1. The rate of convergence

depends on the gap between the absolute magnitude of eigenvalues. However, it is an exponential decreaseand during an unsteady computation, several thousands of iterations can be performed. More precisely, oneobtains:

Uni ⇠

n!+1↵(0)p+1�

np+1vp+1 (40)

This means that for n enough high, the solution at the iteration n� 1 is simply multiply by �p+1 to obtainthe solution at the iteration n. We will see that in practice that n has no need to be so high since the rate ofconvergence is exponentionally decreasing. This gives a way to perform the spectral analysis of the SpectralDi↵erence Method. The dispersion and the amplification are simply given by the spectral radius �p+1 of thematrix G. Between the iterations n and n+ 1, the dispersion is given by the argument ' = � arg (�p+1) /⌫220

and the amplification is given by the absolute value ⇢ = |�p+1|. The Fig. 7a represents the absolute value ofthe di↵erence between k�x and '. The more these quantity tends to zero, the less dispersive the numericalscheme is. This quantity is characterisitc of the dispersion error. The Fig. 7b represents the di↵erencebetween 1 and ⇢. The more these quantity tends to zero, the less there is dissipation. This quantity ischaracteristic of the dissipation error.225

(a) Dispersion error. (b) Dissipation error.

Figure 7: Spectral analysis for ⌫ = 0.1: e↵ect of the order of the solution reconstruction.

16

Furthermore, 8j 2 {1, 2, ..., p+ 1}, Gn · vj = �nj vj yields

Uni =

p+1X

j=1

↵(0)j �n

j vj

or

Uni = ↵(0)

p+1�np+1

2

4vp+1 +pX

j=1

↵(0)j

↵(0)p+1

✓�j

�p+1

◆n

vj

3

5 .

Hence, using��� �j

�p+1

��� = 1� |�p+1|�|�j ||�p+1| , we find

�����

�����vp+1 �1

↵(0)p+1�

np+1

Uni

�����

�����1

6pX

j=1

�����↵(0)j

↵(0)p+1

����� (1� ap+1)k ,

where ap+1 = minj 6=p+1

��� |�p+1|�|�j |�p+1

���, that is, Uni is approximated by ↵(0)

p+1�np+1vp+1. The rate of convergence

depends on the gap between the absolute magnitude of eigenvalues. However, it is an exponential decreaseand during an unsteady computation, several thousands of iterations can be performed. More precisely, oneobtains:

Uni ⇠

n!+1↵(0)p+1�

np+1vp+1 (40)

This means that for n enough high, the solution at the iteration n� 1 is simply multiply by �p+1 to obtainthe solution at the iteration n. We will see that in practice that n has no need to be so high since the rate ofconvergence is exponentionally decreasing. This gives a way to perform the spectral analysis of the SpectralDi↵erence Method. The dispersion and the amplification are simply given by the spectral radius �p+1 of thematrix G. Between the iterations n and n+ 1, the dispersion is given by the argument ' = � arg (�p+1) /⌫220

and the amplification is given by the absolute value ⇢ = |�p+1|. The Fig. 7a represents the absolute value ofthe di↵erence between k�x and '. The more these quantity tends to zero, the less dispersive the numericalscheme is. This quantity is characterisitc of the dispersion error. The Fig. 7b represents the di↵erencebetween 1 and ⇢. The more these quantity tends to zero, the less there is dissipation. This quantity ischaracteristic of the dissipation error.225

(a) Dispersion error. (b) Dissipation error.

Figure 7: Spectral analysis for ⌫ = 0.1: e↵ect of the order of the solution reconstruction.

16

Un+1i = G · Un

i

Page 40: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 40

◆ Onecouldfindtheasymptoticbehaviour:

◆ Thisasymptoticbehaviourisdrivenbythespectralradius.

◆ Wedefinecharacterisationsofdispersionanddissipation:

TheMatrixPowerMethod

Un+1i = G · Un

i

Furthermore, 8j 2 {1, 2, ..., p+ 1}, Gn · vj = �nj vj yields

Uni =

p+1X

j=1

↵(0)j �n

j vj

or

Uni = ↵(0)

p+1�np+1

2

4vp+1 +pX

j=1

↵(0)j

↵(0)p+1

✓�j

�p+1

◆n

vj

3

5 .

Hence, using��� �j

�p+1

��� = 1� |�p+1|�|�j ||�p+1| , we find

�����

�����vp+1 �1

↵(0)p+1�

np+1

Uni

�����

�����1

6pX

j=1

�����↵(0)j

↵(0)p+1

����� (1� ap+1)k ,

where ap+1 = minj 6=p+1

��� |�p+1|�|�j |�p+1

���, that is, Uni is approximated by ↵(0)

p+1�np+1vp+1. The rate of convergence

depends on the gap between the absolute magnitude of eigenvalues. However, it is an exponential decreaseand during an unsteady computation, several thousands of iterations can be performed. More precisely, oneobtains:

Uni ⇠

n!+1↵(0)p+1�

np+1vp+1 (40)

This means that for n enough high, the solution at the iteration n� 1 is simply multiply by �p+1 to obtainthe solution at the iteration n. We will see that in practice that n has no need to be so high since the rate ofconvergence is exponentionally decreasing. This gives a way to perform the spectral analysis of the SpectralDi↵erence Method. The dispersion and the amplification are simply given by the spectral radius �p+1 of thematrix G. Between the iterations n and n+ 1, the dispersion is given by the argument ' = � arg (�p+1) /⌫220

and the amplification is given by the absolute value ⇢ = |�p+1|. The Fig. 7a represents the absolute value ofthe di↵erence between k�x and '. The more these quantity tends to zero, the less dispersive the numericalscheme is. This quantity is characterisitc of the dispersion error. The Fig. 7b represents the di↵erencebetween 1 and ⇢. The more these quantity tends to zero, the less there is dissipation. This quantity ischaracteristic of the dissipation error.225

(a) Dispersion error. (b) Dissipation error.

Figure 7: Spectral analysis for ⌫ = 0.1: e↵ect of the order of the solution reconstruction.

16

' ⇠ arg (�p+1)

⇢ ⇠ |�p+1|

Page 41: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 41

TheMatrixPowerMethod

10−7

10−6

10−5

10−4

10−3

10−2

10−1

π/4 π/2 3π/4 π

|k·∆

x−ϕ|[−

]

k ·∆x [−]

SD2SD3SD4SD5

DispersionerrorCFL=0.1

Page 42: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 42

TheMatrixPowerMethod

10−12

10−10

10−8

10−6

10−4

10−2

π/4 π/2 3π/4 π

1−

ρ[−

]

k ·∆x [−]

SD2SD3SD4SD5

DissipationerrorCFL=0.1

Page 43: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 43

ExtensiontohighwavenumbersfortheSpectralDifferenceMethod

◆ Energylossestimationbetweentheiterationnandm(n>m):

◆ Phaseshiftestimationbetweentheiterationnandm(n>m):

Page 44: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 44

ComparisonwithstandardFiniteDifferencemethods

Dissipationfor100000iterationsatCFL=0.7.

RKo6s-SD5schemeisasaccurateasRKo6s-CF8-CS6scheme.

Page 45: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 45

ComparisonwithstandardFiniteDifferencemethods

Dispersionfor100000iterationsatCFL=0.7.

RKo6s-SD5schemeisasaccurateasRKo6s-CF8-CS6scheme.[2] J.Vanharen,G.Puigt,X.Vasseur, J.-F.Boussuge,P. Sagaut.Revisicng the spectral analysis forhigh-order spectraldisconcnuousmethods.Underreview,JournalofComputaconalPhysics,2016.

Page 46: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

HPCefficiency

46

Page 47: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 47

JAGUARCPUperformance(Euler)

GFLOPSobtainedarealmosttwiceasbigas standardCFDsolvers.

MeantimebyiterationandbyDoF:2.2µsin2DEuler(about8µsforNSin3D)

whichislowerthanstandardCFDsolvers.

Page 48: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Partialconclusion

48

JAGUARisanalternativesolvertostandardFiniteVolumeones:

Unstructuredgridforcomplexgeometry.

Highperformancecapabilitywithverygoodscaling.

AsaccurateasstandardFiniteVolumeschemes.

Butonlyhexahedralmeshes…

Page 49: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulationINRIASeminarPalaiseau,France,November24,2016

J.VanharenJointworkwithG.Puigt,M.Montagnac,X.Vasseur,J.-F.BoussugeandP.Sagaut.

CONCLUSION&PERPECTIVES

49

Page 50: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

Conclusion&perpectives

Extensionofthenonconforminggridinterfaceforhybridmeshes.

Second-orderaccurateevenfornonconforminggridinterface.

Workflowcreationforhybridmeshes.

RelativeHPCefficiency.

Theextensiontohigh-orderschemesisimpossible forunstructuredmeshes.

50

Page 51: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

JAGUARisanalternativetostandardFiniteVolumesolvers.

Anyarbitraryorderofaccuracy.HPCefficient.

Butonlyforhexahedralmeshes…

Splittetrahedraintohexahedra…ExtensionoftheSpectralDifference

Methodontetrahedra.

51

Conclusion&perpectives

Page 52: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

LaBS:solvetheBoltzmannequation.Goodaccuracy.

(likeasixth-orderschemesfordissipation).HPCefficient.

Canhandleverycomplexgeometries withnonbody-fittedoctreemeshes.

Transitionresolution.Weaklycompressibleformulation.

52

Conclusion&perpectives

Page 53: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 53

Conclusion&perpectives

Page 54: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

◆ High-orderschemesbibliographyforLES.◆ elsAH,ANTARES&JAGUARdevelopmentsinPython,C/C++&Fortran90.

◆ Parallelprogramming:ArgonneTrainingProgramonExtreme-ScaleComputing(ATPESC2016).

◆ Airbusinternship:– fluide/structureinteraction,– gustresponse.

◆ AvailableinMay2017.

54

Conclusion&perpectives

Page 55: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 55

Thankyouforyourattention.JulienVanharen

PhDstudentAirbus/[email protected]

References:

[1] J. Vanharen, G. Puigt, M. Montagnac. Theoreccal and numerical analysis ofnonconforming grid interface for unsteady flows. Journal of Computaconal Physics,285:111–132,2015.[2] J.Vanharen,G.Puigt, X.Vasseur, J.-F.Boussuge,P. Sagaut.Revisicng the spectralanalysis for high-order spectral disconcnuous methods. Under review, Journal ofComputaconalPhysics,2016.[3] P. Cayot, G. Puigt, J. Vanharen, J.-F. Boussuge, P. Sagaut. Towards second-orderfinite-volume cell-centered diffusion scheme on hybrid unstructured meshes. Inpreparacon,AIAAJournal.[4] J. Vanharen, G. Puigt, J.-F. Boussuge, P. Sagaut. Opcmized Runge-Kuia cmeintegracon forSpectralDifferenceMethod. Inpreparacon, JournalofComputaconalPhysics.

[A] J. Vanharen, G. Puigt, M. Montagnac. Theoreccal and numerical analysis ofnonconforminggridinterfaceforunsteadyflows.AERO2015,Toulouse,France,March30th-31st,April1st2015.[B] J.Vanharen,G.Puigt,and J.-F.Boussuge.Revisicngthespectralanalysis forhigh-order spectral disconcnuous methods. In TILDA - Symposium, Toulouse, France,November21st-23rd2016.

Page 56: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulationINRIASeminarPalaiseau,France,November24,2016

J.VanharenJointworkwithG.Puigt,M.Montagnac,X.Vasseur,J.-F.BoussugeandP.Sagaut.

A)FLUXCONSERVATION

56

Page 57: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

A)Fluxconservation

57

Propertyoffluxconservationlostwhen:1.Noncoplanarfaces2. Curvedinterfaces

Page 58: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulationINRIASeminarPalaiseau,France,November24,2016

J.VanharenJointworkwithG.Puigt,M.Montagnac,X.Vasseur,J.-F.BoussugeandP.Sagaut.

B)SHOCK-CAPTURING

58

Page 59: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

B)Shock-capturing

59

Page 60: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulationINRIASeminarPalaiseau,France,November24,2016

J.VanharenJointworkwithG.Puigt,M.Montagnac,X.Vasseur,J.-F.BoussugeandP.Sagaut.

C)INTRODUCTION

60

Page 61: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 61

C)Industrialneeds

Complex geometries Accuracy

HPCPhysicalmodelling

Page 62: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

C)Introduction

Unsteady flow phenomena can occur on a large number of aircraqcomponents: -Landinggearsdoors, -Jet-flapinteraccons, -Airbrakesoutduringemergencydescent.

Theresulcngunsteadyaerodynamicforcesincreasethestructuralloadsthat may lead to vibracons and/or structural damage (facgue, limitloads).

The predicRon of these phenomena is tradiRonally based onexperiments,whichprovide resultsof appreciableaccuracy,but lateinthedesignprocess.

62

Page 63: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

C)Introduction

63

Trackingvorticeso

verlongdistancea

nd

propagatingacous

ticwavesoncomplex

geometriesarestillacha

llengeforCFDand

requireveryaccur

atenumericalmethods

intermsofdissipationand

dispersion.

Page 64: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 64

C)IndustrialCFDsimulationsatAirbus

Threeactiveresearchactivities:

Cabinnoise

Externalsourcenoise

Landinggear

Page 65: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation

C)Summary

65

Statusandfutureneeds:◆ RANS/URANS, geometry not too complex, structured grid with mesh

movement(ALE).◆ Tendency to treat off-design configurations with complex geometry and

unsteadyflows(withURANSorLES).◆ Threekeypoints:complexgeometries,unsteadyflow&HPC.

Goalofthistalk:◆ Extend theNonconforming Grid Interface (NGI) inhybrid framework for

unsteadyflow.◆ FocusattentiononthelimitsofthisapproachinaFiniteVolumeformalism.◆ Exploreanewparadigms:theSpectralDifferenceMethodandtheLattice-

BoltzmannMethod.

Page 66: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulationINRIASeminarPalaiseau,France,November24,2016

J.VanharenJointworkwithG.Puigt,M.Montagnac,X.Vasseur,J.-F.BoussugeandP.Sagaut.

D)THESPECTRALDIFFERENCEMETHOD

66

Page 67: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 67

Thisexpressionwasobtainedbyaspace-timeFouriertransformbasedonthefollowingnormalmode:

Itis2periodic:

Inordertoavoidaliasing,shouldbelongto:thisistheNyquist-Shannontheorem.

p

kDx [0, p]

Un+1i = G · Un

i

D)SpacetimediscretisationforSpectralDifferenceMethod

Page 68: High-order numerical methods for Large Eddy Simulation

High-ordernumericalmethodsforLargeEddySimulation 68

Finally,oneobtains:

D)SpacetimediscretisationforSpectralDifferenceMethod

Un+1i = G · Un

i

Firstremark:allthepropertiesofthespacetimediscretisationareinthismatrixG.

Secondremark:thisavectorexpressionsincethereareseveralsolutionpointspercell.