High-Order Methods for Optimization and Control of...

57
Introduction High-Order Numerical Scheme Fully Discrete Perturbation Methods Conclusion High-Order Methods for Optimization and Control of Conservation Laws on Deforming Domains Matthew J. Zahr Stanford University Collaborators: Per-Olof Persson (UCB), Jon Wilkening (UCB) FRG Seminar, Stanford University Tuesday, December 8, 2015 Zahr, Persson, Wilkening Optimization/Control Conservation Laws

Transcript of High-Order Methods for Optimization and Control of...

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    High-Order Methods for Optimization and Control ofConservation Laws on Deforming Domains

    Matthew J. ZahrStanford University

    Collaborators: Per-Olof Persson (UCB), Jon Wilkening (UCB)

    FRG Seminar, Stanford UniversityTuesday, December 8, 2015

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Which motion ...

    Has time-averaged x-force identically equal to 0?

    Requires least energy to perform?

    Energy = 9.4096x-force = -0.1766

    Energy = 0.45695x-force = 0.000

    Energy = 4.9475x-force = -2.500

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Which motion ...

    Has time-averaged x-force identically equal to 0?

    Requires least energy to perform?

    Energy = 9.4096x-force = -0.1766

    Energy = 0.45695x-force = 0.000

    Energy = 4.9475x-force = -2.500

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Real-World Application: Micro Aerial Vehicles (MAV)

    Autonomous flying vehicle with wingspanbetween 7.4cm and 15cm and speedbetween 15m/sMilitary applications

    local reconnaissance and detection ofintrudersresemble small bird from distancetoo slow to be detected by radar

    Commercial and civilian applications

    Package delivery, crowd control, survivorsearch, pipeline inspection, high-riskindoor inspection

    Difficulties

    Thrust and lift requirementsStructural constraintsStability and control considerations

    Micro Aerial Vehicle

    Bumblebee MAV (USAF 2008)

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Time-Dependent PDE-Constrained Optimization

    Optimization of systems that are inherentlydynamic or without a steady-state solution

    Introduction of fully discrete adjointmethod emanating from high-orderdiscretization of governing equations

    Coupled with numerical optimization

    Time-periodicity constraints

    Vertical Axis Wind Turbines

    Experimental design by G. Dahlbacka (LBNL) and collaborators

    3kW unit, assembled unit (left), numerical simulation (right)

    Micro Aerial Vehicle Vertical Windmill

    Volkswagen Passat

    LES Flow past Airfoil

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Problem Formulation

    Goal: Find the solution of the unsteady PDE-constrained optimization problem

    minimizeU ,

    J (U ,)

    subject to C(U ,) 0U

    t+ F (U ,U) = 0 in v(, t)

    where

    U(x, t) PDE solution

    design/control parameters

    J (U ,) = TfT0

    j(U ,, t) dS dt objective function

    C(U ,) =

    TfT0

    c(U ,, t) dS dt constraints

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    ALE Description of Conservation Law

    Introduce map from fixed reference domain V to physical domain v(, t)

    A point X V is mapped to x(, t) = G(X,, t) v(, t)

    Introduce transformation

    UX = gU

    FX = gG1F UXG1vX

    where

    G = XG, g = detG, vX =Gt

    X

    g

    t= X

    (gG1vG

    ) X1X2

    NdA

    V

    x1

    x2

    nda

    vG, g, vX

    Transformed conservation law1

    UXt

    X

    +X FX(UX , XUX) = 0

    1Geometric Conservation Law (GCL) satisfied by introduction of gZahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Spatial Discretization: Discontinuous Galerkin

    Re-write conservation law asfirst-order system

    UXt

    X

    +X FX(UX , QX) = 0

    QX XUX = 0

    Discretize using DG

    Roes method for inviscid flux

    Compact DG (CDG) forviscous flux

    Semi-discrete equations

    Mu

    t= r(u,, t)

    u(0) = u0()The CDG Method Summary

    1

    1

    2

    2

    3

    3

    4

    4

    andand

    CDG :LDG :BR2 :

    1

    2 3

    4

    Element-wise compact stencil

    Less connectivities than LDG/BR2/IP

    More accurate than LDG and BR2

    102 101 1001012

    1010

    108

    106

    104

    102

    100

    p=1

    p=2

    p=3

    p=4

    p=5

    x

    L 2 er

    ror

    CDGLDGBR2

    The CDG Method Summary

    1

    1

    2

    2

    3

    3

    4

    4

    andand

    CDG :LDG :BR2 :

    1

    2 3

    4

    Element-wise compact stencil

    Less connectivities than LDG/BR2/IP

    More accurate than LDG and BR2

    102 101 1001012

    1010

    108

    106

    104

    102

    100

    p=1

    p=2

    p=3

    p=4

    p=5

    x

    L 2 er

    ror

    CDGLDGBR2

    Stencil for CDG, LDG, and BR2 fluxes

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Temporal Discretization: Diagonally Implicit Runge-Kutta

    Diagonally Implicit RK (DIRK) are implicit Runge-Kutta schemes definedby lower triangular Butcher tableau decoupled implicit stagesOvercomes issues with high-order BDF and IRK

    Limited accuracy of A-stable BDF schemes (2nd order)High cost of general implicit RK schemes (coupled stages)

    u(0) = u0()

    u(n) = u(n1) +

    si=1

    bik(n)i

    u(n)i = u

    (n1) +

    ij=1

    aijk(n)j

    Mk(n)i = tnr(u

    (n)i , , tn1 + citn

    )

    c1 a11c2 a21 a22...

    ......

    . . .

    cs as1 as2 assb1 b2 bs

    Butcher Tableau for DIRK scheme

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Globally High-Order Discretization

    Fully Discrete Conservation Law

    u(0) = u0()

    u(n) = u(n1) +

    si=1

    bik(n)i

    u(n)i = u

    (n1) +

    ij=1

    aijk(n)j

    Mk(n)i = tnr(u

    (n)i , , tn1 + citn

    )Fully Discrete Output Functional

    F (u(0), . . . ,u(Nt),k(1)1 , . . . ,k

    (Nt)s ,)

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    High-Order Discretization of PDE-Constrained Optimization

    Continuous PDE-constrained optimization problem

    minimizeU ,

    J (U ,)

    subject to C(U ,) 0U

    t+ F (U ,U) = 0 in v(, t)

    Fully discrete PDE-constrained optimization problem

    minimizeu(0), ..., u(Nt)RNu ,k

    (1)1 , ..., k

    (Nt)s R

    Nu ,Rn

    J(u(0), . . . , u(Nt), k(1)1 , . . . , k

    (Nt)s , )

    subject to C(u(0), . . . , u(Nt), k(1)1 , . . . , k

    (Nt)s , ) 0

    u(0) u0() = 0

    u(n) u(n1) +s

    i=1

    bik(n)i = 0

    Mk(n)i tnr(u

    (n)i , , t

    (n1)i

    )= 0

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Generalized Reduced-Gradient Approach

    Optimizer drives, PDE returns Quantity of Interest (QoI) values/gradients

    OPTIMIZER

    MESH MOTION PDE

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Generalized Reduced-Gradient Approach

    Optimizer drives, PDE returns Quantity of Interest (QoI) values/gradients

    OPTIMIZER

    MESH MOTION PDE

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Generalized Reduced-Gradient Approach

    Optimizer drives, PDE returns Quantity of Interest (QoI) values/gradients

    OPTIMIZER

    MESH MOTION PDE

    x, x

    x ,

    x

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Generalized Reduced-Gradient Approach

    Optimizer drives, PDE returns Quantity of Interest (QoI) values/gradients

    OPTIMIZER

    MESH MOTION PDE

    x, x

    x ,

    x

    J, dJd C,dCd

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Generalized Reduced-Gradient Approach - Detailed

    Optimizer drives, Primal returns QoI values, Dual returns QoI gradients

    OPTIMIZER MESH MOTION

    PRIMAL PDE

    DUAL PDE

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Generalized Reduced-Gradient Approach - Detailed

    Optimizer drives, Primal returns QoI values, Dual returns QoI gradients

    OPTIMIZER MESH MOTION

    PRIMAL PDE

    DUAL PDE

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Generalized Reduced-Gradient Approach - Detailed

    Optimizer drives, Primal returns QoI values, Dual returns QoI gradients

    OPTIMIZER MESH MOTION

    PRIMAL PDE

    DUAL PDE

    x, x

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Generalized Reduced-Gradient Approach - Detailed

    Optimizer drives, Primal returns QoI values, Dual returns QoI gradients

    OPTIMIZER MESH MOTION

    PRIMAL PDE

    DUAL PDE

    x, x

    x, x

    x ,

    x

    u(n), k(n)i

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Generalized Reduced-Gradient Approach - Detailed

    Optimizer drives, Primal returns QoI values, Dual returns QoI gradients

    OPTIMIZER MESH MOTION

    PRIMAL PDE

    DUAL PDE

    x, x

    x, x

    x ,

    x

    u(n), k(n)i

    J,C

    dJd ,

    dCd

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Adjoint Method to Compute QoI Gradients

    Consider the fully discrete output functional F (u(n),k(n)i ,)

    Represents either the objective function or a constraint

    The total derivative with respect to the parameters , required in thecontext of gradient-based optimization, takes the form

    dF

    d=F

    +

    Ntn=0

    F

    u(n)u(n)

    +

    Ntn=1

    si=1

    F

    k(n)i

    k(n)i

    The sensitivities,u(n)

    and

    k(n)i

    , are expensive to compute, requiring the

    solution of n linear evolution equations

    Adjoint method: alternative method for computingdF

    drequiring one

    linear evolution evoluation equation for each quantity of interest, F

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Adjoint Equation Derivation - Outline

    Define auxiliary PDE-constrained optimization problem

    minimizeu(0), ..., u(Nt)RNu ,k

    (1)1 , ..., k

    (Nt)s R

    Nu

    F (u(0), . . . , u(Nt), k(1)1 , . . . , k

    (Nt)s , )

    subject to r(0) = u(0) u0() = 0

    r(n) = u(n) u(n1) +s

    i=1

    bik(n)i = 0

    R(n)i = Mk

    (n)i tnr

    (u

    (n)i , , t

    (n1)i

    )= 0

    Define Lagrangian

    L(u(n), k(n)i , (n),

    (n)i ) = F

    (0)T r(0)Ntn=1

    (n)Tr(n)

    Ntn=1

    si=1

    (n)i

    TR

    (n)i

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Fully Discrete Adjoint Equations

    The solution of the optimization problem is given by theKarush-Kuhn-Tucker (KKT) sytem

    Lu(n)

    = 0,Lk

    (n)i

    = 0,L(n)

    = 0,L

    (n)i

    = 0

    The derivatives w.r.t. the state variables,Lu(n)

    = 0 andLk

    (n)i

    = 0, yield

    the fully discrete adjoint equations

    (Nt) =F

    u(Nt)

    T

    (n1) = (n) +F

    u(n1)

    T

    +

    si=1

    tnr

    u

    (u

    (n)i , , tn1 + citn

    )T

    (n)i

    MT(n)i =F

    u(Nt)

    T

    + bi(n) +

    sj=i

    ajitnr

    u

    (u

    (n)j , , tn1 + cjtn

    )T

    (n)j

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Fully Discrete Adjoint Equations: Dissection

    Linear evolution equations solved backward in time

    Primal state/stage, u(n)i required at each state/stage of dual problem

    Heavily dependent on chosen ouput

    (Nt) =F

    u(Nt)

    T

    (n1) = (n) +F

    u(n1)

    T

    +

    si=1

    tnr

    u

    (u

    (n)i , , tn1 + citn

    )T

    (n)i

    MT(n)i =F

    u(Nt)

    T

    + bi(n) +

    sj=i

    ajitnr

    u

    (u

    (n)j , , tn1 + cjtn

    )T

    (n)j

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Gradient on Manifold of PDE Solutions via Dual Variables

    Equipped with the solution to the primal problem, u(n) and k(n)i , and dual

    problem, (n) and (n)i , the output gradient is reconstructed as

    dF

    d=F

    (0)

    T u0

    Ntn=1

    tn

    si=1

    (n)i

    T r

    (u

    (n)i , , t

    (n)i )

    Independent of sensitivities,u(n)

    and

    k(n)i

    Dependent on initial condition sensitivity,u0

    Compute (0)T u0

    directly if u0 is solution of steady-state equation

    R(u0,) = 0

    (0)T u0

    =

    [R

    u

    T(0)

    ]TR

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Energetically Optimal Flapping under x-Force Constraint

    minimize

    3T

    2T

    f x dS dt

    subject to

    3T2T

    f e1 dS dt = q

    U(x, 0) = U(x)

    U

    t+ F (U ,U) = 0

    Isentropic, compressible,Navier-Stokes

    Re = 1000, M = 0.2

    y(t), (t), c(t) parametrized viaperiodic cubic splines

    Black-box optimizer: SNOPT

    y(t)

    (t)

    ll/3

    c(t)

    Airfoil schematic, kinematic description

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Adjoint Method Gradients Agree with Finite Differences

    106

    104

    102

    ||dW d

    W

    || 2

    ||

    W|| 2

    101103105107109108

    105

    102

    ||dJx

    d

    Jx

    || 2

    ||

    Jx

    || 2

    Comparison of adjoint gradients with those obtained with 2nd order finitedifference approximation with step

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Optimal Control - Fixed Shape - Varied x-Force

    Energy = 9.4096x-force = -0.1766

    Energy = 0.45695x-force = 0.000

    Energy = 4.9475x-force = -2.500

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Optimal Time-Morphed Geometry and Control - Varied x-Force

    Energy = 9.4096x-force = -0.1766

    Energy = 0.45027x-force = 0.000

    Energy = 4.6182x-force = -2.500

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Optimal Time-Morphed Geometry and Control - x-Force = 2.5

    Energy = 9.4096x-force = -0.1766

    Energy = 4.9476x-force = -2.500

    Energy = 4.6182x-force = -2.500

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Trajectories of y(t), (t), and c(t)

    10 12 14

    1

    0

    1

    t

    y(t

    )

    10 12 1410.5

    0

    0.5

    1

    t

    (t)

    10 12 140.40.2

    0

    0.2

    0.4

    t

    c(t)

    Initial guess ( ), optimal control/fixed shape (q = 0.0: , q = 1.0: , q = 2.5:), and optimal control and time-morphed geometry (q = 0.0: , q = 1.0: ,

    q = 2.5: ).

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Instantaneous Power (Ph) and x-Force (Fhx ) Exerted on Airfoil

    10 12 14

    4

    2

    0

    time

    Ph

    10 12 14

    1

    0.5

    0

    time

    Fh x

    Initial guess ( ), optimal control/fixed shape (q = 0.0: , q = 1.0: , q = 2.5:), and optimal control and time-morphed geometry (q = 0.0: , q = 1.0: ,

    q = 2.5: ).

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Convergence of Total Work (W ) and x-Impulse (Fx) Exerted on Airfoil

    SNOPT convergence history

    0 20 40 6010

    5

    0

    iteration

    W

    0 20 40 60

    21

    0

    1

    iteration

    Jx

    Initial guess ( ), optimal control/fixed shape (q = 0.0: , q = 1.0: , q = 2.5:), and optimal control and time-morphed geometry (q = 0.0: , q = 1.0: ,

    q = 2.5: ).

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Time-Periodic Solutions Desired when Optimizing Cyclic Motion

    To properly optimize a cyclic, or periodic problem, need to simulate arepresentative period

    Necessary to avoid transients that will impact quantity of interest and maycause simulation to crash

    Task: Find initial condition, u0, such that flow is periodic, i.e. u(Nt) = u0

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Definition of Time-Periodic Solution of Fully Discrete PDE

    Recall fully discrete conservation law

    u(0) = u0()

    u(n) = u(n1) +

    si=1

    bik(n)i

    u(n)i = u

    (n1) +

    ij=1

    aijk(n)j

    Mk(n)i = tnr(u

    (n)i , , tn1 + citn

    )Discrete time-periodicity is defined as

    u(Nt)(u0) = u0

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Newton-Krylov Shooting Method for Time-Periodic Solutions

    Apply Newtons method to solve nonlinear system of equations

    R(u0) = u(Nt)(u0) u0 = 0

    Nonlinear iteration defined as

    u0 u0 J(u0)1R(u0)

    where J(u0) =u(Nt)

    u0 I

    u(Nt)

    u0is a large, dense matrix and expensive to construct

    Krylov method to solve J(u0)1R(u0) only requires matrix-vector products

    J(u0)v =u(Nt)

    u0v v

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Fully Discrete Sensitivity Method to Compute u(Nt)

    u0v

    Direct differentiation of fully discrete conservation law, and multiplicationby v, leads to the fully discrete sensitivity equations

    u(0)

    u0v = v

    u(n)

    u0v =

    u(n1)

    u0v +

    si=1

    bik

    (n)i

    u0v

    Mk

    (n)i

    u0v = tn

    r

    u

    (u

    (n)i , , t

    (n1)i

    )u(n1)u0

    v +

    ij=1

    aijk

    (n)j

    u0v

    Sensitivity variables:

    u(n)

    u0v, and

    k(n)i

    u0v

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Fully Discrete Sensitivity Equations: Dissection

    Linear evolution equations solved forward in time

    Primal state/stage, u(n)i required at each state/stage of sensitivity problem

    Heavily dependent on chosen vector

    u(0)

    u0v = v

    u(n)

    u0v =

    u(n1)

    u0v +

    si=1

    bik

    (n)i

    u0v

    Mk

    (n)i

    u0v = tn

    r

    u

    (u

    (n)i , , t

    (n1)i

    )u(n1)u0

    v +

    ij=1

    aijk

    (n)j

    u0v

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Time-Periodic Flow: Flapping Foil

    Initial GuessSolution of

    Newton-Krylov

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Nonlinear Solver Convergence

    100 101 102

    109

    107

    105

    103

    101

    101

    103

    iterations (primal solves)

    ||u(N

    t)u

    0|| 2

    Fixed Point Iteration

    Newton-GMRES: = 102

    Newton-GMRES: = 103

    Newton-GMRES: = 104

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Linear Solver Convergence

    0 10 20 30 40 501010

    108

    106

    104

    102

    100

    102

    iterations (linearized solves)

    ||Jxr|| 2

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Time-Periodicity Constraints in PDE-Constrained Optimization

    Recall fully discrete PDE-constrained optimization problem

    minimizeu(0), ..., u(Nt)RNu ,k

    (1)1 , ..., k

    (Nt)s R

    Nu ,Rn

    J(u(0), . . . , u(Nt), k(1)1 , . . . , k

    (Nt)s , )

    subject to C(u(0), . . . , u(Nt), k(1)1 , . . . , k

    (Nt)s , ) 0

    u(0) u0() = 0

    u(n) u(n1) +s

    i=1

    bik(n)i = 0

    Mk(n)i tnr(u

    (n)i , , t

    (n1)i

    )= 0

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Time-Periodicity Constraints in PDE-Constrained Optimization

    Slight modification leads to fully discrete periodic PDE-constrained optimizationproblem

    minimizeu(0), ..., u(Nt)RNu ,k

    (1)1 , ..., k

    (Nt)s R

    Nu ,Rn

    J(u(0), . . . , u(Nt), k(1)1 , . . . , k

    (Nt)s , )

    subject to C(u(0), . . . , u(Nt), k(1)1 , . . . , k

    (Nt)s , ) 0

    u(0) u(Nt) = 0

    u(n) u(n1) +s

    i=1

    bik(n)i = 0

    Mk(n)i tnr(u

    (n)i , , t

    (n1)i

    )= 0

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Adjoint Method for Periodic PDE-Constrained Optimization

    Following identical procedure as for non-periodic case, the adjoint equationscorresponding to the periodic conservation law are

    (Nt) = (0) +F

    u(Nt)

    T

    (n1) = (n) +F

    u(n1)

    T

    +

    si=1

    tnr

    u

    (u

    (n)i , , tn1 + citn

    )T

    (n)i

    MT(n)i =F

    u(Nt)

    T

    + bi(n) +

    sj=i

    ajitnr

    u

    (u

    (n)j , , tn1 + cjtn

    )T

    (n)j

    Dual problem is also periodic

    Solve linear, periodic problem using Krylov shooting method

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Generalized Reduced-Gradient Approach

    OPTIMIZER MESH MOTION

    PRIMAL PERIODIC PDE

    DUAL PERIODIC PDE

    x, x

    x, x

    x ,

    x

    u(n), k(n)i

    J,C

    dJd ,

    dCd

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Energetically Optimal Flapping under x-Force, Time-Periodicity Constraint

    minimize

    T

    0

    f x dS dt

    subject to

    T0

    f e1 dS dt = q

    U(x, 0) = U(x, T )

    U

    t+ F (U ,U) = 0

    Isentropic, compressible,Navier-Stokes

    Re = 1000, M = 0.2

    y(t), (t), c(t) parametrized viaperiodic cubic splines

    Black-box optimizer: SNOPT

    y(t)

    (t)

    ll/3

    Airfoil schematic, kinematic description

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Adjoint Method Gradients Agree with Finite Differences

    108 106 104 102

    106

    105

    104

    103

    ||dW d

    W

    || 2/||

    W|| 2

    108 106 104 102

    106

    105

    104

    ||dJx

    d

    Jx

    || 2/||

    Jx

    || 2

    Comparison of adjoint gradients with those obtained with 2nd order finitedifference approximation with step

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Adjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    Solution of Time-Periodic, Energetically Optimal Flapping

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • IntroductionHigh-Order Numerical Scheme

    Fully Discrete Perturbation MethodsConclusion

    Conclusion

    Derived adjoint equations for DG-DIRK discretization of generalconservation laws on deforming domainIntroduced fully discrete adjoint method for computing gradients ofquantities of interest

    Framework demonstrated on the computation of energetically optimalmotions of a 2D airfoil in a flow field with constraints

    Introduced fully discrete sensitivity equations and used Newton-Krylovshooting method to compute time-periodic flows

    Framework and solver introduced for incorporating time-periodicityconstraints in optimization problem

    Next steps: 3D, multiphysics, model reduction

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • Domain Deformation

    Require mapping x = G(X,, t) to obtain derivatives XG, tGShape deformation, via Radial Basis Functions (RBFs), applied to referencedomain

    X = X +

    wi(||X ci||)

    Undeformed Mesh Shape Deformation

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • Domain Deformation

    Rigid body translation, v, and rotation, Q, applied to deformedconfiguration

    X = v +QX

    Shape Deformation Shape Deformation, Rigid Motion

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • Domain Deformation

    Spatial blending between deformation with and without rigid body motionto avoid large velocities at far-field

    x = b(X)X + (1 b(X))X

    b : Rnsd R is a function that smoothly transitions from 0 inside a circle ofradius R1 to 1 outside circle of radius R2

    Blended Mesh

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • Domain Deformation

    Blended Mesh

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • Consistent Discretization of Output Quantities

    Consider any quantity of interest of the form

    F(U ,) = TfT0

    f(U ,, t) dS dt

    Define fh as the high-order approximation of the spatial integral via the DGshape functions

    fh(u(t),, t) =TeT

    QiQTe

    wif(uei(t),, t)

    f(U ,, t) dS

    Then, the quantity of interest becomes

    F(U ,) Fh(u,) = TfT0

    fh(u(t),, t) dt

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • Consistent Discretization of Output Quantities

    Semi-discretized outputfunctional

    Fh(u,, t) = tT0

    fh(u(t),, t) dt

    Differentiation w.r.t. time leadsto the

    Fh(u,, t) = fh(u(t),, t)

    Write semi-discretized outputfunctional and conservation lawas monolithic system[

    M 00 1

    ] [u

    Fh

    ]=

    [r(u,, t)fh(u,, t)

    ]

    Apply DIRK scheme to obtain

    u(n) = u(n1) +

    si=1

    bik(n)i

    F (n)h = F(n1)h +

    si=1

    bifh

    (u

    (n)i , , t

    (n1)i

    )u

    (n)i = u

    (n1) +

    ij=1

    aijk(n)j

    Mk(n)i = tnr(u

    (n)i , , t

    (n1)i

    )where t

    (n1)i = tn1 + citn

    Only interested in final time

    F (u(n),k(n)i ,) = F

    (Nt)h

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • Isentropic, Compressible Navier-Stokes Equations

    Applications in this work focused on compressible Navier-Stokes equations

    t+

    xi(ui) = 0

    t(ui) +

    xi(uiuj + p) = +

    ijxj

    for i = 1, 2, 3

    t(E) +

    xi(uj(E + p)) =

    qjxj

    +

    xj(ujij)

    Isentropic assumption (entropy constant) made to reduce dimension of PDEsystem from nsd + 2 to nsd + 1

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

  • Stability of Periodic Orbits of Fully Discrete PDE

    Let u0() be a fully discrete time-periodic solution of the PDE

    Define the operator

    u(nNt)(u0; ) = u(Nt)(; ) u(Nt)(u0; )

    A Taylor expansion of u(Nt) about the periodic solution leads to

    u(Nt)(u0(); ) = u0() +

    u(Nt)

    u0(u0(); ) u+O(||u||2)

    where time-periodicity of u0() was used

    Repeated application of leads to

    u(nNt)(u0()+u; ) = u0()+

    [u(Nt)

    u0(u0(); )

    ]nu+O(||u||n+1)

    Periodic orbit is stable if eigenvalues ofu(Nt)

    u0(u0(); ) have magnitude

    less than unity

    Zahr, Persson, Wilkening Optimization/Control Conservation Laws

    IntroductionHigh-Order Numerical SchemeFully Discrete Perturbation MethodsAdjoint Method for PDE-Constrained OptimizationSensitivity Method for Time-Periodic SolutionsAdjoint Method with Periodicity Constraint

    ConclusionAppendix

    fd@vidPitchMesh0: fd@vidPitchMesh0: fd@init_flap01-thrust0_flap01-thrust2p5: fd@init_flap01morph01-thrust0_flap01morph01-thrust2p5: fd@init_flap01-thrust2p5_flap01morph01-thrust2p5: fd@rm@5: fd@rm@6: fd@periodic_opt: