High-field Self-starting Permanent-magnet Synchronous Motor - 04643350 - 1981

download High-field Self-starting Permanent-magnet Synchronous Motor - 04643350 - 1981

of 4

Transcript of High-field Self-starting Permanent-magnet Synchronous Motor - 04643350 - 1981

  • 8/18/2019 High-field Self-starting Permanent-magnet Synchronous Motor - 04643350 - 1981

    1/4

    High-field self-starting perm anent-magnet

    synchronous motor

    K.J. Binns, B.Sc, D.Sc, C.Eng., A.F.I.M .A., M.I.E.E., and M.A. Jabbar, B.Sc.(Eng.), Ph.D.

    Indexing terms: Magnetic

     ields,

     Permanent

     magnets,

     Synchronous motors

    Abstract:

      A

      number

      of

      configurations

      of

      self-starting permanent-magnet synchronous motor have been

    developed  in recent years. This paper describes a form  of  motor having a  high efficiency/power-factor pro-

    duct.  Use can be made  of  ferrite, Alnico  or  rare-earth magnets.  The machine  is  particularly suitable for

    variable-speed drives involving the combination of an inverter and one or more synchronous motors, where

    the speed of rotation needs to be  accurately determed. The characteristics of the m achine are discussed an d

    :

    results indicating the performance are presented.

    1 Introduction

    Over recent years,  number of forms of self-starting permanent

    magnet machine have been developed  [ 1 , 2 ] . They mainly use

    ferrite  or  rare-earth magnets  and  they start  by  induction

    motor action using permanent magnets  to  provide  the syn-

    chronous torque. Some use a com bination  of reluctance and

    permanent-magnet/reluctance motors give good pull-in charac-

    teristics with low starting current

      but do not

     give

     the

     highest

    values of efficiency/power-factor pro duc t at synchronism. The

    teristics with low starting current  but do not give the highest

    values of efficiency-power factor produ ct at synchronism. The

    optimum combination depends  on the  number  of  motors

    supplied from each inverter.

     If

     a single motor is used

     for

     each

    inverter,  the  starting characteristics dominate  the maximum

    kVA demand.  If  many motors  are used for one inverter and

    one  or two are started while the remainder  are synchronised,

    the dominant factor tends to be the  efficiency/power-factor

    product

      of

     the synchronised machines.

     If

      the starting current

    of each machine  is excessive, some inverter manufacturers are

    prepared  to  start motors  on a  ramp function  of  frequency

    against time. This must surely involve extra cost.  For some

    applications,

     for

     example the processing of man-made fibres, in-

    verters control the speed

     of

     a number

     of

      self-starting synchron-

    ous motors  to a  very high degree  of  precision.  The inverter

    cost tends to be considerably higher than that  of the motors.

    There  is  also  an  energy saving  in  using motors having a high

    efficiency.

    This paper describes

      a

      particular family

      of

      motors which

    can make  use of any of the  well known permanent-magnet

    materials, including rare-earth magnets.  The  choice depends

    mainly on the  initial cost  of  motor  and inverter  for a given

    duty and to  some extent on the running cost.  If  a rare-earth

    samarium-cobalt magnet

      is

      used, power factors

      in

      excess

     of

    90

    are achievable for 3-phase mach ines.

    The demagnetisation characteristics

      of

      some permanent-

    magnet materials are shown

     in

     Table 1.

     In

     making use

     of

      par-

    Table  :  Properties  of  some commonly available permanent magnet

    materials approxim ate values)

    Material and type

    H

    c

     BH),

    High remanence Alnico

    High coercivity Alnico

    High remanence ferrite

    High coercivity ferrite

    MnAIC

    Polymer-bonded rare earth

    Sm-Co

    5

    R

    2

    Co

    17

    T

    1.32

    0.88

    0.38

    0.34

    0.58

    0.55

    0.88

    1.10

    kA/m

    56

    120

    135

    23 0

    1 90

    4 0 0

    6 4 0

    537

    kJ/r

    4 8

    4 0

    26

    22

    4 8

    5 5

    150

    2 40

    Paper 1293B, first received  7th  November  1980 and in  revised form

    24th February 1981

    The authors  are with  the  Department  of  Electrical Engineering, The

    University, Southampton, Hants. SO9 5NH, England

    ticular material, one has to balance the performance achieved

    against  the  total cost  of the m achine and its  inverter supply,

    if necessary. There  is no  overall optimum.  An  expensive

    magnet

      may

     produce

      a

      high overall performance

      but its use

    must  be  economical  for the  particular application. Com-

    puter programs have been developed which enable the assess-

    ment  of the  relative cost  of different designs for a particular

    duty. In the long term, the price of high-energy magnets may

    reduce

      in

      comparison with

      the

     cost

      of the

     remainder

      of

     the

    machine and its control.  The  results presented  in  this paper

    should serve  to  indicate what  may be  achieved with  the

    particular design to be discussed.

    For  any  design, demagnetisation must  not  occur during

    normal runnings  or  fault conditions.  The cost  of remagnetis-

    ation, including

      the

     loss

      of

      use

     of

      the drive system

      is

     almost

    always prohibitive.

    2 Machine configuration

    A sketch  of the  rotor lamination  is shown  (not to  scale) in

    Fig. 1 for a  4-pole design.  The flux passing from each r otor

    pole emerges from

      the

      sides

      of two

      magnets which have

    nonradial axes; some flux

      can

      also pass under

      the

      magnets,

     

    X / _

    Fig. 1  Schematic diagram of geometry of typical rotor configuration

    1^. direction of  magnetisation

    a  Magnet

    b  Rotor iron

    c Cage bars

    d  Conducting material

    IEE PROC,

      Vol.

      128, Pt. B, No. 3, MA Y1981 0143-7038/81/030157+ 04 01.50/0

    157

  • 8/18/2019 High-field Self-starting Permanent-magnet Synchronous Motor - 04643350 - 1981

    2/4

    giving an additional path for induction motor action at starting.

    Some  of the  flux from  the magnets  can pass through this thin

    magnetic bridge,

     but

      this bridge

      is

     normally

     in

     saturation.

     The

    pole-arc  to  pole-pitch ratio  is  considerably smaller than  has

    been used  in  some designs. The width of the iron bridge below

    the magnet  has to be  carefully chosen;  it  also serves to give

    increased mechanical strength  to the  rotor, thereby raising

    the possible maximum running speed.  A  cage winding is in-

    corporated

      in

      slots

      in the

      rotor poles

      and the

      region

      to the

    side  of the  pole also containing conducting material  con-

    nected

     to the end

     rings.

    3 Flux distribution

     in the

     rotor

    In order  to  achieve  a  good synchronous performance,  it is

    essential  to be  able  to  design  on the basis of computation  of

    the flux distribution,  at  least under steady-state conditions,

    for  the  range  of  possible rotor configurations.  The field com-

    putation under steady-state conditions  can be  achieved  by

    discretising only  a  pole pitch  of the  machine  as  shown  by

    broken lines  in Fig. 1.  Load conditions  can be  simulated by

    invoking symmetry  and  periodicity conditions.  In  this  par-

    ticular geometry,  the  effective pole centre lies at an angle of

    64 degrees from  the line OX. Fig. 2 shows  a flux distribution

    for strontium-ferrite magnets

      and Fig. 3

      gives

      a

      flux distri-

    bution  for  samarium-cobalt magnets.  The  flux passing  be-

    tween adjacent lines  is the  same  in the two  field maps.  A

    computer program prepared

      at

      Southampton

      was

      used

      in

    Fig.

      2

      Flux  map of  permanent-magnet machine under  load,  using

    ferrite magnets (Feroba III

    the computation  of  these flux distributions. Results shown

    in Figs. 2 and 3 are at  conditions when  the machine  is under

    load. Because  of the difference  of the magnet excitation, the

    airgap flux axis  has  moved from  the  pole axis by 30 degrees

    in Fig. 2 and 19 degrees in Fig. 3.

    From the  results  of  such  a program,  it is possible  to deter-

    mine  the  output torque  for any  given  set of  dimensional

    paramaters, the demagnetisation properties of the magnet and

    th e  B/H  characteristics  of the  rotor iron.  The  airgap flux

    distribution  can be  computed  by a  method described earlier

    [3 ,

      4] and is shown in Fig. 4 for  three magnetic materials —

    ferrite, Alnico and  rare earth

     —

     for the no-load co ndition. The

    operating characteristics  are  those  for a  high value  of  load

    angle.

    40 60 80 100 120

    airgap positions degrees

    140 160 180

    Fig. 4  Airgap flux distribution  at  no-load condition

    a  Sm-Co

    5

    b  Ferrite

    c  Alnico

    4 Exp erimen tal results

    4.1  erformance

     at 5

    Hz

    Tests were carried  out on a  development prototype using a

    standard induction motor stator supplied initially  at 50 Hz.

    The synchronous performance  is indicated  in  Table  2 for a

    nominal rated voltage.  The  rotor length  is 8.2 cm  and its

    diameter  is 9.3 cm.  The  magnets used were  of  samarium-

    cobalt. It is seen that, at low loads,  the power factor is of the

    order  of  0.96, falling to 0.91 at a  load corresponding to 70

    of  the  pull-out torque. The efficiency  is of the order  of 85

    over  a wide range of loading and the pull-out torque is 2.6 kW.

    This machine  is not an  optimal design,  but represents  a par-

    ticular practical design. The balance  of  output parameters can

    be varied, depending  on the  requirements  of particular appli-

    cations.  The choice  of  supply voltage level (or  stator winding

    turns) is clearly an important one for any particular application.

    Table  3  shows  the  performance parameters  for a  voltage  of

    0.96 p.u.

     and

     Table

     4

     shows

     the

     same

     for a

     voltage

     of 1.04

     p.u.

    Table 2: Synchronous performance at nominal rated volts at 5 Hz

    Fig.

      3  Flux  map of  per manent-m agnet mach ine under load using

    rare earth magnets (Sm-CoJ

    Current

    A

    0.84

    1.10

    1.48

    1.82

    2.39

    2.89

    3.36

    3.91

    4.72

    6.00

    7.84

    10.20

    / „

      =

     0.6

     

    Output

    W

    9 9

    2 48

    41 3

    5 5 5

    7 59

    9 4 0

    1121

    1278

    1514

    1841

    2206

    2521

    Power

    factor

    0.690

    0.880

    0.940

    0.956

    0.960

    0.964

    0.975

    0.950

    0.940

    0.910

    0.880

    0.871

    Efficiency

    0.426

    0.644

    0.744

    0.793

    0.834

    0.847

    0.859

    0.864

    0.857

    0.848

    0.803

    0.712

    Pull-out  =

    Power facto r X

    efficiency

    0.294

    0.567

    0.699

    0.758

    0.801

    0.817

    0.838

    0.821

    0.806

    0.772

    0.707

    0.620

    2595 W

    15 8

    IEE PRO C, Vol. 128, Pt. B, No.

     3,

     MA

     Y1981

  • 8/18/2019 High-field Self-starting Permanent-magnet Synchronous Motor - 04643350 - 1981

    3/4

    Results show significant changes in efficiency, power factor,

    no-load current and pull-out torque for relatively small changes

    in supply voltage. It is not possible, of course, to control the

    excitation level of the permanent magnets, and so the applied

    voltage has a dominant effect on the operating power factor

    as well as on the pull-out torque.

    Table 3 : Synchronous performance at 0.96 p.u. rated volts at 5 0 Hz

    Current

    Output

    Power

    factor

    Efficiency

    Power factor X

    efficiency

    A

    1.27

    1.53

    2.00

    2.55

    3.12

    3.88

    4.56

    5.60

    6.85

    8.96

    W

    102

    278

    489

    728

    943

    1212

    1420

    1710

    1986

    2316

    0.512

    0.712

    0.820

    0.911

    0.934

    0.954

    0.952

    0.951

    0.935

    0.887

    0.433

    0.670

    0.782

    0.823

    0.850

    0.859

    0.858

    0.843

    0.814

    0.765

    /„ = 1.07 A

    0.222

    0.477

    0.641

    0.750

    0.794

    0.819

    0.817

    0.802

    0.761

    0.679

    Pullout = 2500

     W

    Table 4: Synchronous performance at 1.04 p.u. rated volts at 5 0 Hz

    Current

    Output

    Power

    factor

    Efficiency Power factor X

    efficiency

    A

    1.01

    1.34

    1.93

    2.56

    3.28

    4.10

    4.76

    6.00

    7.82

    9.87

    /„ = 1.07 A

    W

    114

    249

    558

    806

    1058

    1333

    1533

    1871

    2245

    2552

    0.609

    0.826

    0.885

    0.907

    0.902

    0.907

    0.900

    0.894

    0.861

    0.822

    0.440

    0.707

    0.786

    0.836

    0.860

    0.863

    0.861

    0.839

    0.802

    0.739

    Pu

    0.272

    0.584

    0.696

    0.758

    0.776

    0.783

    0.775

    0.750

    0.691

    0.607

    = 2784W

    4.2 Operation over

     a

     range of frequencies

    For variable-speed applications, it is important that a machine

    performs well over the required range of frequencies. Tests

    have been carried out over a range of frequencies, showing

    good results and stable operation. Tables 5 to 10 show the

    results of tests at different frequencies and m ain flux levels.

    The results of test at 3 0 Hz for per-unit vo ltage of 0.94, 1.00

    and 1.06 are shown in Tables 5 to 7. Comparative results at

    75 Hz are shown in Tables 8 to

     10.

      It

     is

     apparent that the power

    factor and efficiency of the machine remain high over this

    frequency range. At 75 Hz, the supp ly voltage is increased

    prop ortio nally . However, at 30 Hz the voltage is increased by

    8.7 over such a value. This is necessary to keep the flux

    level constant. Extensive experimentation has been done on

    hybrid machines and an experimental relationship established

    [4].

      /„ is the noload current shown in Tables 2 to 8. In some

    of the Tables it can be seen that /„ is larger than the first load

    current. This happens when the motor is overexcited and

    operating at a leading power factor.

    Table 11 summarises the results at 70 of pull-out to rque

    for three flux levels in each case. It is clear that the power

    factor is critically dependent on the supply voltage. The

    efficiency increases w ith frequency over this range, but has an

    optimum related to flux level. Depending on the choice of

    lamination, a supply frequency will be reached at which the

    efficiency starts to fall owing to sta tor core loss.

    5 Effects of cage win ding

     on output

    The design of the cage winding is important, since both the

    synchronous and the asynchronous performance are affected

    by the choice of the cage winding.

    Table 5: Synchronous performance at 0.94 p .u. rated volts at 3 0 Hz

    Current

    Output

    Power

    factor

    Efficiency Power factor X

    efficiency

    A

    1.22

    2.05

    2.88

    3.83

    4.77

    6.03

    7.40

    W

    204

    393

    581

    779

    958

    1128

    1326

    0.896

    0.935

    0.967

    0.980

    0.986

    0.954

    0.967

    0.770

    0.844

    0.860

    0.856

    0.840

    0.810

    0.764

    /„ = 0.59 A

    0.690

    0.789

    0.832

    0.839

    0.828

    0.773

    0.739

    Pull-out = 1525W

    Table 6: Synchronous performance at nominal rated volts at 30 Hz

    Current

    Output

    Power

    factor

    Efficiency Power factor X

    efficiency

    A

    1.46

    2.02

    2.75

    3.57

    4.49

    5.57

    6.90

    8.70

    W

    212

    401

    582

    774

    963

    1157

    1346

    1534

    0.778

    0.934

    0.966

    0.965

    0.969

    0.967

    0.948

    0.938

    0.717

    0.819

    0.847

    0.865

    0.853

    0.826

    0.791

    0.724

    /„ = 1.15 A

    0.558

    0.765

    0.818

    0.835

    0.827

    0.799

    0.750

    0.679

    Pull-out =  1671  W

    Table 7: Synchronous performance at 1.06 p.u. volts at 3 0 Hz

    Current Output Power

    factor

    Efficiency Power factor X

    efficiency

    A

    2.46

    2.61

    3.07

    3.70

    4.50

    5.48

    6.65

    8.06

    10.00

    W

    218

    407

    596

    784

    973

    1162

    1346

    1534

    1723

    0.484

    0.719

    0.840

    0.902

    0.918

    0.928

    0.922

    0.916

    0.908

    0.660

    0.782

    0.833

    0.848

    0.850

    0.824

    0.791

    0.750

    0.685

    / „ =  2.62 A

    0.319

    0.562

    0.700

    0.765

    0.780

    0.765

    0.729

    0.687

    0.622

    Pull-out =  1812

     W

    Table 8: Synchronous performance at 0.94

     p.u.

      rated volts at 75 Hz

    Current

    Output Power

    factor

    Efficiency Power factor X

    efficiency

    A

    1.68

    2.42

    3.20

    4.08

    5.02

    6.10

    W

    502

    997

    1469

    1940

    2436

    2907

    0.797

    0.915

    0.954

    0.971

    0.974

    0.961

    0.656

    0.788

    0.842

    0.857

    0.871

    0.868

    0.523

    0.721

    0.803

    0.832

    0.848

    0.834

    /„ - 0.98

     A

    Pull-out = 3 437 W

    Table 9: Synchronous performance at nominal rated volts at 75 Hz

    Current Output Power

    factor

    Efficiency Power factor X

    efficiency

    A

    1.42

    2.25

    3.07

    3.92

    4.84

    5.95

    7.15

    /„

     =

     0.66

     A

    W

    800

    1295

    1795

    2235

    2790

    3400

    4030

    0.929

    0.949

    0.964

    0.941

    0.951

    0.943

    0.930

    0.642

    0.770

    0.812

    0.850

    0.865

    0.855

    0.833

    Pull out =

    0.596

    0.731

    0.783

    0.800

    0.823

    0.806

    0.775

    3804 W

    IEE PROC,  Vol.  128, Pt. B, No. 3, MA Y1981

    159

  • 8/18/2019 High-field Self-starting Permanent-magnet Synchronous Motor - 04643350 - 1981

    4/4

    Table 10: Synchronous performance at 1.06 p.u. rated volts at 75 Hz

    Current

    Output Power

    factor

    Efficiency Power factor X

    efficiency

    A

    1.87

    2.45

    3.15

    4.00

    4.84

    5.87

    7.00

    8.50

    W

    5 0 2

    9 9 7

    1445

    1964

    2412

    2931

    3379

    3874

    0.693

    0.838

    0.884

    0.905

    0.906

    0.908

    0.898

    0.871

    0.604

    0.758

    0.810

    0.850

    0.860

    0.856

    0.840

    0.816

    0.419

    0.635

    0.716

    0.769

    0.779

    0.777

    0.754

    0.711

    /„ = 1.50 

    Table 11

    Frequency

    Hz

    30

    50

    75

    Pul lout = 4323W

    : Synchronous performance at 70 pull-out power over a

    range of frequencies

    Voltage

    p.u.

    0.94

    1.00

    1.06

    0.96

    1.00

    1.04

    0.94

    1.00

    1.06

    Current Power

    A factor

    5.59

    5.56

    6.16

    5.87

    5.98

    6.477

    5.00

    5.40

    6.11

    0.965

    0.960

    0.925

    0.948

    0.910

    0.885

    0.974

    0.955

    0.906

    Efficiency

    0.821

    0.824

    0.805

    0.827

    0.840

    0.821

    0.871

    0.860

    0.853

    Power factor X

    efficiency

    0.792

    0.790

    0.745

    0.784

    0.764

    0.727

    0.848

    0.821

    0.772

    Table 12 : Effects o f changes in the size of cage bars on pull-out torque

     

    a function of pole arc and magnet material*

    Pole arc

    Size

    of

    cage bars

    - 1 0

    Standard

    design

    + 10

    Magnet

    Type

    - 1 0

    Fe- l l l

    5.95

    5.82

    5.75

    Standard design

    RE Fe -ll l RE

    15.17 6.30 15.95

    14.45 6.

    14.15 6.

    .23 15.70

    .15 15.44

    i + 10

    Fe- l l l RE

    6.15 16.40

    6.10 16.18

    6.03 15.96

    *The standard design represents a reasonable balance between starting

    and running conditions

    Being a high-field machine, the accelerating torque due to

    the cage is opposed by the generation of a speed-dependent

    EMF due to the magnets [5]. The voltage level needs to be

    sufficiently high to pull the machine into synchronism in

    many applications, but if the voltage exceeds the back EMF

    by a significant amount, the power factor starts to fall. The

    output from a given frame size increases rapidly with supply

    voltage, as does the maximum demand from the inverter.

    The design of the cage winding on the rotor presents some

    interesting problems. When rare-earth magnets are used, the

    flux density in the rotor poles is such that the iron operates

    in the nonlinear regime. As the area devoted to the cage in-

    creases, the rotor flux is reduced and, for a design having an

    effective cage winding, a balance between good ind uctio n

    motor action and high synchronous torque has to be achieved.

    Table 12 shows the variation in maximum torque at synchron-

    ism as the area of the rotor slots is varied for both ferrite and

    rare-earth magnets.

    The torque is clearly dependent of the pole arc since the

    level of saturation depends on the iron area for a given magnet

    flux. It is apparent that, as the pole arc decreases, the cage de-

    sign becomes more critical.

    It is also important for good asynchronous torque that the

    cage bars are positioned at an appropriate depth below the sur-

    face.

      In this particular design, the depth at which the con-

    ducting bars are buried also affects the available space for the

    synchronous flux and so changes the saturation level in that

    part of the rotor.

    6 Conclusions

    The configuration of a high-field perm anent magnet synchro n-

    ous motor is discussed. Performance characteristics for a

    particular machine are presented and an assessment of the

    problems encountered in designing such machines is given. The

    balance between synchronous and asynchronous performance

    characteristics is sensitive to fairly small changes in design

    parameters. A computer program has been developed for the

    computation of the synchronous performance. The efficiency/

    power-factor product can be high for such machines compared

    with that achieved using an induction motor of the same frame

    size.

    7 Acknowledgments

    The authors wish to thank the UK Science Research Council

    for financial support for this work, and also to acknowledge

    the fruitful collabo ration with W alter Jones and Co. in the

    development of permanent-magnet machines.

    8 References

    1 BINNS, K.J., BA RNARD, W .R., and JABBAR, M.A.: 'Hybrid

    permanent-magnet synchronous motors',  Proc. IEE,  1978,  125,

    (3), pp. 203-2 08

    2 SIEMENS, A.G.: 'An electric machine having permanent m agnets

    mounted in the rotor between its pole segments', British Patent

    1177247

    3 BINNS, K.J., JABBA R, M.A., and BARNARD, W.R.: 'Comp utation

    of the magnetic field of permanent magnets in iron cores',  ibid.,

    1975,

      122, (12), pp. 1 377-138 1

    4 JABBAR, M.A.: 'Analysis of the performance of a perman ent-

    magnet a.c. machine'. Ph.D thesis, Southampton University, 1977,

    p.

     268

    5 HONSINGER, V.B.: 'Permanent-magnet machines: asynchro nous

    operation', IEEE Trans.,  1980,

     PAS-99,

     pp. 1 503-1509

    16 0

    IEE PROC,

      Vol.

      128, Pt. B, No. 3, MA Y 1981