High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile...

43
Introduction Model assumptions and prior specification Results High dimensional Bayesian quantile regression Prithwish Bhaumik The University of Texas at Austin and Lizhen Lin The University of Texas at Austin Prithwish Bhaumik quantile regression

Transcript of High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile...

Page 1: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

High dimensional Bayesian quantile regression

Prithwish BhaumikThe University of Texas at Austin

andLizhen Lin

The University of Texas at Austin

Prithwish Bhaumik quantile regression

Page 2: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Basic set up

Random sample Y1,Y2, . . . ,Yn.

Regression model: Yi = XTi β + εi , i = 1, . . . , n.

qYi(τ |Xi ) = XT

i β, 0 < τ < 1.

qεi (τ |Xi ) = 0.

Xi ∈ Rq, q ≥ 1 for i = 1, . . . , n.

Objective: infer on β.

Prithwish Bhaumik quantile regression

Page 3: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Basic set up

Random sample Y1,Y2, . . . ,Yn.

Regression model: Yi = XTi β + εi , i = 1, . . . , n.

qYi(τ |Xi ) = XT

i β, 0 < τ < 1.

qεi (τ |Xi ) = 0.

Xi ∈ Rq, q ≥ 1 for i = 1, . . . , n.

Objective: infer on β.

Prithwish Bhaumik quantile regression

Page 4: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Basic set up

Random sample Y1,Y2, . . . ,Yn.

Regression model: Yi = XTi β + εi , i = 1, . . . , n.

qYi(τ |Xi ) = XT

i β, 0 < τ < 1.

qεi (τ |Xi ) = 0.

Xi ∈ Rq, q ≥ 1 for i = 1, . . . , n.

Objective: infer on β.

Prithwish Bhaumik quantile regression

Page 5: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Basic set up

Random sample Y1,Y2, . . . ,Yn.

Regression model: Yi = XTi β + εi , i = 1, . . . , n.

qYi(τ |Xi ) = XT

i β, 0 < τ < 1.

qεi (τ |Xi ) = 0.

Xi ∈ Rq, q ≥ 1 for i = 1, . . . , n.

Objective: infer on β.

Prithwish Bhaumik quantile regression

Page 6: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Basic set up

Random sample Y1,Y2, . . . ,Yn.

Regression model: Yi = XTi β + εi , i = 1, . . . , n.

qYi(τ |Xi ) = XT

i β, 0 < τ < 1.

qεi (τ |Xi ) = 0.

Xi ∈ Rq, q ≥ 1 for i = 1, . . . , n.

Objective: infer on β.

Prithwish Bhaumik quantile regression

Page 7: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Basic set up

Random sample Y1,Y2, . . . ,Yn.

Regression model: Yi = XTi β + εi , i = 1, . . . , n.

qYi(τ |Xi ) = XT

i β, 0 < τ < 1.

qεi (τ |Xi ) = 0.

Xi ∈ Rq, q ≥ 1 for i = 1, . . . , n.

Objective: infer on β.

Prithwish Bhaumik quantile regression

Page 8: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Difference with usual regression

Usual regression models the mean of the random variable.

Only concerned with the measure of central tendency

quantile regression considers regressing any arbitrary quantile of Y on X.

more informative about the distribution of the random variable.

Prithwish Bhaumik quantile regression

Page 9: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Difference with usual regression

Usual regression models the mean of the random variable.

Only concerned with the measure of central tendency

quantile regression considers regressing any arbitrary quantile of Y on X.

more informative about the distribution of the random variable.

Prithwish Bhaumik quantile regression

Page 10: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Difference with usual regression

Usual regression models the mean of the random variable.

Only concerned with the measure of central tendency

quantile regression considers regressing any arbitrary quantile of Y on X.

more informative about the distribution of the random variable.

Prithwish Bhaumik quantile regression

Page 11: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Difference with usual regression

Usual regression models the mean of the random variable.

Only concerned with the measure of central tendency

quantile regression considers regressing any arbitrary quantile of Y on X.

more informative about the distribution of the random variable.

Prithwish Bhaumik quantile regression

Page 12: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Difference with usual regression

Usual regression models the mean of the random variable.

Only concerned with the measure of central tendency

quantile regression considers regressing any arbitrary quantile of Y on X.

more informative about the distribution of the random variable.

Prithwish Bhaumik quantile regression

Page 13: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Figure: 1995 ASA academic salary survey for full professors of Statisticsin U.S. colleges and universities

Prithwish Bhaumik quantile regression

Page 14: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Two frameworks:

q is fixed

q increases with n: high dimensional set up.

Prithwish Bhaumik quantile regression

Page 15: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Two frameworks:

q is fixed

q increases with n: high dimensional set up.

Prithwish Bhaumik quantile regression

Page 16: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Two frameworks:

q is fixed

q increases with n: high dimensional set up.

Prithwish Bhaumik quantile regression

Page 17: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Posterior contraction

Posterior contraction rate r−1n , rn →∞:

There exists M > 0 such that

Π (rn‖θ − θ0‖ > M|Y)P→ 0

Prithwish Bhaumik quantile regression

Page 18: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Bernstein-von Mises Theorem

In a regular parametric model, Bayesian and frequentistdistributions of

√n(θ − θ̂) are nearly equal for large sample

sizes and the common distribution is a Gausian distributionwith mean zero. Here θ̂ is the corresponding Bayes estimatoror the MLE or some other efficient estimator (in most cases).

This is a great reconciliation of two very different ways ofquantifying uncertainties- frequentist and Bayes.

Prithwish Bhaumik quantile regression

Page 19: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Bernstein-von Mises Theorem

In a regular parametric model, Bayesian and frequentistdistributions of

√n(θ − θ̂) are nearly equal for large sample

sizes and the common distribution is a Gausian distributionwith mean zero. Here θ̂ is the corresponding Bayes estimatoror the MLE or some other efficient estimator (in most cases).

This is a great reconciliation of two very different ways ofquantifying uncertainties- frequentist and Bayes.

Prithwish Bhaumik quantile regression

Page 20: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Bernstein-von Mises Theorem

In a regular parametric model, Bayesian and frequentistdistributions of

√n(θ − θ̂) are nearly equal for large sample

sizes and the common distribution is a Gausian distributionwith mean zero. Here θ̂ is the corresponding Bayes estimatoror the MLE or some other efficient estimator (in most cases).

This is a great reconciliation of two very different ways ofquantifying uncertainties- frequentist and Bayes.

Prithwish Bhaumik quantile regression

Page 21: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Bernstein-von Mises Theorem

In a regular parametric model, Bayesian and frequentistdistributions of

√n(θ − θ̂) are nearly equal for large sample

sizes and the common distribution is a Gausian distributionwith mean zero. Here θ̂ is the corresponding Bayes estimatoror the MLE or some other efficient estimator (in most cases).

This is a great reconciliation of two very different ways ofquantifying uncertainties- frequentist and Bayes.

Prithwish Bhaumik quantile regression

Page 22: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Contribution

Consider a Bayesian quantile regression approach by putting aprior on the coefficients of the regression function.

Establish a Bernstein-von Mises theorem for the posteriordistribution of β.

Posterior contraction rate is q(log q)1/2√n

.

Prithwish Bhaumik quantile regression

Page 23: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Contribution

Consider a Bayesian quantile regression approach by putting aprior on the coefficients of the regression function.

Establish a Bernstein-von Mises theorem for the posteriordistribution of β.

Posterior contraction rate is q(log q)1/2√n

.

Prithwish Bhaumik quantile regression

Page 24: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Contribution

Consider a Bayesian quantile regression approach by putting aprior on the coefficients of the regression function.

Establish a Bernstein-von Mises theorem for the posteriordistribution of β.

Posterior contraction rate is q(log q)1/2√n

.

Prithwish Bhaumik quantile regression

Page 25: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Contribution

Consider a Bayesian quantile regression approach by putting aprior on the coefficients of the regression function.

Establish a Bernstein-von Mises theorem for the posteriordistribution of β.

Posterior contraction rate is q(log q)1/2√n

.

Prithwish Bhaumik quantile regression

Page 26: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Proposed model: Yi = XTi β + εi , i = 1, . . . , n.

Xiiid∼ G with density g .

E(Xi ) = 0, E(XiXTi ) = Iq.

True model: Yi = XTi β0 + εi , i = 1, . . . , n.

Working distribution:

f (y , x|β) = τ(1− τ) exp{−(y − xTβ)(τ − I (y ≤ xTβ)}g(x)

.

Prithwish Bhaumik quantile regression

Page 27: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Proposed model: Yi = XTi β + εi , i = 1, . . . , n.

Xiiid∼ G with density g .

E(Xi ) = 0, E(XiXTi ) = Iq.

True model: Yi = XTi β0 + εi , i = 1, . . . , n.

Working distribution:

f (y , x|β) = τ(1− τ) exp{−(y − xTβ)(τ − I (y ≤ xTβ)}g(x)

.

Prithwish Bhaumik quantile regression

Page 28: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Proposed model: Yi = XTi β + εi , i = 1, . . . , n.

Xiiid∼ G with density g .

E(Xi ) = 0, E(XiXTi ) = Iq.

True model: Yi = XTi β0 + εi , i = 1, . . . , n.

Working distribution:

f (y , x|β) = τ(1− τ) exp{−(y − xTβ)(τ − I (y ≤ xTβ)}g(x)

.

Prithwish Bhaumik quantile regression

Page 29: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Proposed model: Yi = XTi β + εi , i = 1, . . . , n.

Xiiid∼ G with density g .

E(Xi ) = 0, E(XiXTi ) = Iq.

True model: Yi = XTi β0 + εi , i = 1, . . . , n.

Working distribution:

f (y , x|β) = τ(1− τ) exp{−(y − xTβ)(τ − I (y ≤ xTβ)}g(x)

.

Prithwish Bhaumik quantile regression

Page 30: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Proposed model: Yi = XTi β + εi , i = 1, . . . , n.

Xiiid∼ G with density g .

E(Xi ) = 0, E(XiXTi ) = Iq.

True model: Yi = XTi β0 + εi , i = 1, . . . , n.

Working distribution:

f (y , x|β) = τ(1− τ) exp{−(y − xTβ)(τ − I (y ≤ xTβ)}g(x)

.

Prithwish Bhaumik quantile regression

Page 31: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Proposed model: Yi = XTi β + εi , i = 1, . . . , n.

Xiiid∼ G with density g .

E(Xi ) = 0, E(XiXTi ) = Iq.

True model: Yi = XTi β0 + εi , i = 1, . . . , n.

Working distribution:

f (y , x|β) = τ(1− τ) exp{−(y − xTβ)(τ − I (y ≤ xTβ)}g(x)

.

Prithwish Bhaumik quantile regression

Page 32: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Prior

Prior:

π(β|γ, λ0, λ1) =

q∏j=1

[(1− γ)ψ(βj |λ0) + γψ(βj |λ1)] ,

where ψ(βj |λ) = λ2 exp{−λ|βj |}, λ0 � λ1.

Prithwish Bhaumik quantile regression

Page 33: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Prior

Prior:

π(β|γ, λ0, λ1) =

q∏j=1

[(1− γ)ψ(βj |λ0) + γψ(βj |λ1)] ,

where ψ(βj |λ) = λ2 exp{−λ|βj |}, λ0 � λ1.

Prithwish Bhaumik quantile regression

Page 34: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Let us denote

π∗n (u) =π(β0 + u/

√n)Zn(u)∫

π(β0 + w/

√n)Zn(w)dw

and ∆n = 1√n

∑ni=1

˙̀β0(Yi ,Xi ), where

u =√n(β − β0),

Zn(u) =n∏

i=1

f(Yi ,Xi |β0 + u/

√n)

f (Yi ,Xi |β0)

and˙̀β0(Y ,X) = X(τ − I (Y ≤ XTβ0)).

Prithwish Bhaumik quantile regression

Page 35: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Theorem ∫|π∗n(u)− φq(u;∆n, Iq)| du

P→ 0,

where φq(;µ,Σ) stands for the pdf of a q-component Gaussiandistribution with mean µ and covariance matrix Σ.

Prithwish Bhaumik quantile regression

Page 36: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Outline of the proof

The model is differentiable in quadratic mean, that is,

∫ (f 1/2(y , x|β0 + u/

√n)− f 1/2(y , x|β0)−

1

2√n

uT ˙̀β0

f 1/2(y , x|β0)

)2

dydx

= O

(‖u‖3

n3/2

).

Prithwish Bhaumik quantile regression

Page 37: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Let us denote

pn = f (y , x|β0 + u/√n)

p = f (y , x|β0)

(1)

Now we have the following lemma.

Lemma (Local asymptotic normality)

(i) For ‖u‖ . q(log q)1/2,

logn∏

i=1

pnp(Yi ,Xi ) =

1√n

n∑i=1

uT ˙̀β0(Yi ,Xi )−

1

2‖u‖2 + OP

(‖u‖2+δ1

nδ2

),

where qδ1(log q)δ1/2/nδ2 → 0.(ii) For ‖u‖ . (q log q)1/2,

logn∏

i=1

pnp(Yi ,Xi ) =

1√n

n∑i=1

uT ˙̀β0(Yi ,Xi )−

1

2‖u‖2 + OP

(‖u‖2+δ∗1

nδ∗2

),

where qδ∗1 (log q)δ

∗1 /2/nδ

∗2 → 0.

Prithwish Bhaumik quantile regression

Page 38: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Let us denote Z̃n(u) = exp[uT∆n − ‖u‖2/2] andλ∗n = (q log q)δ

∗1 /2/nδ

∗2 .

Lemma

For any C > 0, there exists B ′ > 0 such that for all sufficientlylarge n, with any preassigned large probability(∫

Z̃n(u)du

)−1 ∫‖u‖≤C(q log q)1/2

∣∣∣Zn(u)− Z̃n(u)∣∣∣ du ≤ B ′qλ∗n.

Prithwish Bhaumik quantile regression

Page 39: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Lemma

There exists B0, ε1 > 0 such that

E∣∣∣Z 1/2(u1)− Z 1/2(u2)

∣∣∣2 ≤ B0‖u1 − u2‖2, u1, u2 ∈ n1/2(β − β0)

andEZ

1/2n (u) ≤ exp

(−ε1‖u‖2

).

Prithwish Bhaumik quantile regression

Page 40: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Lemma

For any 0 < δ < 1,

P

{∫Zn(u)π

(β0 +

u√n

)du < π(β0)

δq

4

}≤ 4B

1/20 δ.

Prithwish Bhaumik quantile regression

Page 41: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Lemma (Posterior consistency)

There exists C > 0 such that

E

(∫‖u‖>Cq(log q)1/2

π∗n(u)du

)→ 0 as n→∞

.

Prithwish Bhaumik quantile regression

Page 42: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Lemma

For any C2, c > 0, we can find B2,C1 > 0 such that withprobability approaching 1,∫

C1(q log q)1/2≤‖u‖≤C2q(log q)1/2Zn(u)du ≤ B2 exp[−cq log q].

Prithwish Bhaumik quantile regression

Page 43: High dimensional Bayesian quantile regressionmath.bu.edu/keio2016/talks/Bhaumik.pdf · quantile regression considers regressing any arbitrary quantile of Y on X. more informative

IntroductionModel assumptions and prior specification

Results

Lemma (Estimate of tail probability)

For any c > 0, there exists C > 0 such that with any preassignedprobability, ∫

‖u‖>Cq1/2φq(u;∆n, Iq) ≤ exp[−cq].

Prithwish Bhaumik quantile regression