Hertz Contact

24
Hertz Contact Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2

description

Hertz Contact. MSC.Marc 2005r2 MSC.Patran 2005r2. Estimated Time for Completion: 30 minutes Experience Level: Lower. Topics Covered. Creating deformable contact boundary conditions of two bodies Controlling solutions for nonlinear geometric effects - PowerPoint PPT Presentation

Transcript of Hertz Contact

Page 1: Hertz Contact

Hertz Contact

Estimated Time for Completion: 30 minutesExperience Level: Lower

MSC.Marc 2005r2MSC.Patran 2005r2

Page 2: Hertz Contact

2

Topics Covered

• Creating deformable contact boundary conditions of two bodies

• Controlling solutions for nonlinear geometric effects

• Reviewing the results and comparing to a theoretical value

• Using local adaptive meshing

Page 3: Hertz Contact

3

• In this example problem, a steel cylinder with a radius of 5” is pressed against a 2” deep aluminum base. The problem is linear except the contact condition at the base which is modeled using the contact pair approach.

• We will use Patran to complete the problem description from a given 2D meshed model and analyze it by using Marc.

Problem Description

Page 4: Hertz Contact

4

Summary of Model

5” radius

10,000 psi pressure

16”

2”

Constrain 2 nodes along the vertical center line <0,,>

Constrain all bottom nodes <,0,>

Constrain any node along the vertical center line <0,,>

SteelE = 30E6v = 0.30

AluminumE = 10E6v = 0.33

Page 5: Hertz Contact

5

Goal

• In this example, we will determine the maximum compressive stresses in a cylinder and a flat plate being compressed against each other.

• The results from Marc will be compared to a theoretical value.

• We will also demonstrate how the results can be improved through the use of adaptive meshing.

Page 6: Hertz Contact

6

Expected Results

Y-Component stresses

Results WITHOUT the use of adaptive meshing

Maximum compressive stress is 2.12E5 psi.

Page 7: Hertz Contact

7

Expected Results

Y-Component stresses

Results WITH the use of adaptive meshing

Y-Component stresses

Maximum compressive stress is 2.38E5 psi.

Page 8: Hertz Contact

8

Create DatabaseCreate Database

a. Click File menu / Select New

b. In File Name, enter hertz.db

c. Click OK

d. Select Analysis Code to be MSC. Marc

e. Click OK

a

bc

d

e

Page 9: Hertz Contact

9

Import Model

a. Click File menu / Select Import

b. Select Source to be MSC. Patran DB

c. Locate and select file hertz_model.db

d. Click Apply

a

bc

d

Page 10: Hertz Contact

10

Create Fixed Displacements

a

a. Click Loads/BCs icon

b. Select Action to be Create

c. Select Object to be Displacement

d. Select Type to be Nodal

e. In New Set Name, enter fixed_base_x

f. Click Input Data

g. In Translations, enter <0, ,>

h. Click OK

i. Click Select Application Region

j. Select Geometry Filter to be FEM

k. In Select Nodes, select any node along vertical line of the base from screen or enter Node 1167

l. Click Add

m. Click OK

n. Click Apply

Repeat (e) – (m) for the following new sets of BCs

New Set Name Translations Application Regionfixed_base_y < ,0, > All nodes at bottom of base

(Node 1145:1189)fixed_cylinder_x <0, ,> Any two nodes along vertical center line of cylinder

(Node 326 327)

b

c

d

e

f

g

h

ij

k

l

m

n

Page 11: Hertz Contact

11

a. Select Object to be Contact

b. In New Set Name, enter base_contact

c. Select Target Element Type to be 2D

d. Click Select Application Region

e. Select Geometry Filter to be Geometry

f. In Select Surfaces, select base on screen or enter Surface 3

g. Click Add

h. Click OK

i. Click Apply

Create Deformable Contacts

Repeat (b) – (i) for the following new set of BCs

New Set Name Application Regioncylinder_contact Two surfaces on cylinder (Surface 1 2)

a

b

c

d

e

f

g

h

i

Page 12: Hertz Contact

12

Create Pressure

a. Select Object to be Pressure

b. In New Set Name, enter pressure

c. Select Target Element Type to be 2D

d. Click Input Data

e. In Edge Pressure, enter 10000

f. Click OK

g. Click Select Application Region

h. In Select Surfaces or Edges, select edges on top of cylinder and click Add to add the selected edge to Application Region one by one or enter Surface 1.4 2.2

i. Click OK

j. Click Apply

a

b

c

d

e

f

gh

i

j

Page 13: Hertz Contact

13

Define Material

a

a. Click Materials icon

b. In Material Name, enter steel

c. Click Input Properties

d. In Elastic Modulus, enter 30e6

e. In Poisson Ratio, enter 0.3

f. Click OK

g. Click Apply

Repeat (b) – (g) for the following new material

Material Name

Elastic Modulus Poisson Ratio

aluminum 10e6 0.33b

c

d

e

f g

Page 14: Hertz Contact

14

Define Element Properties

a

a. Click Properties icon

b. Select Type to be 2D Solid

c. In Property Set Name, enter cylinder_prop

d. Click Input Properties

e. Click Mat Prop Name icon and select steel

f. In Thickness, enter 1

g. Click OK

h. In Select Members, select surfaces of cylinder on screen or enter Surface 1 2

i. Click Add

j. Click Apply

Repeat (c) – (j) for the following new property

Property Set Name

Material Thickness Members

base_prop aluminum 1 Surface of base

(Surface 3)

b

c

d

ef

g

h

i

j

Page 15: Hertz Contact

15

Modify Solution Control and Run Analysis

a

a. Click Analysis icon

b. Click Load Step Creation

c. Click Solution Parameters

d. Select Nonlinear Geometric Effects to be None

e. Click OK

f. Click Apply (answer Yes to modify the Default Static Step)

g. Click Apply

** Wait until analysis is completed **

b

c

d

efg

Page 16: Hertz Contact

16

Read Results File

a. Select Action to be Read Results

b. Click Select Results File

c. Locate file hertz.t16

d. Click OK

e. Click Apply

a

b

c

d

e

Page 17: Hertz Contact

17

Plot Results

Maximum compressive stress is 2.12E5

a

a. Click Results icon

b. In Select Result Cases, select the last increment

c. In Select Fringe Result, select Stress, Global System

d. Select Quantity to be Y Component

e. In Select Deformation Result, select Displacement, Translation

f. Click Applyb

c

d

e

f

Page 18: Hertz Contact

18

Theoretical Comparison

Page 19: Hertz Contact

19

Theoretical Comparison

Max c % Difference

Theoretical FEA

Marc 2.309E5

Maximum compressive stress

Page 20: Hertz Contact

20

Turn On Adaptive Meshing and Run Analysis

a

a. Click Analysis icon

b. In Job Name, enter hertz_amesh

c. Click Job Parameters

d. Click Adaptive Meshing

e. Select Adaptivity Type to be Local

f. In Zone Name, enter contact_zone

g. In Select a Group, select all

h. Click Apply

i. Click OK

j. Click OK

k. Click Apply

** Wait until analysis is completed **

b

c

d

e

f

g

h

ijk

Page 21: Hertz Contact

21

Read Results File

a. Select Action to be Read Results

b. Click Select Results File

c. Locate file hertz_amesh.t16

d. Click OK

e. Click Apply

a

b

c

d

e

Page 22: Hertz Contact

22

Plot Results

Maximum compressive stress is 2.38E5

a

a. Click Results icon

b. In Select Result Cases, select the last increment

c. In Select Fringe Result, select Stress, Global System

d. Select Quantity to be Y Component

e. In Select Deformation Result, select Displacement, Translation

f. Click Apply

b

c

d

e

f

Page 23: Hertz Contact

23

Investigate Modified Meshes

Meshes have been refined automatically where the contact occurred, giving more accurate results.

Page 24: Hertz Contact

24

Theoretical Comparison

• Investigate the improvement in the results when using adaptive meshing

Max c % Difference

Theoretical FEA

Marc 2.309E5

Marc with adaptive mesh

2.309E5

Maximum compressive stress

Use of adaptive meshing, which refines meshes in the contact zone, can improve the accuracy of the results without having to refine meshes of the entire model.