Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... ·...

19
Handout: “Prospect Theory: An Analysis of Decision under Risk” Ye Chen, Manuel LudwigDehm, Yin Xiao, Zulma Barrail 2011 1 Handout: Prospect Theory: An Analysis of Decision under Risk Daniel Kahneman and Amos Tversky 1. Introduction This paper presents a critique of expected utility theory as a descriptive model of decision making under risk and introduces prospect theory as an alternative model. Expected utility theory is widely accepted as a descriptive model of decision making under risk and has been generally accepted as a normative model of rational choice. Hence, it is assumed that all rational people would like to follow the predictions made by this theory. 2. Critique Short Recap of Expected Utility Theory (EUT) Decision making under risk can be interpreted as choice between prospects. Kahnemann and Tversky, KT in the following, describe a prospect (! !, ! ! ; ; ! ! , ! ! ) as a contract that yields outcome ! ! with probability ! ! . The prospect (! , !; 0, 1 !) is for simplicity denoted as (! , !). EUT is based on three theorems: (i) Expectation: Expected utility is the sum of the individual utilities of the different outcomes weighted by each probability: ! ! !, ! ! ; ; ! ! , ! ! = ! ! ! ! ! + + ! ! ! ! ! (ii) Asset integration: ! !, ! ! ; ; ! ! , ! ! is acceptable at asset position w iff ! ! + ! !, ! ! ; ; ! + ! ! , ! ! > ! ! . That is, the final assets matter, as they are the carrier of value, not the loss or gain (as later will be proposed by prospect theory). (iii) Risk Aversion: u is concave ( ! . !. ! ! > 0 , ! !! < 0), and an individual prefers the certain outcome x over a gamble with the expected value x. Empirical Violations of the Predictions of Expected Utility Theory Then, KT demonstrate how the results from their experiments violate the theorems. The experiments are hypothetical choice problems 1 and were conducted with students and university faculty members. 1 For a critique of the validity and use of hypothetical experiments in slightly different contexts and strategies to overcome the possible bias involved see e.g. Blumenschein et al. (2008), Eliciting Willingness to Pay Without Bias: Evidence from A Field Experiment, The Economic Journal, 118 (January), pp. 114–137.

Transcript of Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... ·...

Page 1: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

1    

Handout:  Prospect  Theory:  An  Analysis  of  Decision  under  Risk  Daniel  Kahneman  and  Amos  Tversky  

   

1. Introduction  

This  paper  presents  a  critique  of  expected  utility  theory  as  a  descriptive  model  of  decision  making  under  risk  and  introduces  prospect  theory  as  an  alternative  model.  

Expected  utility  theory  is  widely  accepted  as  a  descriptive  model  of  decision  making  under  risk  and  has  been  generally  accepted  as  a  normative  model  of  rational  choice.  Hence,  it  is  assumed  that  all  rational  people  would  like  to  follow  the  predictions  made  by  this  theory.  

 

2. Critique  

Short  Recap  of  Expected  Utility  Theory  (EUT)  

Decision  making  under  risk  can  be  interpreted  as  choice  between  prospects.  Kahnemann  and  Tversky,  KT  in  the  following,  describe  a  prospect  (!!,  !!;… ;  !!, !!)  as  a  contract  that  yields  outcome  !!  with  probability  !!.  The  prospect  (!,!;  0, 1 − !)  is  for  simplicity  denoted  as  (!,!).  EUT  is  based  on  three  theorems:  

(i) Expectation:    Expected  utility  is  the  sum  of  the  individual  utilities  of  the  different  outcomes  weighted  by  each  probability:  

! !!,  !!;… ;  !!, !! =  !!!  !! +⋯+  !!!  !!    

(ii) Asset  integration:   !!,  !!;… ;  !!, !!  is  acceptable  at  asset  position  w  iff  ! ! + !!,  !!;… ;  ! + !!, !! > ! ! .  

That  is,  the  final  assets  matter,  as  they  are  the  carrier  of  value,  not  the  loss  or  gain  (as  later  will  be  proposed  by  prospect  theory).  

 (iii) Risk  Aversion:  u  is  concave  (  !. !.    !! > 0  , !!! < 0),  and  an  individual  prefers  the  certain  

outcome  x  over  a  gamble  with  the  expected  value  x.  

 

Empirical  Violations  of  the  Predictions  of  Expected  Utility  Theory  

Then,  KT  demonstrate  how  the  results  from  their  experiments  violate  the  theorems.  The  experiments  are  hypothetical  choice  problems1  and  were  conducted  with  students  and  university  faculty  members.  

                                                                                                                         1  For  a  critique  of  the  validity  and  use  of  hypothetical  experiments  in  slightly  different  contexts  and  strategies  to  overcome  the  possible  bias  involved  see  e.g.  Blumenschein  et  al.  (2008),  Eliciting  Willingness  to  Pay  Without  Bias:  Evidence  from  A  Field  Experiment,  The  Economic  Journal,  118  (January),  pp.  114–137.  

Page 2: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

2    

 

Certainty,  Probability  and  Possibility  

KT  then  move  on  to  present  the  results  from  experiments  that  illustrate  how  people  tend  to  overweight  outcomes  that  are  considered  certain  (p=1)  relative  to  outcomes  which  are  merely  probable  (p<1).  The  first  one  to  introduce  this  critique  of  expected  utility  theory  was  Maurice  Allais,  who  however  used  extremely  large  gains.  KT  replicate  his  results  by  their  hypothetical  choice  experiment  using  moderate  gains.  In  the  following  choice  problems  that  were  given  to  the  participants  of  the  experiments,  N  denotes  the  total  number  of  respondents  and  the  number  in  brackets  the  percentage  of  people  that  chose  each  option.    

 

 

 

 

According  to  expected  utility  theory,  the  above  problems  should  have  led  to  the  result  that  people  on  average  prefer  A  to  B  and  C  to  B,  or  vice  versa,  as  Problem  2  is  obtained  from  Problem  1  by  deducting  a  0.66  chance  of  winning  2,400  from  both  sides,  thus  not  changing  the  inequality.  

Nevertheless,  while  the  first  preferences  imply  

 

the  second  one  implies  the  reverse,  which  clearly  is  a  violation  of  expected  utility  theory  (inconsistent  preferences).  The  authors  stress  the  impact  of  the  above  elimination  of  .66  x  2,400  on  Choice  B  in  Problem  1,  which  is  turned  from  a  sure  gain  into  a  merely  probable  one.  Hence,  they  conclude  that  this  change  reduces  the  desirability  of  B  more  than  that  of  A,  and  people  as  a  result  prefer  C  over  D  in  Problem  2.  

KT  demonstrate  the  same  phenomenon  with  another  experiment  involving  only  two  outcomes:  

Page 3: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

3    

 

Again,  Problem  4  is  obtained  from  Problem  three  without  changing  the  inequality  indicated  by  the  choices  in  Problem  3,  i.e.  B  preferred  to  A,  which  should  lead  to  the  outcome  of  D  preferred  to  C  in  Problem  4.  Nevertheless,  a  division  of  the  probabilities  of  both  sides  of  the  inequality  in  Problem  3  by  4  which  according  to  expected  utility  theory  should  not  change  preferences,  leads  to  preferences  that  are  inconsistent  according  to  expected  utility  theory  as  they  are  reversed  by  an  operation  that  should  not  have  an  impact.  This  is  as  the  substitution  axiom  of  EUT  states  that  if  B  is  preferred  to  A,  any  (probability)  mixture  (B,  p)  must  be  preferred  to  (A,  p).  The  experiments  indicate  that  people  do  not  follow  this  axiom,  as  reducing  the  probability  of  the  sure  gain  (choice  B  in  Problem  3)by  ¾  has  a  larger  effect  than  reducing  the  probability  of  the  probable  gain  (choice  A  in  Problem  3)  by  ¾.  

This  is  what  the  authors,  following  Allais,  call  the  certainty  effect.    

The  following  example  illustrates  this  effect  with  a  non-­‐monetary  example,  in  which  Problem  6  is  obtained  from  Problem  5  by  dividing  the  probabilities  at  each  side  of  the  inequality  by  10:  

 

However,  the  substitution  axiom  is  not  only  violated  when  sure  gains  are  involved.  The  following  example  shows  that  even  when  substantial  gains  and  not  substantial  gains  are  reduced  in  a  way  that  should  not  change  the  preferences  of  people,  respondents  in  the  experiments  exhibit  attitudes  towards  risk  that  are  not  captured  by  EUT.  

Page 4: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

4    

 

Note  that  Problem  8  is  obtained  from  Problem  7  by  dividing  the  probabilities  by  450,  while  choice  B  involves  no  sure  gain  but  only  a  substantial  probability  (in  contrast  to  the  preceding  experiments.  

Thus,  the  authors  conclude  that  EUT  is  not  capturing  risk  attitudes  of  people  correctly  and  suggest  the  following  generalization  that  can  explain  the  violation  of  the  substitution  axiom:  If  (y,  pq)  is  equivalent  to  (x,  p),  then  (y,pqr)  is  preferred  to  (x,  pr),  if  0<p,q  and  r<1.      

The  Reflection  Effect  

While  the  certainty  effect  is  observed  when  positive  prospects  are  involved,  the  authors  examine  the  effect  of  changing  probabilities  (again  in  a  way  that  preferences  should  not  change  according  to  EUT)  in  the  negative  domain.    The  following  table  depicts  not  only  the  results  from  the  previously  introduced  experiments,  but  replicated  them  by  using  reversed  outcomes,  i.e.  losses  of  –x  and  -­‐y  (right  side  of  the  table)  instead  of  gains  of  y  and  y  (left  side).    

 

The  table  contrasts  the  certainty  effect  which  occurs  when  positive  prospects  are  involved,  with  the  effect  that  occurs  when  negative  prospects  are  involved.  The  table  shows,  that  when  the  same  prospects  as  in  Problems  3,  4,  7,  and  8  are  taken  and  multiplied  by  -­‐1,  turning  them  into  losses  of  the  same  absolute  value,  the  preference  order  indicated  by  the  inequality  signs  is  reversed.  

Page 5: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

5    

Problem  3’  for  instance  shows  that  when  losses  are  involved  people  prefer  the  gamble  of  (-­‐4000,  .80)  to  a  sure  loss  of  -­‐3000,  even  though  the  expected  value  of  of  the  latter  choice  is  larger  than  the  one  of  the  former.  Thus,  both  Problem  3  and  3’  violate  the  expectation  theorem  in  the  same  way.  Hence,  people  exhibit  risk  adversity  with  positive  prospects  but  risk  seeking  behavior  in  the  negative  domain,  indicating  a  convex  value  function.  This  behavior  can  be  explained  by  overweighting  of  certain  outcomes  relative  to  uncertain  outcome  both  in  the  negative  and  positive  domain.  It  should  be  noted  that  the  existence  of  the  reflection  effect  shows  that  aversion  for  uncertainty  cannot  be  the  explanation  of  the  certainty  effect,  as  then  the  same  behavior  should  be  exhibited  in  the  negative  domain  as  well.  The  authors  conclude  that  certainty  increases  the  aversiveness  of  losses  as  well  as  the  desirability  of  gains.  

Probabilistic  Insurance  

The  authors  then  show  that  even  the  widely  used  argument  in  favor  of  EUT,  insurance  purchases,  i.e.  the  payment  of  a  premium  for  a  reduction  of  risk,  does  not  necessarily  imply  that  the  utility  function  is  concave  everywhere  and  that  people  are  risk  averse.  This  is  as  contrary  to  risk  aversion  people  often  prefer  insurances  that  offer  limited  coverage  with  low  or  zero  deductible  to  similar  ones  that  offer  maximal  higher  coverage  with  higher  deductibles.  To  illustrate  this  they  cite  the  results  of  an  experiment  in  which  people  were  confronted  with  the  following  choice:  

 

   

Page 6: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

6    

According  to  EUT,  if  indifferent  between  buying  a  full  insurance  or  not,  people  should  definitely  be  willing  to  buy  the  corresponding  probabilistic  insurance.  Formally,    

!" ! − ! + 1 − ! ! ! = !(! − !)  implies  

1 − ! !" ! − ! + !"# ! − ! + 1 − ! ! ! − !" > !(! − !)  KT  then  set  u(w-­‐x)=0  and  u(w)=1,  to  obtain  u(w-­‐y)=1-­‐p.  The  goal  however  was  to  show  that  u(w-­‐ry)>1-­‐rp,  which  would  only  hold  if  the  utility  function  is  concave.  Thus,  the  aversion  for  probabilistic  insurance  in  the  experiment  (similar  results  are  reported  by  other  authors  as  well)  violates  the  prediction  of  EUT  and  shows  that  the  utility  function  of  individuals  is  not  necessarily  concave  everywhere.  

The  Isolation  Effect  

To  show  that  not  only  the  certainty  and  reflection  effect  may  lead  to  inconsistent  preferences  KT  introduce  the  isolation  effect,  that  states  that  people  often  disregard  components  that  the  two  alternatives  in  a  choice  problem  share,  which  can  lead  to  different  preferences  for  the  same  choice  problem,  as  there  are  often  several  ways  to  decompose  common  and  distinctive  components  of  two  alternatives.  Participants  of  another  experiment  were  asked  to  consider  the  following  two-­‐stage  game:  In  the  first  stage,  there  is  a  probability  of  .75  that  the  game  ends,  without  anything,  and  a  probability  of  .25  that  the  game  continues  and  you  have  to  choose  between  the  prospects  (4000,  .80)  and  (3000).  The  choice  has  to  be  made  before  the  game  starts.    

This  framing  can  be  visualized  with  the  following  decision  tree,  in  which  squares  denote  decision  nodes  and  circles  chance  nodes.    

 

Note,  however,  that  this  problem  corresponds  to  Problem  4,  just  that  the  framing  is  different,  as  in  Problem  10  (tree  above),  the  participants  had  the  choice  between  a  sure  and  a  risky  gain,  while  in  Problem  4  (game  tree  below)  participants  faced  two  risky  gains.  

Page 7: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

7    

 

The  results  however  indicate  that  even  though  the  expected  gains  are  the  same,  the  change  in  framing  (the  event  `not  winning  3,000´is  included  in  the  event  `not  winning  4,000´  in  the  upper  game  tree  (Problem  10),  leads  to  contrary  results  that  indicate  inconsistent  preferences  according  to  EUT.  

While  in  Problem  10  78%  of  the  subjects  chose  the  sure  gain  of  3,000,  only  35%  chose  the  prospect  that  involved  the  gain  of  3,000  in  Problem  4.  Hence,  the  dependency  of  events  can  lead  to  a  reversal  in  preferences,  i.e.  different  representations  of  probabilities  can  alter  preferences.  

The  next  example  shows  that  varying  the  representations  of  outcomes  may  change  preferences  as  well,  and  that  hence  changes,  i.e.  gains  and  losses,  are  carrier  of  wealth,  and  not  final  asset  positions  as  advocated  by  EUT.  

 

Note  that  in  Problem  11  and  12  the  options  A  and  C  are  identical  (2,000,  .50;  1000,  .50)  and  B  and  D  are  identical  as  well  (1,500).  

Hence,  the  bonus  did  not  enter  the  comparison  and  moving  from  Problem  11  to  Problem  12  by  adding  1,000  to  the  bonus  and  deducting  1,000  from  all  outcomes  changed  the  preferences  of  the  subjects.  

 

Page 8: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

8    

3. Prospect  Theory  

Prospect  theory  modifies  expected  utility  theory  by  relaxing  expected  principle.  Instead,  it  takes  psychological  factors  into  account,  and  merges  them  into  the  definition  of  overall  value  of  an  edited  prospect.  

There  are  two  processes  in  prospect  theory:  

a. Editing  Process  Editing  is  a  process  that  involves  the  way  how  prospect  is  presented  to  people.  Although  it  is  beyond  discussion  in  this  paper,  it  is  noteworthy  that  proper  usage  of  editing  can  lead  people  to  answer  expected  results  while  facing  choice  problems.  On  the  grounds  that  what  people  are  sensitive  with  is  gain  or  loss  referred  to  some  reference  point  rather  than  final  wealth  they  get,  editing  benefits  showing  or  hiding  common  factors  in  a  prospect.    Operations  (1)  to  (5)  are  applied  on  single  prospect.    (1) Coding  

Coding  is  strategy  that  changes  location  of  reference  point,  thereby  changing  outcomes  as  gains  or  losses  as  well.    e.g.  Problem  11  &  Problem  12  

(2) Combination  Combination  eliminates  repeated  outcomes.  It  is  a  bit  like  merging  similar  terms  in  mathematics.    e.g.  (200,  0.25;  200,  0.25)  ó  (200,  0.5)  

(3) Segregation  Riskless  component  can  be  segregated  from  risky  one  if  exists.    e.g.  (300,  0.6;  500,  0.4)  ó  (200,  0.4)  with  sure  gain  300  

(4) Simplification  (Rounding)  This  operation  refers  rounding  probability  or  outcomes.  As  a  result,  extremely  impossible  outcomes  may  be  discarded.    e.g.  (300,  0.6;  501,  0.4)  ó  (300,  0.6;  500,  0.4)                  (300,  0.6;  501,  0.04)  ó  (300,  0.6)  

(5) Detection  of  dominance  By  quick  scan  of  all  prospects,  the  dominated  choice  is  discarded  without  further  consideration.  e.g.  (300,  0.5;  500,  0.3)  and  (30,  0.5;  50,  0.3)  ó  (300,  0.5;  500,  0.3)  

 

Operation  (6)  is  applied  on  two  or  more  prospects  simultaneously.    

(6) Cancellation  

Page 9: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

9    

Discarding  shared  components  in  prospects  is  one  of  the  reasons  that  cause  isolation  effects  discussed  in  previous  section.  Cancellation  can  be  implicitly  implemented  by  decision  maker  so  that  it  is  a  little  trickily  different  from  discussion  in  this  paper.  e.g.  Problem  11  &  Problem  12  

 b. Evaluation  Process  

Note:  In  following  discussion,  all  evaluation  is  assumed  to  occur  when  further  editing  is  impossible,  which  indicates  disambiguation  in  the  description  for  prospects.  

The  Model  

Prospect  is  defined  as  the  form  of   ( )x, p; y, q .Three  parameters  are  designed  to  represent  

psychological  impact  on  expected  theory.  -­‐ ( )pπ  is  a  decision  weight  assigned  for  each  probability   p  -­‐ ( )v x  is  the  subjective  value  for  each  outcome   x  -­‐ V  is  the  overall  value  of  edited  prospects  Note:    1. Strictly  positive  prospect:   , 0x y >  and   1p q+ =  

2. Strictly  negative  prospect:   , 0x y <  and   1p q+ =  

3. Regular  prospect:  any  prospects  other  than  those  in  1  and  2  4. Probability  for  null  outcome  is  1 p q− − ,  where   1p q+ ≤  

5. Typically   ( ) ( ) 1p qπ π+ <  

6. v  is  defined  on  outcomes  while  V  is  defined  on  prospects  7. ( ,1.0) ( ) ( )V x V x v x= =  

Prospect  Theory  

If   ( )x, p; y, q  is  regular  prospect,    

( , ; , ) ( ) ( ) ( ) ( )V x p y q p v x q v yπ π= +  (1)  

If   ( )x, p; y, q  is  either  strictly  positive  or  strictly  negative  prospect,    

( , ; , ) ( ) ( )[ ( ) ( )]V x p y q v y p v x v yπ= + −  (2)  

where   | | | | 0x y> > .  

Note:  

1. Equations  (1)  and  (2)  are  subjective  values  interpreted  by  decision  maker  2. These  equations  relax  expected  principle  3. Equation  (2)  separates  riskless  component  from  risky  component,  and  assigns  a  subjective  

weight  to  value-­‐difference  between  these  two  components  

Page 10: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

10    

 

The  Value  Function  

Note:  1. Derivation  of  shape  of  value  function  is  based  on  psychological  and  empirical  analysis  2. Perceptual  apparatus  is  more  sensitive  for  evaluating  differences  rather  than  absolute  

magnitudes  3. Value  is  a  function  of  two  variables:   xΔ ,  change  of  monetary  outcome,  and   0x ,  the  initial  

monetary  outcome.  Therefore   0( , )v f x x= Δ  

4. Due  to  psychology,  value  function  in  positive  domain  is  a  concave  function  5. Due  to  Reflection  Effect  and  3,  value  function  in  negative  domain  is  a  convex  function  6. 3  and  4  indicates  decreasing  marginal  value  of  both  gains  and  losses  with  magnitude  7. The  level  of  sensitivity  towards  gains  and  losses,  namely  slope  of  value  function,  tends  to  be  

steeper  if  it  is  closer  to  reference  point  8. Due  to  the  fact  that  people  favor  certain  gains  and  risky  losses,  value  function  defined  in  

negative  domain  is  steeper  than  that  in  positive  domain  9. There  might  be  other  special  factors  influencing  the  trend  of  value  function  

Figure  3  is  a  sample  of  value  function  in  prospect  theory,  without  consideration  for  assumption  of  special  factors  and  risk-­‐preference.  

 

             

Page 11: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

11    

The  Weighting  Function  

In  prospect  theory,  the  value  of  each  outcome  is  multiplied  by  a  decision  weight.    

• What  is  a  decision  weight?  o It  is  an  inference  from  choices  between  prospects    o It  is  not  a  probability.  

• What  is  a  weighting  function?  

It  is  a  function  that  relates  decision  weights  to  stated  probabilities.  

• Properties  of  the  weighting  function  ! !  1. Increasing  function  of  p.  2. Outcomes  contingent  on  an  impossible  event  are  ignored  ! 0 = 0  3. Outcomes  contingent  on  a  certain  event  are  given  a  decision  weight  =1.  ! 1 = 1  4. The  scale  is  normalized  so  that  ! !  is  the  ratio  of  the  weight  associated  with  the  probability  p  

to  the  weight  associated  with  the  certain  event.  5. For  small  values  of  p:  

a.  !  is  a  SUBADDITIVE  function  of  p,  i.e:  ! !" > !"(!)  

0 < ! < 1.    Recall  :  “  Small  probabilities  at  both  prospects  makes  prospect  with  larger  gain  more  attractive”  Prospect  (6000, .001)  ≫ (3000, .002)  Hence:  

! . 001 ∗ ! 6000 > ! . 002 ∗ !(3000)  ! . 001! . 002

>! 3000! 6000

>12  

By  concavity  of  v.    

b. Very  low  probabilities  are  generally  OVERWEIGHTED:  ! ! > !  for  small  p.  

Consider  the  following  choice  problems:  

Problem  14                                                (5000,  .001)      or            (5)  N=72                                          [72]*                                  [28]  

Result:  People  prefer  a  lottery  ticket  over  the  expected  value  of  that  ticket.    

! . 001 ! 5000 > !(5)  

! . 001 >! 5

! 5000> .001  

Assuming  value  function  for  gains  is  concave.    

Problem  14’   Result:    

Page 12: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

12    

                                             (-­‐5000,  .001)      or            (-­‐5)  N=72                                          [17]                                      [83]*    

People  prefer  a  small  certain  loss  over  a  small  probability  of  a  large  loss.  

! . 001 ! −5000 < !(−5)  

. 001 < ! . 001 <! −5

! −5000  

Assuming  the  value  function  for  losses  is  convex.    

 

6. For  all  0 < ! < 1,        ! ! + ! 1 − ! < 1.  This  property  is  called  “SUBCERTAINTY”.  “The  sum  of  the  weights  associated  with  complementary  events  is  typically  less  than  the  weight  associated  with  the  certain  event”.  

Example:  

Recall  equation  (1)  Value   !  of  prospect   !, !; !, ! ,  where  ! !  is  value  of  outcome:  

  ! !, !; !, ! = ! ! ! ! + ! ! !(!)    

Problem  1  (2500,  .33;2400,.66;0,.01)<(2400)  

! 2400 > ! . 66 ! 2400 + ! . 33 ! 2500 + ! . 01 ! 0= ! . 66 ! 2400 + ! . 33 ! 2500  

1 − ! . 66 ! 2400 > ! . 33 ! 2500    

Problem  2  (2500,.33;0,.67)>  (2400,.34;  0,.66)  

 ! . 33 ! 2500 + ! 0 ! 0 > ! . 34 ! 2400 + ! . 66 ! 0  

! . 33 ! 2500 > ! . 34 ! 2400      

 

Combining  results  from  Problem  1  and  Problem  2:  

1 − ! . 66 >  ! . 34  !"  ! . 66 + ! . 34 < 1    

7.  !  is  regressive  with  respect  to  p.  

The  preferences  are  less  sensitive  to  variations  of  probability  than  the  expectation  principle  would  dictate.  The  slope  of  !  in  the  interval  (0,1)  can  be  viewed  as  a  measure  of  sensitivity.  

This  property  generates  the  important  “four-­‐fold  pattern  of  risk  attitudes”  (illustrated  in  TABLE  1  from  paper),  which  is  risk-­‐seeking  for  small  probability  gains  and  large  probability  losses,  and  risk  aversion  for  small  probability  losses  and  large  probability  gains.  

8. SUBPROPORTIONALITY  

For  a  fixed  ratio  of  probabilities,  the  ratio  of  the  corresponding  decision  weights  is  closer  to  unity  when  the  probabilities  are  low  than  when  they  are  high  

Page 13: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

13    

Let’s  recall  the  experimental  results  reported  by  Kahneman  and  Tversky  in  problem  3  and  4  :  

A:  (4000,.80)<  B:  (3000)   A  <    B   ⇐ !"#!"#$%&  !"  !"#!$%$"$%&'    !"#$%  !"  !"#$#"%  !ℎ!"#$  

“If  B  is  preferred  to  A,  then  any  (probability)  mixture  (B,p)  must  be  preferred  to  the  mixture  (A,p).”  

C:  (4000,.20)>  D:  (3000,.25)   C=(A,.25)>  D=(B,.25)  

 

In  a  more  general  way:  

If  (x,p)  is  equivalent  to  (y,pq)  then  (x,pr)  is  not  preferred  to  (y,pqr),  0<p,q,r≤1.  

One  violation  of  the  substitution  axiom  is  the  general  case:  

! ! ! ! = ! !" ! !  !"#$!%&      ! !" !(!) ≤ ! !"# !(!)  

ℎ!"#!:      ! !"! !

=! !! !

   !"#  !"#$%  ! !! !

≤! !"#! !"

   !"  ℎ!"#…  

   ! !"! !

≤! !"#! !"

⇐ !"#$%&$&%'(&)*+(',  !"#!$"%&    

This  property  holds  if  and  only  if  !"#$  is  a  convex  function  of  log !.  

Example  of  a  subproportional  function  

! ! = !!(! !" ! )^!  where  0 < ! < 1  

We  see  that  !"#$  is  a  convex  function  of  log !.  

! log !! ln !

= ! −!"# !!!  

!! log !! ln ! ! = −!(! − 1) −!"# !!! > 0  

As  → 1  ,  probability  weighting  approximates  the  linear,  expected  utility  case.  

As    ! → 0,  probability  weighting  approximates  a  step  function  (piecewise  constant  function  having  only  finitely  many  pieces)  ,  flat  everywhere,  except  at  the  endpoints  

Page 14: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

14    

 

Example  of  a  weighting  function  which  satisfies:  

• Overweighting  and  subadditive  for  small  values  of  p.  • Subcertainty    • Subproportionality.  

 

We  can  see  that  !  changes  abruptly  near  the  endpoints,  where  ! 0 = 0  !"#  ! 1 = 1.  

The  apparent  discontinuities  of  !  at  the  endpoints  are  consistent  with  the  notion  that  individuals  are  limited  in  their  ability  to  comprehend  and  evaluate  extreme  probabilities,  highly  unlikely  events  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

probability

deci

sion

wei

ght

EXPECTATION PRINCIPLE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 15: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

15    

are  either  ignored  or  overweighted,  and  the  difference  between  high  probability  and  certainty  is  either  neglected  or  exaggerated.  Therefore,  !  is  not  well  behaved  in  the  endpoints.  

Example  of  Zeckhauser  that  illustrates  non  linearity  of  !  

Suppose  you  are  about  to  play  Roussian  roulette:  

For  which  option  would  you  offer  more  money?  

a) Remove  one  bullet  from  a  gun  loaded  with  4  bullets.  b) Remove  one  bullet  from  a  gun  loaded  with  1  bullet.  

Economic  rationality:  

Choose  a),  where  the  value  of  money  is  presumably  reduced  by  the  considerable  probability  that  one  will  not  live  to  enjoy  it  

Most  people:  

Choose  b).  They  are  willing  to  pay  much  more  for  a  reduction  of  the  probability  of  death  from  1/6  to  zero  than  a  reduction  from  4/6  to  3/6.  

Objections  to  the  assumption  of  nonlinearity  in  !  

1)  

Compare  the  following  prospects:  (!, !; !, !)  and  (!, !!; !, !!),  where  ! + ! = !! + !! < 1.  

Since  any  individual  would  be  indifferent  between  both  prospects,  it  could  be  argued  that:  

! ! + ! ! = ! !! + !(!!).  This  implies  that  !  is  the  identity  function.  

This  argument  is  INVALID  in  the  present  theory,  which  assumes  that  the  probabilities  of  identical  outcomes  are  combined  in  the  editing  of  prospects.  

2)  

Suppose  ! > ! > 0, ! > !!, !"#  ! + ! = !! + !! < 1.  Hence   !, !; !, !  dominates  (!, !!; !, !!).  

If  preference  obeys  dominance:  

! ! ! ! + ! ! ! ! > ! !! ! ! + ! !! ! !      !"…  

! ! − ! !!

! !! − !(!)>! !! !

 

 

As  !  approaches  !,  ! ! − ! !!  approaches  ! !! − !(!).  

Page 16: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

16    

Since  ! − !! = !! − !,!  must  be  essentially  linear,  or  else  dominance  must  be  violated.  

Direct  violations  of  dominance  are  prevented,  in  the  present  theory,  by  the  assumption  that  dominated  alternatives  are  detected  and  eliminated  prior  to  the  evaluation  of  prospects.  

However,  the  theory  permits  indirect  violations  of  dominance.  

Finally,  it  should  be  noted  that  measurement  of  values  and  decision  weights  should  be  based  on  choices  between  specified  prospects  rather  than  on  bids.  There  is  some  empirical  evidence  that  people  might  prefer  A  over  B,  but  bid  more  for  B  than  for  A.  

 4. Discussion    

 

Risk  Attitudes  

 

•  From  Allais’  example,  via  the  modified  utility  theory  above,  we  can  get    

 

π(.33)v(2500) > π(.34)v(2400)π(.33)v(2500)+π(.66)v(2400) > v(2400)

 

 

 Therefore,  

π(.33)π(.34)

>v(2400)v(2500)

>π(.33)1−π(.66)

 

 

•  Similarly,  in  problems  7  and  8,  we  still  have    

 

π(.001)π(.002)

>v(3000)v(6000)

>π(.45)1−π(.90)

   

 

•  Hence,  the  violation  of  the  independence  axiom  in  problems  1  and  2  is  attributed  in  this  case  to  the  

inequality  

π(pq)π(p)

≤π(pqr)π(pr)

 (subproportionality).  Even  more,  this  analysis  shows  the  bound  of  v-­‐ratio  

when  the  violation  occurs.  

Page 17: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

17    

 

 

•  The  proof  of  the  preference  for  regular  insurance  over  probabilistic  insurance,  as  can  been  observed  in  Problem  9,  is  presented  below.  If  

(−x, p)  is  indifferent  to  

(−y),  then  

(−y)  is  preferred  to  

(−x, p /2;−y, p /2;−y /2,1− p) .    

 

Proof:  Let  

f (x) = −v(−x).  Since  the  value  function  

v(x)  is  convex,  

f  is  a  concave  function  of  

x .  What  we  need  to  show  is:  

 

f (y) ≤ f (y /2)+π(p /2)[ f (y) − f (y /2)]+π(p /2)[ f (x) − f (y /2)]= π(p /2) f (x)+π(p /2) f (y)+[1−2π(p /2)] f (y /2)

 

 

Since  

2 f (y /2) ≥ f (y)by  the  concavity  and  

π(p) f (x) = f (y)  by  the  indifference,  it  suffices  to  prove  that  

 

f (y) ≤ π(p /2)π(p)

f (y)+π(p /2) f (y)+ [1−2π(p /2)] f (y) /2    

⇔π(p) /2 ≤ π(p /2)      

which  follows  from  the  subadditivity  of  

π .  

 

•  Attitudes  toward  risk  are  determined  jointly  v  and  

π .  Consider    the  gamble

(x, p)  and  

(px)  ,  risk  seeking  is  implied  if  and  only  if  

π(p) > v(px) /v(x)  when  x>0.  Hence,  overweighting  is  necessary  but  not  sufficient  for  risk  seeking  in  the  domain  of  gains.    

 

 

 

 

Page 18: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

18    

Shifts  of  Reference  

 

•  An  expectation  or  aspiration  level  will  affect  the  preference.  A  change  of  reference  point  alters  the  preference  order  for  prospects.  In  particular,  the  present  theory  implies  that  a  negative  translation  of  a  choice  problem,  such  as  arises  from  incomplete  adaptation  to  recent  losses,  increases  risk  seeking  in  some  situations.  

 

•  If  a  risky  prospect  

(x, p;−y,1− p)  is  just  acceptable,  then  

(x − z, p;−y − z,1− p)  is  preferred  over  

(−z)  for  

x,y,z > 0,x > z .  

 

Proof:  First,  notice  that  

V (x, p;−y,1− p) = 0  means  that  

π(p)v(x) = −π(1− p)v(−y).  

 Next,    

V (x − z, p;−y − z,1− p)= π(p)v(x − z)+π(1− p)v(−y − z)> π(p)v(x) −π(p)v(z)+π(1− p)v(−y)+π(1− p)v(−z)

 

(by  the  properties  of  v)  

 

= −π(1− p)v(−y) −π(p)v(z)+π(1− p)v(−y)+π(1− p)v(−z)  

(by  substitution)  

 

= −π(p)v(z)+π(1− p)v(−z)> v(−z)[π(p)+π(1− p)]

 

(since  

v(−z) < −v(z))  

 

> v(−z)  

(by  subcertainty)  

 

Page 19: Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under ... · Handout:)“Prospect)Theory:)An)Analysis)of)Decision)under)Risk”))))) Ye)Chen,)Manuel)LudwigCDehm,)Yin)Xiao,)Zulma)Barrail)!

Handout:  “Prospect  Theory:  An  Analysis  of  Decision  under  Risk”                                                                                                                                                                                                    Ye  Chen,  Manuel  Ludwig-­‐Dehm,  Yin  Xiao,  Zulma  Barrail    

2011  

 

19    

•  This  analysis  suggests  that  a  person  who  has  not  made  peace  with  his  losses  is  likely  to  accept  gambles  that  would  be  unacceptable  to  him  otherwise.  

 

 •  Another  important  case  of  a  shift  of  reference  point  arises  when  a  person  formulates  his  decision  problem  in  terms  of  final  assets,  as  advocate  in  decision  analysis,  rather  than  in  terms  of  gains  and  losses,  as  people  usually  do.  

 

•  Current  decision  theories  assume  that  the  decision  whether  to  pay  10  for  the  gamble  

(1000,.01)  is  treated  as  a  choice  between  

(990,.01;−10,.99)  and  

(0).  Instead,  we  suggest  that  people  usually  evaluate  the  gamble  and  its  cost  separately.  Thus,  the  gamble  should  be  treated  as  a  decision  between  

(1000,.01)  and  

(−10).  

 

•  Through  the  discussion  before,  if  one  is  indifferent  between  

(990,.01;−10,.99)  and  

(0),  then  one  will  not  pay  10  to  purchase  the  prospect  

(1000,.01).  Thus,  people  are  expected  to  exhibit  more  risk  seeking  in  deciding  whether  to  accept  a  fair  gamble  than  in  deciding  whether  to  purchase  a  gamble  for  a  fair  price.  

 

Extensions  

•  Prospect  theory  should  be  extended  in  several  directions:  

1. All  the  equations  to  prospects  could  be  extended  to  the  case  of  any  number  of  outcomes.    

2. The  theory  is  applicable  to  choices  involving  other  attributes  as  quality  of  life  or  the  number  of  lives  that  could  be  lost  or  saved  as  a  consequence  of  a  policy  decision.  

 

 3. Theory  can  also  be  extended  to  the  typical  situation  of  choice,  where  the  probabilities  of  

outcomes  are  not  explicitly  given.    

The  present  analysis  of  preference  has  developed  two  themes  ,  one  concerns  editing  operations  that  determine  how  prospects  are  perceived,  and  the  other  involves  the  judgmental  principles  that  govern  the  evaluation  of  gains  and  losses  and  the  weighting  of  uncertain  outcomes.  They  provide  a  useful  framework  for  the  descriptive  analysis  of  choice