Handling imprecise and uncertain class labels in...

48
Theory of belief functions Classification: the evidential k -NN rule Mixture model estimation using soft labels Clustering: evidential c-means Conclusion Handling imprecise and uncertain class labels in classification and clustering Thierry Denœux 1 1 Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599) COST Action IC 0702 Working group C, Mallorca, March 16, 2009 Thierry Denœux Handling imprecise and uncertain class labels 1/ 48

Transcript of Handling imprecise and uncertain class labels in...

Page 1: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Handling imprecise and uncertain class labelsin classification and clustering

Thierry Denœux1

1Université de Technologie de CompiègneHEUDIASYC (UMR CNRS 6599)

COST Action IC 0702Working group C,

Mallorca, March 16, 2009

Thierry Denœux Handling imprecise and uncertain class labels 1/ 48

Page 2: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Classification and clusteringClassical framework

We consider a collection L of n objects.Each object is assumed to belong to one of K groups(classes).Each object is described by

An attribute vector x ∈ Rp (attribute data), orIts similarity to all other objects (proximity data).

The class membership of objects may be:Completely known, described by class labels (supervisedlearning);Completely unknown (unsupervised learning);Known for some objects, and unknown for others(semi-supervised learning).

Thierry Denœux Handling imprecise and uncertain class labels 2/ 48

Page 3: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Classification and clusteringProblems

Problem 1: predict the class membership of objects drawnfrom the same population as L (classification).Problem 2: Estimate parameters of the population fromwhich L is drawn (mixture model estimation).Problem 3: Determine the class membership of objects inL (clustering);

supervised unsupervised semi-supervisedProblem 1 x xProblem 2 x x xProblem 3 x x

Thierry Denœux Handling imprecise and uncertain class labels 3/ 48

Page 4: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Motivations

In real situations, we may have only partial knowledge ofclass labels: intermediate situation between supervisedand unsupervised learning→ partially supervised learning.The class membership of objects can usually be predictedwith some remaining uncertainty: the outputs fromclassification and clustering algorithms should reflect thisuncertainty.The theory of belief functions is suitable for representinguncertain and imprecise class information:

as input to classification and mixture model estimationalgorithms;as output of classification and clustering algorithms.

Thierry Denœux Handling imprecise and uncertain class labels 4/ 48

Page 5: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Outline1 Theory of belief functions2 Classification: the evidential k -NN rule

PrincipleImplementationExample

3 Mixture model estimation using soft labelsProblem statementMethodSimulation results

4 Clustering: evidential c-meansProblemEvidential c-meansExample

Thierry Denœux Handling imprecise and uncertain class labels 5/ 48

Page 6: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Mass function

Let X be a variable taking values in a finite set Ω (frame ofdiscernment).Mass function: m : 2Ω → [0,1] such that∑

A⊆Ω

m(A) = 1.

Every A of Ω such that m(A) > 0 is a focal set of m.Interpretation: m represents

An item of evidence regarding the value of X .A state of knowledge (belief state) induced by this item ofevidence.

Thierry Denœux Handling imprecise and uncertain class labels 6/ 48

Page 7: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Full notation

mΩAg,tX[EC]

denotes the mass functionRepresenting the beliefs of agent Ag;At time t ;Regarding variable X ;Expressed on frame Ω;Based on evidential corpus EC.

Thierry Denœux Handling imprecise and uncertain class labels 7/ 48

Page 8: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Special cases

m may be seen as:A family of weighted sets (Ai ,m(Ai )), i = 1, . . . , r.A generalized probability distribution (masses aredistributed in 2Ω instead of Ω).

Special cases:r = 1: categorical mass function (∼ set). We denote by mAthe categorical mass function with focal set A.|Ai | = 1, i = 1, . . . , r : Bayesian mass function (∼ probabilitydistribution).A1 ⊂ . . . ⊂ Ar : consonant mass function (∼ possibilitydistribution).

Thierry Denœux Handling imprecise and uncertain class labels 8/ 48

Page 9: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Belief and plausibility functions

Belief function:

bel(A) =∑B⊆AB 6⊆A

m(B) =∑∅6=B⊆A

m(B), ∀A ⊆ Ω

(degree of belief (support) in hypothesis "X ∈ A")Plausibility function:

pl(A) =∑

B∩A6=∅

m(B), ∀A ⊆ Ω

(upper bound on the degree of belief that could beassigned to A after taking into account new information)bel ≤ pl .

Thierry Denœux Handling imprecise and uncertain class labels 9/ 48

Page 10: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Relations between m, bel et pl

Relations:

bel(A) = pl(Ω)− pl(A), ∀A ⊆ Ω

m(A) =

∑∅6=B⊆A(−1)|A|−|B|bel(B), A 6= ∅

1− bel(Ω) A = ∅

m, bel et pl are thus three equivalent representations of asame piece of information.

Thierry Denœux Handling imprecise and uncertain class labels 10/ 48

Page 11: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Dempster’s rule

Definition (Dempster’s rule of combination)

∀A ⊆ Ω, (m1 ∩©m2)(A) =∑

B∩C=A

m1(B)m2(C).

Properties:Commutativity, associativity.Neutral element: vacuous mΩ such that mΩ(Ω) = 1(represents total ignorance).(m1 ∩©m2)(∅) ≥ 0: degree of conflict.

Justified axiomatically.Other rules exist (disjunctive rule, cautious rule, etc...).

Thierry Denœux Handling imprecise and uncertain class labels 11/ 48

Page 12: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Discounting

Discounting allows us to take into account meta-knowledgeabout the reliability of a source of information.Let

m be a mass function provided by a source of information.α ∈ [0,1] be the plausibility that the source is not reliable.

Discounting m with discount rate α yields the followingmass function:

αm = (1− α)m + αmΩ.

Properties: 0m = m and 1m = mΩ.

Thierry Denœux Handling imprecise and uncertain class labels 12/ 48

Page 13: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Pignistic transformation

Assume that our knowledge about X is represented by amass function m, and we have to choose one element of Ω.Several strategies:

1 Select the element with greatest plausibility.2 Select the element with greatest pignistic probability:

Betp(ω) =∑

A⊆Ω|ω∈A

m(A)

|A|.

(m assumed to be normal)

Thierry Denœux Handling imprecise and uncertain class labels 13/ 48

Page 14: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

PrincipleImplementationExample

Outline1 Theory of belief functions2 Classification: the evidential k -NN rule

PrincipleImplementationExample

3 Mixture model estimation using soft labelsProblem statementMethodSimulation results

4 Clustering: evidential c-meansProblemEvidential c-meansExample

Thierry Denœux Handling imprecise and uncertain class labels 14/ 48

Page 15: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

PrincipleImplementationExample

Problem

Let Ω denote the set of classes, et L the learning set

L = ei = (xi ,mi), i = 1, . . . ,n

wherexi is the attribute vector for object oi , andmi = mΩyi is a mass function on the class yi of object oi .

Special cases:mi (ωk) = 1: precise labeling;mi (A) = 1 for A ⊆ Ω: imprecise (set-valued) labeling;mi is a Bayesian mass function: probabilistic labeling;mi is a consonant mass function: possibilistic labeling, etc...

Problem: Build a mass function mΩy[x,L] regarding theclass y of a new object o described by x.

Thierry Denœux Handling imprecise and uncertain class labels 15/ 48

Page 16: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

PrincipleImplementationExample

Solution(Denoeux, 1995)

Each example ei = (xi ,mi) in L is an item of evidenceregarding y .The reliability of this information decreases with thedistance between x and xi . It should be discounted with adiscount rate

αi = φ (d(x,xi)) ,

where φ is a decreasing function from R+ to [0,1]:

my[x,ei ] = αi mi .

The n mass functions should then be combinedconjunctively:

my[x ,L] = my[x,ei ] ∩© . . . ∩©my[x,en].

Thierry Denœux Handling imprecise and uncertain class labels 16/ 48

Page 17: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

PrincipleImplementationExample

Implementation

Take into account only the k nearest neighbors of x dans L→ evidential k -NN rule (generalizes the voting k -NN rule).Definition of φ: for instance,

φ(d) = β exp(−γd2).

Determination of hyperparameters β and γ heuristically orby minimizing an error function (Zouhal and Denoeux,1997).Summarize L as r prototypes learnt by minimizing an errorfunction→ RBF-like neural network approach (Denoeux,2000).

Thierry Denœux Handling imprecise and uncertain class labels 17/ 48

Page 18: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

PrincipleImplementationExample

Example: EEG data

500 EEG signals encoded as 64-D patterns, 50 % negative(delta waves), 5 experts.

0 20 40 600

50

100

150

200

250

300

A/D

con

vert

er o

utpu

t

0 0 0 0 0

0 20 40 600

50

100

150

200

250

3001 0 0 0 0

0 20 40 600

50

100

150

200

250

3001 0 1 0 0

0 20 40 600

50

100

150

200

250

300

A/D

con

vert

er o

utpu

t

1 1 0 1 0

0 20 40 600

50

100

150

200

250

300

time

1 0 1 1 1

0 20 40 600

50

100

150

200

250

3001 1 1 1 1

Thierry Denœux Handling imprecise and uncertain class labels 18/ 48

Page 19: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

PrincipleImplementationExample

Results on EEG data(Denoeux and Zouhal, 2001)

K = 2 classes, d = 64data labeled by 5 expertsPossibilistic labels computed from distribution of expertlabels using a probability-possibility transformation.n = 200 learning patterns, 300 test patterns

k k -NN w K -NN TBM TBM(crisp labels) (uncert. labels)

9 0.30 0.30 0.31 0.2711 0.29 0.30 0.29 0.2613 0.31 0.30 0.31 0.26

Thierry Denœux Handling imprecise and uncertain class labels 19/ 48

Page 20: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Problem statementMethodSimulation results

Outline1 Theory of belief functions2 Classification: the evidential k -NN rule

PrincipleImplementationExample

3 Mixture model estimation using soft labelsProblem statementMethodSimulation results

4 Clustering: evidential c-meansProblemEvidential c-meansExample

Thierry Denœux Handling imprecise and uncertain class labels 20/ 48

Page 21: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Problem statementMethodSimulation results

Mixture model

The feature vectors and class labels are assumed to bedrawn from a joint probability distribution:

P(Y = k) = πk , k = 1, . . . ,K ,

f (x|Y = k) = f (x ,θk ), k = 1, . . . ,K .

Let ψ = (π1, . . . , πK ,θ1, . . . ,θK ).

Thierry Denœux Handling imprecise and uncertain class labels 21/ 48

Page 22: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Problem statementMethodSimulation results

Data

We consider a realization of an iid random sample from(X,Y ) of size n:

(x1, y1), . . . , (xn, yn).

The class labels are assumed to be imperfectly observedand partially specified by mass functions. The learning sethas the following form:

L = (x1,m1), . . . , (xn,mn).

Problem 2: estimate ψ using L.Remark: this problem encompasses supervised,unsupervised and semi-supervised learning as specialcases.

Thierry Denœux Handling imprecise and uncertain class labels 22/ 48

Page 23: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Problem statementMethodSimulation results

Generalized likelihood criterion(Côme et al., 2009)

Approach:ψ = arg max

ψplΨ(ψ|L).

TheoremThe logarithm of the conditional plausibility of ψ given L isgiven by

ln(

plΨ(ψL))

=N∑

i=1

ln

(K∑

k=1

plikπk f (xi ;θk )

)+ ν,

where plik = pl(yi = k) and ν is a constant.

Thierry Denœux Handling imprecise and uncertain class labels 23/ 48

Page 24: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Problem statementMethodSimulation results

Generalized EM algorithm(Côme et al., 2009)

An EM algorithm (with guaranteed convergence) can bederived to maximize the previous criterion.This algorithm becomes identical to the classical EMalgorithm in the case of completely unsupervised orsemi-supervised data.The complexity of this algorithm is identical to that of theclassical EM algorithm.

Thierry Denœux Handling imprecise and uncertain class labels 24/ 48

Page 25: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Problem statementMethodSimulation results

Experimental settings

Simulated and real data sets.Each example i was assumed to be labelled by an expertwho provides his/her most likely label yi and a measure ofdoubt pi .This information is represented by a simple mass function:

mi(yi) = 1− pi

mi(Ω) = pi .

Simulations: pi drawn randomly form a Beta distribution,true label changed to any other label with probability pi .

Thierry Denœux Handling imprecise and uncertain class labels 25/ 48

Page 26: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Problem statementMethodSimulation results

ResultsIris data

Thierry Denœux Handling imprecise and uncertain class labels 26/ 48

Page 27: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Problem statementMethodSimulation results

ResultsWine data

Thierry Denœux Handling imprecise and uncertain class labels 27/ 48

Page 28: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

Outline1 Theory of belief functions2 Classification: the evidential k -NN rule

PrincipleImplementationExample

3 Mixture model estimation using soft labelsProblem statementMethodSimulation results

4 Clustering: evidential c-meansProblemEvidential c-meansExample

Thierry Denœux Handling imprecise and uncertain class labels 28/ 48

Page 29: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

Credal partition

n objects described by attribute vectors x1, . . . ,xn.Assumption: each object belongs to one of K classes inΩ = ω1, ..., ωK,Goal: express our beliefs regarding the class membershipof objects, in the form of mass functions m1, . . . ,mn on Ω.Resulting structure = Credal partition, generalizes hard,fuzzy and possibilistic partitions

Thierry Denœux Handling imprecise and uncertain class labels 29/ 48

Page 30: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

Example

A m1(A) m2(A) m3(A) m4(A) m5(A)

∅ 0 0 0 0 0ω1 0 0 0 0.2 0ω2 0 1 0 0.4 0ω1, ω2 0.7 0 0 0 0ω3 0 0 0.2 0.4 0ω1, ω3 0 0 0.5 0 0ω2, ω3 0 0 0 0 0

Ω 0.3 0 0.3 0 1

Thierry Denœux Handling imprecise and uncertain class labels 30/ 48

Page 31: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

Special cases

Each mi is a certain bba→ crisp partition of Ω.Each mi is a Bayesian bba→ fuzzy partition of Ω

uik = mi(ωk), ∀i , k

Each mi is a consonant bba→ possibilistic partition of Ω

uik = plΩi (ωk)

Thierry Denœux Handling imprecise and uncertain class labels 31/ 48

Page 32: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

Algorithms

EVCLUS (Denoeux and Masson, 2004):proximity (possibly non metric) data,multidimensional scaling approach.

Evidential c-means (ECM): (Masson and Denoeux, 2008):attribute data,alternate optimization of an FCM-like cost function.

Thierry Denœux Handling imprecise and uncertain class labels 32/ 48

Page 33: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

Basic ideas

Let vk be the prototype associated to class ωk(k = 1, . . . ,K ).Let Aj a non empty subset of Ω (a set of classes).We associate to Aj a prototype vj defined as the center ofmass of the vk for all ωk ∈ Aj .Basic ideas:

for each non empty Aj ∈ Ω, mij = mi (Aj ) should be high if xiis close to vj .The distance to the empty set is defined as a fixed value δ.

Thierry Denœux Handling imprecise and uncertain class labels 33/ 48

Page 34: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

Optimization problem

Minimize

JECM(M,V ) =n∑

i=1

∑j/Aj 6=∅,Aj⊆Ω

|Aj |αmβij d

2ij +

n∑i=1

δ2mβi∅,

subject to ∑j/Aj⊆Ω,Aj 6=∅

mij + mi∅ = 1 ∀i = 1,n,

Thierry Denœux Handling imprecise and uncertain class labels 34/ 48

Page 35: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

Butterfly dataset

−6 −4 −2 0 2 4 6 8 10−2

0

2

4

6

8

10

1

2

3

4

5 6 7

8

9

10

11

12

x1

x 2

Thierry Denœux Handling imprecise and uncertain class labels 35/ 48

Page 36: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

Butterfly datasetResults

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1

m(2)m(

1)

m()m(emptyset)

point number

bbas

Thierry Denœux Handling imprecise and uncertain class labels 36/ 48

Page 37: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

4-class data set

−8 −6 −4 −2 0 2 4 6 8 10−8

−6

−4

−2

0

2

4

6

8

10

x1

x 2

Thierry Denœux Handling imprecise and uncertain class labels 37/ 48

Page 38: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

4-class data setHard credal partition

−8 −6 −4 −2 0 2 4 6 8 10−8

−6

−4

−2

0

2

4

6

8

10

1

2

3

4

12

23

34

14

124

123

234

134

13

24

Thierry Denœux Handling imprecise and uncertain class labels 38/ 48

Page 39: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

4-class data setLower approximation

−8 −6 −4 −2 0 2 4 6 8 10−8

−6

−4

−2

0

2

4

6

8

10

1L

2L

3L

4L

Thierry Denœux Handling imprecise and uncertain class labels 39/ 48

Page 40: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

4-class data setUpper approximation

−8 −6 −4 −2 0 2 4 6 8 10−8

−6

−4

−2

0

2

4

6

8

10

1U

2U

3U

4U

Thierry Denœux Handling imprecise and uncertain class labels 40/ 48

Page 41: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

Brain data

Magnetic resonance imaging of pathological brain, 2 setsof parameters.Image 1 shows normal tissue (bright) and ventricals +cerebrospinal fluid (dark). Image 2 shows pathology(bright).

(a) (b)

Thierry Denœux Handling imprecise and uncertain class labels 41/ 48

Page 42: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

Brain dataResults in gray level space

0 20 40 60 80 100 120 140 160 180 2000

50

100

150

Grey levels in image 1

Gre

y le

vels

in im

age

2

12

1

2

3

23

13

Thierry Denœux Handling imprecise and uncertain class labels 42/ 48

Page 43: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

ProblemEvidential c-meansExample

Brain dataLower and upper approximations

(b) (c)(a)

Thierry Denœux Handling imprecise and uncertain class labels 43/ 48

Page 44: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

Theory of belief functionsClassification: the evidential k -NN rule

Mixture model estimation using soft labelsClustering: evidential c-means

Conclusion

Conclusion

The theory of belief functions extends both set theory andprobability theory:

It allows for the representation of imprecision anduncertainty.It is more general than possibility theory.

Belief functions may be used to represent imprecise and/oruncertain knowledge of class labels→ soft labels.Many classification and clustering algorithms can beadapted to

handle such class labels (partially supervised learning)generate them from data (credal partition)

Thierry Denœux Handling imprecise and uncertain class labels 44/ 48

Page 45: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

References

References Icf. http://www.hds.utc.fr/˜tdenoeux

T. Denœux.A k-nearest neighbor classification rule based onDempster-Shafer theory.IEEE Transactions on Systems, Man and Cybernetics,25(05):804-813, 1995.

L. M. Zouhal and T. Denoeux.An evidence-theoretic k-NN rule with parameter optimization.IEEE Transactions on Systems, Man and Cybernetics C,28(2):263-271,1998.

Thierry Denœux Handling imprecise and uncertain class labels 45/ 48

Page 46: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

References

References IIcf. http://www.hds.utc.fr/˜tdenoeux

T. Denœux.A neural network classifier based on Dempster-Shafer theory.IEEE Transactions on Systems, Man and Cybernetics A, 30(2),131-150, 2000.

T. Denoeux and M. Masson.EVCLUS: Evidential Clustering of Proximity Data.IEEE Transactions on Systems, Man and Cybernetics B, (34)1,95-109, 2004.

Thierry Denœux Handling imprecise and uncertain class labels 46/ 48

Page 47: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

References

References IIIcf. http://www.hds.utc.fr/˜tdenoeux

T. Denœux and P. Smets.Classification using Belief Functions: the Relationship betweenthe Case-based and Model-based Approaches.IEEE Transactions on Systems, Man and Cybernetics B, 36(6),1395-1406, 2006.

M.-H. Masson and T. Denoeux.ECM: An evidential version of the fuzzy c-means algorithm.Pattern Recognition, 41(4), 1384-1397, 2008.

Thierry Denœux Handling imprecise and uncertain class labels 47/ 48

Page 48: Handling imprecise and uncertain class labels in ...tdenoeux/dokuwiki/_media/en/talks/mallorca09.pdf · Conclusion Classification and clustering Classical framework We consider a

References

References IVcf. http://www.hds.utc.fr/˜tdenoeux

E. Côme, L. Oukhellou, T. Denoeux and P. Aknin.

Learning from partially supervised data using mixture modelsand belief functions.

Pattern Recognition, 42(3), 334-348, 2009.

Thierry Denœux Handling imprecise and uncertain class labels 48/ 48