Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25...

14
6/9/2014 1 #1 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014 Real-time cell culture control in an integrated benchtop platform: implications for research and training Jean-François Hamel MIT, Chemical Engineering Department #2 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014 Context: Needs for controlling the bioprocess in biomanufacturing, research, and for training Project goal: Development of a flexible integrated benchtop bioreactor platform Dynamic control of glucose and serine in prokaryotic culture Using an integrated bioprocess platform for teaching Vision for the future: Interfacing analytics to the bioprocess provides an evolving toolkit for research, teaching and communication Roadmap #3 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014 Process Analytical Technology – “PAT” FDA definition (Guideline for Industry, 2004) “The Agency considers PAT to be a system for designing, analyzing, and controlling manufacturing through timely measurements (i.e., during processing) of critical quality and performance attributes of raw and inprocess materials and processes, with the goal of ensuring final product qualityquality cannot be tested into products; it should be builtin or should be by design…” It is important to note that the term analytical in PAT is viewed broadly to include chemical, physical, microbiological, mathematical, and risk analysis conducted in an integrated manner… #4 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014 “PAT” tools In the PAT framework, these tools encompass: Multivariate data acquisition and analysis Process analytical chemistry tools Endpoint monitoring and control tools Continuous process improvement and knowledge management tools An appropriate combination of these tools may apply to a singleunit operation, or to an entire manufacturing process, and its quality assurance

Transcript of Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25...

Page 1: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

1

# 1

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Real-time cell culture control in an integrated benchtop platform: implications for research and training

Jean-François HamelMIT, Chemical Engineering Department

# 2

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Context: Needs for controlling the bioprocess in biomanufacturing, research, and for training

Project goal: Development of a flexible integrated benchtop bioreactor platform• Dynamic control of glucose and serine in prokaryotic

culture• Using an integrated bioprocess platform for teaching

Vision for the future: Interfacing analytics to the bioprocess provides an evolving toolkit for research, teaching and communication

Roadmap

# 3

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

ProcessAnalyticalTechnology– “PAT”FDAdefinition(GuidelineforIndustry,2004)

“The Agency considers PAT to be a system for designing, analyzing, and controlling manufacturing through timely measurements (i.e., during processing) of critical quality and performance attributes of raw and in‐process materials and processes, with the goal of ensuring final product quality… 

… quality cannot be tested into products; it should be built‐in or should be by design…”

It is important to note that the term analytical in PAT is viewed broadly to include chemical, physical, microbiological, mathematical, and risk analysis conducted in an integrated manner… 

# 4

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

“PAT”toolsIn the PAT framework, these tools encompass:

• Multivariate data acquisition and analysis

• Process analytical chemistry tools

• Endpoint monitoring and control tools

• Continuous process improvement and knowledge management 

tools

• An appropriate combination of these tools may apply to a 

single‐unit operation, or to an entire manufacturing process, 

and its quality assurance

Page 2: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

2

# 5

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Reduction of production cycle times,by integrating unit operations, together with in‐situ, on‐line or at‐line measurements and controls

Improvement of operator safety and reduction of human error,by increasing automation

Minimization or avoidance of rejects, with a move toward real‐time product release

Increase of process efficiency and control of product attributes, by facilitating continuous processing

Development of small‐scale equipment & instruments for manufacturing, scaled‐down models, and early screening

“PAT”goalsforenhancingprocessefficiencyandproductquality

# 6

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

FOSS NIR SYSTEMS (Spectroscopy, 2003; 18(11): 32‐35) 

Near‐infrared spectroscopy as a process analytical tool ‐ Part 1: Laboratory applications

6th ANNUAL CONGRESS OF CHEMOMETRICS (2003) & Chemometrics and Intelligent lab syst., 2004; 74(2): 269‐275) Chemometrics in bioprocess engineering: process analytical technology (PAT) applications

GE (Expert Review of Mol. Diag, 2004; 4(6): 779‐781) Emergent FDA biodefense issues for microarray technology: process analytical technology

GROTON BIOSYSTEMS (Gen. Eng. News, 2004; 24(14): 54‐56)Automated bioprocess sampling and analysis

FLOWNAMICS (Bioautomation, 2005; 2: 49‐53)Sampling probe

ABB & Adv Solut (in Process Analytical Technology (ed K. A. Bakeev), Blackwell Pub.,  2005 Near‐infrared spectroscopy for Process Analytical Chemistry: theory, technology and implementation

DIONEX CHEM. AND ELI LILLY (J. Biotech.; 2005; 118(1): S35‐S36)On‐line liquid chromatography as a PAT for monitoring and control of biotech processes

Early“PAT”contributions(2003‐2005):focusoninstrumentationandscreeningtools

# 7

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

GENENTECH (ACS National Conference, 2005, 2007, and ACS Biotechnology Division 2008)• Process analytical technology in biochemical production (2005)• Implementing an automated sampling system for mammalian cell culture systems (2007)• Online monitoring of mammalian cell cultures (2008)

MERCK (Biotech. Bioeng. 2006;95(2):226‐61)Bioprocess monitoring and computer control: key roots of the current PAT initiative

AMGEN (Biotech. Bioeng. 2008;100: 306‐316)Application of Process Analytical Technology toward bioprocessing: using on‐line high‐HPLC) for making real‐time pooling decisions for process chromatography

MEDIMMUNE (ACS Biotechnology Division 2008)Assessment of platform vaccine process development and improvement of vaccine productivity through bioprocess optimization

BIOGENIDEC (ACS Biotechnology Division 2008)Online process monitoring and feedback control for rapid development of better optimized cell culture processes

PFIZER  (ACS Biotechnology Division 2008)Performance evaluation of an automated bioreactor sampling system for mammalian cell cultivation

New “PAT” contributions (2005‐2008): focus on biomolecules producers

# 8

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

ACADEMIC CONTRIBUTIONSBiotech. Adv. , 2009; 27(6): 726‐732 Advances in on‐line monitoring and control of mammalian cell cultures: Supporting the PAT initiative

Measurement, Monitoring, Modelling and Control Book Series: Adv. in Biochem. Eng.‐Biotech ; 2013: 132• Automated measurement and monitoring of bioprocesses: key elements of the (MC)‐C‐3 strategy• Applying mechanistic models in bioprocess development

Anal.  Bioanal. Chem., 2013: 404(4): 1211‐1237Bioreactor monitoring with spectroscopy and chemometrics: a review

INDUSTRY CONTRIBUTIONSBEND RESEARCHPoster on at‐line modular automated sampling technology, presented at the CCXIV Conference (2014)

BOERINGHERAdvancing biopharmaceutical process development by system‐level data analysis and Integration of omicsdata (In: Genomics and systems biology of mammalian cell culture, 2013; Vol. 127)

GENZYMEPresentation on integrated continuous bioprocessing (CCXIV,  2014)

Recent“PAT”contributions(2009‐2014):old&newplayers

DISPOSABLE (SINGLE‐USE) TECHNOLOGY DEVELOPPERSUPS & DSP, such as PBS Biotech, Eppendorf, Hyclone, Sartorius, EMD Millipore, ATMI‐Pall, GESensors, such  as Finesse, Aber, Hamilton, PreSens, Polestar Tech.

Page 3: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

3

# 9

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Improvingthroughautomation

• Process design, safety & repeatability

• Product quantity, quality

• Production cost

Howtoapproachautomation?

• Gain process knowledge (e.g., cell, medium, environment)

• Assess key parameter which can be or should be controlled and automated

# 10

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Bioprocess design and control options

Autosampler At-line analytics(e.g., for glucose, amino-acids)

Cell culture vessel

No sample or sample

treatment

Dissolved O2Capacitance

Gas O2

Manual sampler

Off-line analytics(e.g., for glucose,amino-acids)

With or withouta cell retentiondevice

Manual or automated sampling, treatment and analysis

Feedback orPredictivecontrol

# 11

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Bioprocess design and control options

Autosampler At-line analytics(e.g., for glucose, amino-acids)

Cell culture vessel

Manual sampler

Off-line analytics(e.g., for glucose,amino-acids)

With or withouta cell retentiondevice

Manual or automated sampling, treatment and analysis

Feedback control

1

# 12

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Manual sampling and analysis: glucose consumption rate as a temperature control trigger

Real-time glucose consumption rate (GCR) as a trigger to temperature switch during 60-day perfusion CHO culture (Meuwly et al., 2006)

GCR=f(V,Mpacked bed, glucose)

Successful bioprocess control on multiple sites based on manual sampling and off-line analysis

Page 4: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

4

# 13

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

GCR triggers T shift down(Meuwly et al., 2006)

CV (Std Dev/mean)=12%

# 14

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Discussingmeritsofautomation(Meuwlyetal.,2006)

“… the benefits of on‐line regulation have to be analyzed carefully…

… the GCR approach is not prone to automation breakdown or programming errors…”

# 15

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Bioprocess design and control options

Autosampler At-line analytics(e.g., for glucose, viablecell count)

Cell culture vessel

Manual sampler

Off-line analytics(e.g., for glucose,viable cell counts)

Withouta cell retentiondevice

Manual or automated sampling, treatment and analysis

Feedback control

2A

# 16

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Assessing feedback control and feeding strategies(Lu et al., 2012)

Real-time analysis of metabolites and product in CHO fed-batch culture, through 3 feeding strategies targeting the maintenance of 4 to 6 g/L glucose in the bioreactor:1. Autosampler and at-line glucose and viable cell

concentrations: dynamic feeding

2. No autosampler and off-line glucose concentration: manual-adjusted feed, every 6 h,

3. No autosampler and no real-time analysis: bolus feeding: every 3 days at 6.7% initial culture volume

Page 5: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

5

# 17

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Effect of feeding strategy on cell growth(Lu et al., 2012)

VCC (x106/mL)

Run time (d)

Bolus, every 3 days

Dynamic feed (VCC)

Manual, each 6 h(glucose)

Dynamic feed (glucose)

With autosampler,each 6 h

# 18

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Feeding strategy and glucose concentration(Lu et al., 2012)

Glu

cose

(g/L

))

Run time (d)

Bolus, every 3 daysDynamic feed (VCC)

Manual, each 6 h(glucose)

Dynamic feed (glucose)

# 19

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Feeding strategy and product titer(Lu et al., 2012)

Prod

uct t

iter (

g/L)

)

Run time (d)

Bolus, every 3 days

Dynamic feed (VCC)

Manual, each 6 h(glucose)Dynamic feed

(glucose)

# 20

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Bioprocess design and control options

Autosampler At-line analytics(e.g., for glucose, amino-acids)

Cell culture vessel

No sample or sample

treatment

Dissolved O2

Capacitance

Gas O2

Manual sampler

Off-line analytics(e.g., for glucose,amino-acids)

With or withouta cell retentiondevice

Manual or automated sampling, treatment and analysis

Predictivecontrol

2B

Page 6: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

6

# 21

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Capacitance-based probe

Non-polarized dead cells

Polarized viable cells

Tip of probe

Bioreactor envelope

Electric field

# 22

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Predictive-control feeding on product titer(Lu et al., 2012)

Prod

uct t

iter (

g/L)

)

Run time (d)

Bolus, every 3 days

Dynamic feed (capacitance)

# 23

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Predictive‐control&feedback‐controlfeedingsonproducttiter(Lu et al., 2012)

Prod

uct t

iter (

g/L)

)

Run time (d)

Bolus, every 3 days

Dynamic feed (capacitance)

9 Dynamic feed (glucose)

# 24

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Predictive‐controlvs.bolusfeedingonproductquality(Lu et al., 2012)

Cell 1 Cell 2

Bolus, every 3 days

Dynamic feed (capacitance)

Error bars = analytical accuracy of measurements

Page 7: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

7

# 25

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Integrated benchtop bioprocess platform and control options

Autosampler AnalyticsCell culture vessel

Compare PVAV and SP Use process knowledge

Desired set point (SP) of selected automation variable (AV)

Design controlstrategy (simple feedback control)

Process action

AV process value

# 26

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Integrated benchtop platform for research and teaching: schematic diagram

GlucoseFeed

Pumps

OPC Client data requestAnalytical data to server

OPC data sent to reactor control system

HPLC amino acid

Targetamino acidfeed

Reactorcontrolsystem

Multi-bioreactor

autosampler

SanitaryInterface

Glucose monitor

Fluid connection

Electronic data transfer

Filtermodule

IFProcess Value

< Set Point THENFeed

Presented on July 1 2009, MIT

# 27

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Waste

ReactorSample

to ARS-M

Step 1. Prime and sample

Waste

to ARS-MReactorSample

Step 2. Instrument analysis

Waste

from ARS-MReactorSample

Step 3. Cleaning Cycle

Sample

Closed Valve

Cleaning Reagents

The sanitary interface: a key element for maintaining asepsy

Waste

ReactorSample

to ARS-M

Step 4. Purge

# 28

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Execute Control Strategy

Set Point

Sample

AnalyzeCommunicate

ARS-M autosamplerGlucose analyzerOPC Client/Server

ΔV=f(Gluc, V)

DASGIP Control

Correct

Feed Pump

Gluc.SP

-+

Gluc.PV

Reactor

2 g/L

1.5 g/L

Add glucose, e.g. 5 mL of 100 g/L stock

Calculate

Page 8: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

8

# 29

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Integrated benchtop platform for research and teaching: overview (Hamel et al., 2009)

Autosampler At-line analytics(e.g., for glucose, amino-acids)

Manual sampler

Off-line analytics(e.g., for glucose,amino-acids)

With cell retentiondevice

Manual or automated sampling, treatment and analysis

Feedback control

3A

# 30

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Bioreactor feeding study

Biological platformFermentationBatch culture of BL21 E.coli in liter-sized traditional stirred bioreactor -

casamino-acid medium with glucoseProduct is Green Fluorescent Protein (GFP)

HPLCOrtho-phthal-aldehyde/9-fluorenyl-methylchloroformate

(OPA/FMOC) derivatized amino acid analysis (C18 column, Room T, 5 µL injection)

About 30 min per analysis, and 1.5 hour total between samples

Study objectivesGlucose feeding control (goal: 2 g/L)Amino-acid (AA) analysis, and control (goal: limiting AA > 250 mg/L)

# 31

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Kinetics of E.coli growth and glucose in batch culture – traditional bioreactor

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6

Time (Hours)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Cel

l con

cent

ratio

n (O

D60

0)

Glu

cose

(g/L

)

# 32

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

From stepwise to “steady-state” control

Steady glucose level

Glucose addition

Cumulativeglucose

2

1.5

1

Glucose level (g/L)

Glucose set point

Page 9: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

9

# 33

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Amino-acid (off-line) analysis during E. coli batch cultureNo feedback control

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25

Am

ino

Aci

d (m

g/L)

Process Time (hrs)

Asp

Glu

Ser

His

Gly

Thr

Arg

Ala

Val

Met

Trp

Phe

Ile

Leu

Cys

Serine

# 34

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Serine depletion in BL21 E. coli culture

0 hr

4hr

24 hr

Serine

# 35

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0

50

100

150

200

250

300

350

2:24 PM 7:12 PM 12:00 AM 4:48 AM 9:36 AM 2:24 PM 7:12 PM

pH2.PV [pH], DO2.PV [%DO], T2.PV [°C], FA2.PV [mL/h], 

OPC.OPC.Serine[m

g/L]

Timestamp

DO2.PV

FA2.PV

pH2.PV

T2.PV

serine

OPC.OPC.Serine

OD

(FC)*

OPC.serine

Off-line serine

OPC vs. off-line amino-acid analysis during E. coli cultureWith feedback control

Target set point

*(FC) –Sample collected on line and analyzed off line

# 36

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

0

0.1

0.2

0.3

0.4

0

3

6

9

12

0 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16

Gre

en F

luor

esce

nt P

rote

in p

rodu

ctiv

ity

(ug/

ml)

, Sp

ecif

ic P

rodu

ctiv

ity

(ug/

ml/

OD

)

FB GFP (μg/ml)

FB GFP/OD

Con GFP (μg/ml)

Con GFP/OD

FB OD600

Con OD600

Process Time (Hours)

OD

600

No serine feeding

With serine feeding

Green fluorescent protein productivity gain with OPC-control of serine in E. coli culture

33%

Page 10: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

10

# 37

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Integrated benchtop platform for research and teachingMIT (2009)

Autosampler At-line analytics(e.g., for glucose, amino-acids)

Manual sampler

Off-line analytics(e.g., for glucose,amino-acids)

With cell retentiondevice

Manual or automated sampling, treatment and analysis

Feedback control

3B

# 38

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Workingprincipleofair‐liftdisposablebioreactor

# 39

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Glucose feedback control with Labview-based approach

1 2

Cell sample Cell-free sample

Glucose datum

Signal

Peristaltic pumpIs turned ON:Glucose is added

# 40

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

E. coli culture in air-lift (single-use) bioreactor: glucose control (3 g/L setpoint)

Target set point

Page 11: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

11

# 41

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Usinganintegratedbioprocessplatformforteaching

The goal: teaching locally and world wide

The audience: students, teachers and professionals

The teaching frameworks:

1. Experimental lab

2. Simulation lab

3. Remote lab

# 42

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Assessing the 3 lab formats(relative comparison)

Attribute or experience Experimental lab

Simulation lab

Remote lab

Interaction level between student  and process, and between team members

High Low Medium

Capital cost High Low Medium

Operating cost High Low Medium

Convenience and ease to students Medium Medium High

Student preference High Medium Medium

Learning outcomes ? ? ?

Sonnenwald et al., 2003Lindsay & Good, 2005Corter et al., 2007, 2011

# 43

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Learningoutcomes(totaltestscore)betweenhands‐on,simulationandremotelabs(basedonCorteretal.,2011)

Individual Group

Error bar=1SD

Data collection modeTypical mechanical eng. course

# 44

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Using the integrated platform for hands‐on and remote teaching

GlucoseFeed

Pumps

HPLC Amino Acid

TargetAmino AcidFeed

ReactorControlSystem

Multi-Bioreactor

Autosampler

SanitaryInterface

Glucose Monitor

Fluid Connection Electronic Data TransferNot to scale

FilterModule

Bioreactor technologyIn‐situ and soft sensorsChemical and bioeng. conceptsProcess monitoring and control

At‐line interfacesAsepsyCommunication protocolsPAT and regulatory needs

AnalyticsCell metabolismFeeding strategies for advanced control

Sharing process knowledge, control and data over multiple sites

Page 12: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

12

# 45

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

New and potential analytical tools for integrated bioprocess research platform

Based on the last decadeBioreactors: traditional and disposable; macro-

to micro-scaleIn-situ instruments: RAMAN, FTIR, NIR,

capacitance, fluorescence, bio-, electrochemical and optical probes, sensors interfaced with microfluidics

On-line soft sensorsAt-line instruments: Autosampler, flow cytometry,

SPR, HPLC, CE, glucose, process module

New or on the horizonIn-situ: glucoseOff-line instruments: NMR, lensless imaging

# 46

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Stainless steel probe that measures the refractive index directly in the bioreactor (Sparrow et al., 2009)

Recent: In-situ glucose monitoring

Gamma-radiated enzymatic-based glucose sensor (Cit Website, 2014)

# 47

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

On the horizon: lensless imaging

Kesavan et al. (2013)

# 48

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

On the horizon: lensless imaging(continued)

Source: CEA-LEITI, 2014

Page 13: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

13

# 49

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

MicroRAMAN combined with lensless imaging and scattering microscopy (Strola et al., 2013)

The combination provides the precise bacterium localization, its chemical composition and a morphology description

Capacitance and lensless imaging

Soft sensors

On the horizon: integrated analytical technologies

# 50

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

The evolving integrated bioprocess platform

Autosampler At-line analytics(e.g., for glucose, amino-acids)

Cell culture vessel

No sample or sample

treatment

Dissolved O2

Capacitance

Gas O2

Manual sampler

Off-line analytics(e.g., for glucose,amino-acids)

With or withouta cell retentiondevice

Manual or automated sampling, treatment and analysis

Feedback Predictivecontrol

# 51

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

The evolving integrated bioprocess platformSensors and analytics

V (L) >1 <0.1 10-3 10-9

Traditional & macro Novel & micro

In-situ & at line In-situ & ex-situ

Soft sensorsBasic & advanced controls

# 52

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Designingfordiverseusers

Designers and vendors of bioprocessing, analytical sensors and automation systems need to consider the diverse international settings and regulatory requirements of the following groups:

• Educators• Researchers• Students and trainees• Professionals• Regulators

Avisionforthefuture

Page 14: Hamel BPQC May 29th 2014 Final for Posting M3 Hamel BPQC May 29th 2014 Final f… · 6/9/2014 7 #25 Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel

6/9/2014

14

# 53

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 201453

Spirulinaforfoodproduction

•Addressing Malnutrition

• Current Reactors• Open system:• Lakes, tanks, ponds

• Problems‐ Low growth rate:

• 4‐10 g/m2‐ day‐ Requires large area‐ Contamination 

Women Harvesting Spirulina off Lake ChadObtained from www.new‐agri.co.uk , 2008

# 54

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

54

Low‐tech (cheap) air‐lift reactor/biodigestor system

High‐tech culturing system

Iluminated stirred reactors        CO2 Control system 

# 55

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Under the PAT framework, the need for controlling and improving the bioprocess has been addressed by industry and academia

Flexible integrated benchtop bioreactor platform useful for:• Research and process development (e.g., automated 

analysis over entire process, feedback control multiple parameters)

• Manufacturing supervision (e.g., real‐time monitoring of process progress, and of product attributes, data for compliance purpose)

• Teaching concepts relevant to diverse science and engineering disciplines, and to regulation

• Enhancing communication from both the local and global viewpoints

Conclusion

# 56

Biopharmaceutical Process and Quality Consortium – UMass Lowell – J.-F. Hamel - May 29, 2014

Acknowledgments

Groton BiosystemsDasGip/EppendorfCellexusNational InstrumentsYSIAgilent TechnologiesMIT