HA A - + H +

76
Determination of dissociation constants of uniprotic acids with known spectrum of acidic or basic component

description

Determination of dissociation constants of uniprotic acids with known spectrum of acidic or basic component. HA A - + H +. C t [H + ]. C t K a. [ HA] =. [ A - ] =. [ H + ] + K a. [ H + ] + K a. s HA. s A. c A. c HA. =. +. - PowerPoint PPT Presentation

Transcript of HA A - + H +

Page 1: HA             A -  + H +

Determination of dissociation constants of uniprotic acids with known spectrum of

acidic or basic component

Page 2: HA             A -  + H +

Determination of dissociation constants of uniprotic acids with known spectrum of acidic or basic component

HA A- + H+

[HA] =

Ct [H+][H+] + Ka

[A-] =

Ct Ka

[H+] + Ka

D XHA XA= +

cHA

sHA

= cA

sA

+

R = D - XHA = D - cHAsHAT

Page 3: HA             A -  + H +

Determination of dissociation constants of uniprotic acids with known spectrum of acidic or basic component

R = D - XHA = D - cHAsHAT

cHA =f (Ka)

sHAD

Page 4: HA             A -  + H +

rafa_Ka.m

Determination of Pka value for an uniprotic acid with known spectrum of HA

species

Page 5: HA             A -  + H +

Calling function rafa_Ka

Page 6: HA             A -  + H +
Page 7: HA             A -  + H +
Page 8: HA             A -  + H +
Page 9: HA             A -  + H +

?Investigate the effects of extent of spectral overlapping on the determined pKa value by RAFA

Page 10: HA             A -  + H +

Di-protic Acids

[H]2 + Ka1 [H] + Ka1 Ka2

Ct [H]2

[H2A] =

[H]2 + Ka1 [H] + Ka1 Ka2

Ct Ka1 [H]2

[HA] =

[H]2 + Ka1 [H] + Ka1 Ka2

Ct Ka1 Ka2[A] =

R = D - XH2A = D - cH2AsH2AT

cH2A =f (Ka1, Ka2)

Page 11: HA             A -  + H +

pKa1= 3.0 pKa2=4.0

Page 12: HA             A -  + H +

pKa1= 3.0 pKa2=4.5

Page 13: HA             A -  + H +

pKa1= 3.0 pKa2=5.0

Page 14: HA             A -  + H +

pKa1= 3.0 pKa2=5.5

Page 15: HA             A -  + H +

pKa1= 3.0 pKa2=6.0

Page 16: HA             A -  + H +

pKa1= 3.0 pKa2=6.5

Page 17: HA             A -  + H +

pKa1= 3.0 pKa2=7.0

Page 18: HA             A -  + H +

Determination of amount and pKa values of an acid in a mixture with known spectrum of

its components

Page 19: HA             A -  + H +

HA A- + H+

[HA] =

Ct [H+][H+] + Ka

[A-] =

Ct Ka

[H+] + Ka

XHA XAD = +

cHA

sHAcA

sA

= +

R = D - XHA - XA = D - cHAsHAT- cA sA

T

Determination of amount and pKa values of an acid in a mixture with known spectrum of its components

Interferences+

+ Interferences

Page 20: HA             A -  + H +

pH-metric titration of a mixture containing an acid with known spectrum of components

D sHA sA

R = D - XHA -XA= D - cHAsHAT - cA sA

T

cHA =f (C0,Ka) cA =f (C0,Ka)

Page 21: HA             A -  + H +

rafa_CKa.m

Determination of concentration and Pka

values for an uniprotic acid with known spectrum of

HA and A component

Page 22: HA             A -  + H +

Calling function rafa_CKa

Page 23: HA             A -  + H +
Page 24: HA             A -  + H +
Page 25: HA             A -  + H +
Page 26: HA             A -  + H +
Page 27: HA             A -  + H +
Page 28: HA             A -  + H +

?Use RAFA_CKa and determine the amount and pKa values of a known acid in an unknown mixture

Page 29: HA             A -  + H +

Rank Annihilation Factor Analysis for Spectrophotometric Study of Complex Formation Equilibria

Anal. Chim. Acta486, 109-123, 2003

Page 30: HA             A -  + H +

M + nL MLnM + nL MLn

[M] [L][MLn]

Kf= n[M] [L][MLn]

Kf= n

CL = [L] + [ [MLn]

CM = [M] + [ [MLn]

Kf[L]n+1 + (nKfCM – KfCL) [L]n + [L] –CL = 0

[MLn] = Kf CM[L]n / (1+Kf[L]n)

[M] = CM / (1 + Kf[L]n)

One-step complex formation equilibria

Page 31: HA             A -  + H +

XMLnD = XL +

cL

sLcMLn

sMLn

= +

R = D - XL = D - cLsLT

+ Interferences

cL= f(Kf,n)

Rank Annihilation Factor Analysis for Spectrophotometric Study of Complex Formation Equilibria

Page 32: HA             A -  + H +

One step complex formation (n=2)

M + 2L MLM + ML2

[L] [M]

[ML2]

CL=0.001KL=106.

5

Page 33: HA             A -  + H +

rafa_MLn.m

Determination of stoichiometry and

formation constant values for an MLn complex with known spectrum of ligand

Page 34: HA             A -  + H +
Page 35: HA             A -  + H +
Page 36: HA             A -  + H +
Page 37: HA             A -  + H +
Page 38: HA             A -  + H +
Page 39: HA             A -  + H +

n=1

n=2

n=3

n=4n=

5

Page 40: HA             A -  + H +
Page 41: HA             A -  + H +

?Create the data for ML3 system and use RAFA for determination of Kf and its stoichiometry.

Page 42: HA             A -  + H +

MLn.m

Simulation of MLn complex formation system

Page 43: HA             A -  + H +

Calling function MLn

Page 44: HA             A -  + H +
Page 45: HA             A -  + H +
Page 46: HA             A -  + H +
Page 47: HA             A -  + H +
Page 48: HA             A -  + H +
Page 49: HA             A -  + H +
Page 50: HA             A -  + H +
Page 51: HA             A -  + H +
Page 52: HA             A -  + H +

[M] [L][ML]

K1=

[ML] [L][ML2]K2=

CL = [L] + [ML] + 2 [ML2]CM = [M] + [ML] + [ML2]

K1K2[L]3 + (K1(1+K2(2CM –CL)))[L]2 + (1+K1(CM –CL))[L]–CL = 0

ML + L ML2

M + L ML

Two successive step complex formation

Page 53: HA             A -  + H +

A = AL + AML + AML2 + R

= L [L]T + ML [ML]T + ML2 [ML2]T + R

= E CT + R

Two successive step complex formation

R = D - XL = D - cLsLT

cL= f(K1 , K2)

Page 54: HA             A -  + H +

Determination of dissociation constants of uni-protic acids without known spectrum

Page 55: HA             A -  + H +

12

543

54

123

11

111

52

0.20.51

0.1 0.2 0.3 0.40.1 0.3 0.4 0.2

0.1 0.2 0.3 0.40.1 0.3 0.4 0.2

0.60.30.20.150.12

1.70.80.50.350.26

2.31.10.70.50.38

1.40.80.60.50.44

=

0.60.60.60.60.6

1.71.61.51.41.3

2.32.22.12.01.9

1.41.61.82.02.2

=

12

543./

12

543./

A simple mathematical rule

Page 56: HA             A -  + H +

12

543

54

123

12

543./

11

111

52

0.20.51

00

000

3.260.26

-1.54-1.24-0.74

12

543

54

123

32

451./

0.331

1.250.83

1.662

0.250.43

-0.746 0.1980.538

-1.212-1.0621.538

-0.076 1.924-0.276 0.174

Mean centering

Mean centering

Rank = 2 Rank = 2 Rank = 1

Rank = 2 Rank = 2 Rank = 2

Page 57: HA             A -  + H +

HA A- + H+

[HA] =

Ct [H+][H+] + Ka

[A-] =

Ct Ka

[H+] + Ka

D XHA XA= +

cHA

sHAcA

sA

= +

D’ = D ./ cHA

Determination of dissociation constants of uni-protic acids

Mean centering (D’)

cHA = f(Ka)

Page 58: HA             A -  + H +

Titration of an uni-protic acid or a mixture containing an uni-protic acid

Page 59: HA             A -  + H +

Rafa_mcKa.m

Determination of dissociation constants of

uni-protic acids

Page 60: HA             A -  + H +

Calling function rafa_mcKa

Page 61: HA             A -  + H +
Page 62: HA             A -  + H +
Page 63: HA             A -  + H +
Page 64: HA             A -  + H +
Page 65: HA             A -  + H +
Page 66: HA             A -  + H +

?Use mean centering based method for determination of acidity constant of an uniprotic acid in a mixture

Page 67: HA             A -  + H +

Determination of dissociation constants of di-protic acids without known spectrum

Page 68: HA             A -  + H +

cHA =f (Ka1, Ka2)

Determination of dissociation constants of di-protic acids without known spectrum

D’ = D ./ cHA Mean centering (D’)

Page 69: HA             A -  + H +

Rafa_mcH2A.m

Determination of dissociation constants of

di-protic acids

Page 70: HA             A -  + H +

Calling function rafa_mcH2A

Page 71: HA             A -  + H +
Page 72: HA             A -  + H +
Page 73: HA             A -  + H +
Page 74: HA             A -  + H +
Page 75: HA             A -  + H +
Page 76: HA             A -  + H +

?Use mean centering based method for determination of acidity constant of an di-protic acid in a mixture