H11I1286! Arduino(Based-Control-System-for...

1
ArduinoBased Control System for Measuring Ammonia in Air Using Condi8onallydeployed Diffusive Samplers Jay Ham, Chris-na Williams, and Kira Shonkwiler Contact Information: Jay Ham, Professor, Department of Soil and Crop Sciences, Colorado State University. [email protected]. Objec8ve Develop a robo-c condi-onal sampler for Radiello diffusive NH 3 samplers so that cartridges are only exposed to air under userdefined weather condi-ons (i.e., specific wind direc-ons and wind speeds). The control system extends the diffusive sampler into the air using a linear actuator when the wind is coming from the direc-on of the source. Otherwise, the system retracts the sampler into a sealed tube (no sampling). The instrument is lowcost and open source so a large number of self fabricated samplers can be made and deployed by poten-al users (e.g., researchers, consultants, regulators, ci-zen scien-sts, etc.). Design Elements Weather Sensors Anemometer and Wind Vane Temperature and Humidity Tipping Bucket Rain Gauge Datalogger and Control System Arduino Shields for Arduino Suppor-ng Circuits Robo8c Actuators Micro Linear Actuators Acrylic Tubes Hall Effect Transducers (for sensing posi-on) Radiello Ammonia Samplers Solar Power, BaHery, and Enclosure Wireless Communica8on (op8onal) Field Tes8ng All field tes-ng was conducted at large caUle feedlots in Colorado, USA. Typically the Radiello samplers were replaced every two weeks. The NH 3 absorbed by the cartridges was determined by ion chromatography. The mass of N on the sampler and the dura-on of exposure (total min.) was used to calculate the NH 3 ppb in air. Got Beef ? Got Ammonia ! Vola-liza-on from livestock waste is the largest emission source of NH 3 . Fig. 6. Ammonia concentra-ons measured near a caUle feedlot with the Arduino based system (wireless network version). Weather condi-ons met the wind speed and sampling criteria 25% of the -me ( samplers were typically exposed for a total of 3.5 days during a 14day sampling period). Acknowledgments The project was supported by grants from USDA, EPA, and NRCS. What’s Next Develop a custom Arduino shield for the air sampling applica-on. Publish design, schema-cs, bill of materials, sobware, and other fabrica-on specifics for open source sharing on website. Compare sampler to other research grade techniques. Deploying systems at mul-ple dairies and caUle feedlots for longterm sampling, and use data to es-mate NH 3 emissions and NH 3 “ hot spots” using inverse modeling. Objectives Sampling loca-ons near a 25,000 head beef feedlot. Fig. 1. Independent sta-on . NH 3 samplers (blue cylinders) were aUached to linear actuators mounted inside acrylic tubes. When the actuator was extended the exposed cartridge protruded out the boUom of the enclosure – when retracted, the cartridge was sealed. Hardware Arduino Results H11I1286 Independent Sta8ons: Each sampling node has its own sensors and control system makes sampling decisions independent of other nodes. Networked Sta8ons: Sampling nodes are linked via Xbee wireless modules (Digi Interna-onal), a central base sta-on makes sampling decisions – all sampling loca-ons deploy or retract simultaneously (synop-c sampling). Fig. 2a. Tube assembly. Miniature linear actuators (Firgelli Technologies, 50 mm stroke length) were controlled by pulse width modula-on. A disk with a foam pad was aUached to the boUom of the Radiello sampler to seal the tube when retracted. Fig. 2b. Hall effect transducers were used to sense the posi-on of the actuator shab. Data were logged by the Arduino to determine the total number of minutes deployed over a two week period. Hall Effect Sensor Magnet ` ` Linear Actcuator Acrylic Tube Cap Spacer Vertical Adapter Radiello Diffusive Sampler Foam Acrylic Disc Hall Effect Sensor Control Cable Spacer Clevis Clevis Plunger Magnet Hall Effect Cable Actuator: Firgelli Tech., L12502106R Hall Sensor: Cherry Corp., MP101301 NH 3 Sampler: Sigma Aldrich, RAD168, RAD1201, RAD122 1. Arduino Uno 2. Arduino wireless shield with Xbee module 3. Protoshield: actuator and hall sensor interface Fig. 3. Arduino based control system for wireless sensor network . These nodes receive informa-on to deploy or retract via a wireless signal from a central base sta-on. The base sta-on has the meteorological sensors and data logging capability. Fig. 4. Arduino datalogger shield for the independent sta-ons (base PCB by Adafruit Industries). It replaces the wireless shield (middle layer, 2) of the shield stack in the upper photo. Once customized and added to the Arduino and protoboard, the 3layer module is a self contained datalogger and control system that reads: 1) wind speed and direc-on (Nova Lynx, 200 WS02F), air temperature and humidity (Sensitron SH15), and precipita-on. These loggers use the 5min wind vector to deploy or retract the NH 3 samplers. All data are stored on a SD card. Sobware and schema-cs for the system are available on github. hHps://github.com/jaymham/ air_sampler_ind y = 0.941x + 0.2961 R² = 0.9949 0 2 4 6 8 10 12 0 2 4 6 8 10 12 Met One Anemometer + Campebell CR1000 Nova Lynx Anemometer + Arduino Wind Speed (m/s) Comparison Fig. 5. Comparison of 5min average wind speeds measured by a Met One 034B (upper) connected to Campbell Scien-fic CR1000 datalogger vs. a Nova Lynx 200WS02F (lower) connected to an Arduino Uno. Feedlot 25,000 Head 700 m North South West Lot Base Pasture Prevailing Wind 3834551 This project was supported by Agriculture and Food Research Ini-a-ve Compe--ve Grant no. 20106511220508 from the USDA Na-onal Ins-tute of Food and Agriculture. Cost: The bill of materials for a complete independent sta-on (Fig. 1) is $1000 (includes mast/tripod, baUeries, solar panels, etc).

Transcript of H11I1286! Arduino(Based-Control-System-for...

Page 1: H11I1286! Arduino(Based-Control-System-for …Based-Control-System-for-Measuring-Ammonia-in-Air-Using-Condi8onally(deployed-Diffusive-Samplers-! Jay!Ham,!Chris-naWilliams,!and!KiraShonkwiler!

Arduino-­‐Based  Control  System  for  Measuring  Ammonia  in  Air  Using  Condi8onally-­‐deployed  Diffusive  Samplers    

Jay  Ham,  Chris-na  Williams,  and  Kira  Shonkwiler    

Contact Information: Jay Ham, Professor, Department of Soil and Crop Sciences, Colorado State University. [email protected].

Objec8ve    

Develop  a  robo-c  condi-onal  sampler  for  Radiello  diffusive  NH3  samplers  so  that  cartridges  are  only  exposed  to  air  under  user-­‐defined  weather  condi-ons  (i.e.,  specific  wind  direc-ons  and  wind  speeds).      The  control  system  extends  the  diffusive  sampler  into  the  air  using  a  linear  actuator  when  the  wind  is  coming  from  the  direc-on  of  the  source.    Otherwise,  the  system  retracts  the  sampler  into  a  sealed  tube  (no  sampling).                    The  instrument  is  low-­‐cost  and  open  source  so  a  large  number  of  self-­‐fabricated  samplers  can  be  made  and  deployed  by  poten-al  users  (e.g.,  researchers,  consultants,  regulators,  ci-zen  scien-sts,  etc.).    

Design  Elements      

§   Weather  Sensors  ü   Anemometer  and  Wind  Vane  ü   Temperature  and  Humidity  ü   Tipping  Bucket  Rain  Gauge  

§   Datalogger  and  Control  System  ü   Arduino  ü   Shields  for  Arduino  ü   Suppor-ng  Circuits  

§   Robo8c  Actuators  ü   Micro  Linear  Actuators  ü   Acrylic  Tubes  ü   Hall  Effect  Transducers  (for  sensing  posi-on)  

§   Radiello  Ammonia  Samplers  §   Solar  Power,  BaHery,  and  Enclosure  §   Wireless  Communica8on  (op8onal)  

 

Field  Tes8ng    

All  field  tes-ng  was  conducted  at  large  caUle  feedlots  in  Colorado,  USA.    Typically  the  Radiello  samplers  were  replaced  every  two  weeks.  The    NH3  absorbed  by  the  cartridges  was  determined  by  ion  chromatography.    The  mass  of  N  on  the  sampler  and  the  dura-on  of  exposure  (total  min.)  was  used  to  calculate  the  NH3  ppb  in  air.      

 Got  Beef  ?    Got  Ammonia  !  

 Vola-liza-on  from    livestock  waste  is  the  largest  emission  source  of  NH3.      

Fig.  6.  Ammonia  concentra-ons  measured  near  a  caUle  feedlot  with  the  Arduino  based  system  (wireless  network  version).    Weather  condi-ons  met  the  wind  speed  and  sampling  criteria  25%  of  the  -me  (  samplers  were  typically  exposed  for  a  total  of  3.5  days  during  a  14-­‐day  sampling  period).        

Acknowledgments  The  project  was  supported  by  grants  from  USDA,  EPA,  and  NRCS.      

 

What’s  Next    

•  Develop    a  custom  Arduino  shield  for  the  air  sampling  applica-on.    

•  Publish  design,  schema-cs,  bill  of  materials,  sobware,  and  other  fabrica-on  specifics    for  open  source  sharing  on  website.    

•  Compare  sampler  to  other  research  grade  techniques.    

•  Deploying  systems  at  mul-ple  dairies  and  caUle  feedlots  for  long-­‐term  sampling,  and  use    data  to  es-mate  NH3  emissions  and  NH3  “  hot  spots”  using  inverse  modeling.    

Objectives

Sampling  loca-ons  near  a  25,000  head  beef  feedlot.    

Fig.  1.  Independent  sta-on.  NH3  samplers  (blue  cylinders)  were  aUached  to  linear  actuators    mounted  inside  acrylic  tubes.  When  the  actuator  was  extended  the  exposed  cartridge  protruded  out  the  boUom  of  the  enclosure  –  when  retracted,  the  cartridge  was  sealed.      

Hardware Arduino Results

H11I-­‐1286  

Independent  Sta8ons:    Each  sampling  node  has  its  own  sensors  and  control  system  -­‐  makes  sampling  decisions  independent  of  other  nodes.    Networked  Sta8ons:  Sampling  nodes  are  linked  via  Xbee  wireless  modules  (Digi  Interna-onal),    a  central  base  sta-on  makes  sampling  decisions  –  all  sampling  loca-ons  deploy  or  retract  simultaneously  (synop-c  sampling).  

Fig.  2a.  Tube  assembly.  Miniature  linear  actuators    (Firgelli  Technologies,  50  mm  stroke  length)  were  controlled  by  pulse  width  modula-on.  A  disk  with  a  foam  pad  was  aUached  to  the  boUom  of  the  Radiello  sampler  to  seal  the  tube  when  retracted.  

Fig.  2b.  Hall  effect  transducers  were  used  to  sense  the  posi-on  of  the  actuator  shab.    Data  were  logged  by  the  Arduino  to  determine  the  total  number  of  minutes  deployed  over  a  two  week  period.  

Hall  Effect  Sensor  

Magnet  

``

Linear  Actcuator

Acrylic  Tube

Cap

Spacer

Vertical  Adapter

Radiello  Diffusive  Sampler

Foam

Acrylic  Disc

Hall  Effect  Sensor

Control  Cable

Spacer

Clevis

Clevis

PlungerMagnet

Hall  Effect  Cable Actuator:  Firgelli  Tech.,  L12-­‐50-­‐210-­‐6-­‐R  Hall  Sensor:  Cherry  Corp.,  MP101301  NH3  Sampler:  Sigma  Aldrich,  RAD168,  

 RAD1201,  RAD122  

1.  Arduino  Uno  

2.  Arduino  wireless  shield  with  Xbee  module  

3.  Protoshield:  actuator  and  hall  sensor  interface  

Fig.  3.  Arduino  based  control  system    for  wireless  sensor  network.  These  nodes  receive  informa-on  to  deploy  or  retract  via  a  wireless  signal  from  a  central  base  sta-on.    The  base  sta-on  has  the  meteorological  sensors  and  data  logging  capability.      

Fig.  4.  Arduino  datalogger  shield  for  the  independent  sta-ons  (base  PCB  by  Adafruit  Industries).  It    replaces  the  wireless  shield  (middle  layer,  2)  of  the  shield  stack  in  the  upper  photo.  Once  customized  and  added  to  the  Arduino  and  protoboard,  the  3-­‐layer  module  is  a  self  contained  datalogger  and  control  system  that  reads:  1)  wind  speed  and  direc-on  (Nova  Lynx,  200-­‐WS-­‐02F),  air  temperature  and  humidity    (Sensitron  SH15),    and  precipita-on.  These  loggers  use  the  5-­‐min  wind  vector  to  deploy  or  retract  the  NH3  samplers.    All  data  are  stored  on  a  SD  card.  Sobware  and  schema-cs  for  the  system  are  available  on  github.    hHps://github.com/jaymham/air_sampler_ind  

y  =  0.941x  +  0.2961R²  =  0.9949

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Met  One

 Ane

mom

eter    +  Cam

pebe

ll  CR

1000

Nova  Lynx  Anemometer  +  Arduino

Wind  Speed  (m/s)  Comparison

Fig.  5.  Comparison  of  5-­‐min  average  wind  speeds  measured  by  a  Met  One  034B  (upper)  connected  to    Campbell  Scien-fic  CR1000  datalogger  vs.  a  Nova  Lynx  200-­‐WS-­‐02F  (lower)  connected  to  an  Arduino  Uno.    

Feedlot  25,000  Head  

700  m  

North  

South  

West  Lot  

Base  Pasture  

Prevailing    Wind  

3834551  

This  project  was  supported  by  Agriculture  and  Food  Research  Ini-a-ve  Compe--ve  Grant  no.  2010-­‐65112-­‐20508  from  the  USDA  Na-onal  Ins-tute  of  Food  and  Agriculture.  

Cost:      The  bill  of  materials  for  a  complete  independent  sta-on    (Fig.  1)  is  $1000    (includes  mast/tripod,  baUeries,  solar  panels,  etc).