GWC2:Evaporaon$ - edXdelftxdownloads.tudelft.nl/CTB3300WCx-Water-Climate/Week... · 2014. 8....

35
Prof.dr.ir. Hubert H.G. Savenije GWC 2: Evapora-on CTB3300WCx: Introduc2on to Water and Climate

Transcript of GWC2:Evaporaon$ - edXdelftxdownloads.tudelft.nl/CTB3300WCx-Water-Climate/Week... · 2014. 8....

  • Prof.dr.ir.  Hubert  H.G.  Savenije  

    GWC  2:  Evapora-on  

    CTB3300WCx:  Introduc2on  to  Water  and  Climate  

  • Importance  of  Evapora-on  

    §  Generally  the  largest  outgoing  flux  §  Par;cularly  in  dry  climates  

    §  Is  o?en  seen  as  a  ‘loss’  (Sudd)  §  But  is  an  important  supplier  of      con;nental  precipita;on    (moisture  recycling)  

  • Types  of  Evapora-on  

    §  Direct  evapora;on  (physical  process)  §  Open  water  evapora;on  Eo §  Soil  evapora;on Es §  Intercep;on  evapora;on  Ei §  Sublima;on  of  snow  or  ice  Esnow

    §  Transpira;on  ET  (bio-‐physical  process)  §  Total  evapora;on  E = Eo+Es+Ei+Esnow+ET

     

  • Evapora-on  or  ‘evapotranspira-on’  

    Avoid  to  use  the  term  ‘Evapotranspira3on’    

    §  ‘Evapotranspira;on’  is  opaque  jargon  for  bulk    evapora-on,  masking  that  we  do  not  know  its    composi;on  à  Use  (total)  evapora2on  instead  

       

  • Poten-al  Evapora-on  

    Poten3al  evapora3on,  Ep    §  Would  occur  if  there  is  no  shortage  of  water,  §  Or  other  factors  that  may  limit  transpira;on  (temperature,  solar  radia2on,  humidity).  

     

    Actual  evapora-on,  E  §  occurs  if  these  stress  factors  are  accounted  for

  • Average  (annual)  evapora-on  

    E = P −Q

    EP= 1− Q

    P= 1−CR

    is  the  mean  annual  runoff  [mm/a]  

    is  the  mean  annual  precipita;on  [mm/a]  

    is  the  mean  annual  evapora;on  [mm/a]  

    QPE

  • Actual  evapora-on  

    E ≤ Ep

    E ≤ P

    Energy  constraint  

    Moisture  constraint  

  • Budyko  Curve  

    EP= 1− exp −

    EpP

    ⎝⎜

    ⎠⎟

    ⎝⎜

    ⎠⎟ = 1−CR

    §  If  P → 0, E = P §  If  P → ∞, E = Ep Budyko  (1920-‐2001)  

  • 0,00  

    0,10  

    0,20  

    0,30  

    0,40  

    0,50  

    0,60  

    0,70  

    0,80  

    0,90  

    1,00  

    0,00   0,50   1,00   1,50   2,00   2,50   3,00   3,50   4,00   4,50   5,00  

    E/P  

    Epot/P      =    Aridity  index  

    Congo  

    Yangtze  

    Yellow  River  

    Brahmaputra/Ganges  

    Lena  

    Parana  

    Amazon  

    Mississippi  

    Mackenzie  

    Danube  

    Volga  

  • Meteorological  factors  affec-ng  evapora-on  

    §  Energy  balance  §  Radia;on  §  Humidity  §  Aerodynamic  resistance  

  • Radia-on  Balance  

    BCN RRrR −−= )1(RN : Net short wave radiation [W/m2] RC : Incoming short wave radiation RB : Outgoing long wave radiation r : Albedo or whiteness

    Surface   Albedo  (r)  

    Open  water   0.06  

    Grass   0.24  

    Bare  soil   0.10  –  0.30  

    Fresh  snow   0.90  

    Short  wave    Long  wave  

    RA  

    RB  rRC  RC  

  • Radiometer  

  • Sunshine  Recorder  

    §  RC  can  be  determined  empirically  by  the    theore;cal  sun  hours  and  n/N  

    §  n/N  is  the  ra;o  of  recorded  sun  hours  to  the    theore;cal  (poten;al)  sun  hours  

     

    Netherlands   RC = (0.20 + 0.48 n/N)RA Average   RC = (0.25 + 0.50 n/N)RA New  Delhi   RC = (0.31 + 0.60 n/N)RA Singapore   RC = (0.21 + 0.48 n/N)RA

  • Short  wave  radia3on  expressed  in  terms  of  evapora3on    RA/λ in  kg m-2day-1  

    Maximum  amount  of  sun  hours  per  day  N    

  • Outgoing  Long  wave  radia-on  

    § RB  is  calculated  through  an  empirical  equa;on  

    le?   middle   right  

  • Humidity  es = 0.61exp

    19.9ta273+ ta

    ⎛⎝⎜

    ⎞⎠⎟

    s = desd t

    = 5430es273+ ta( )2

    ea (ta ) = es (tw )−γ (ta − tw )

  • Psychrometer  

    ta is the dry bulb temperature tw is the wet bulb temperature es(tw) is the saturation pressure at the wet bulb temperature γ is the psychrometer constant (0.066 kPa/oC h is the relative humidity

    ea (ta ) = es (tw )−γ (ta − tw )

    h = ea (t)es (t)

  • Energy  balance  

    EN

    S R H A Et

    ρλΔ

    = − − −Δ

    [Wm-‐2]  

    ( ) (1 )N C BR H r R R HEρλ ρλ

    − − − −= = [m/d]  

    Assume:    ΔS/Δt=0, A=0 }  On  daily  basis  !!  

  • Penman  (1948)  

    §  Open  water  evapora;on  based  on  the  energy  balance,  §  but  making  use  of  empirical  rela;ons  §  4  standard  meteorological  variables:  

    §  air  temperature  §  rela2ve  humidity  §  wind  velocity  §  net  radia2on  

     

  • Penman  Formula  

    p aN s a

    ao

    csR e er

    Es

    ρ

    ρλ ρλ

    γ

    ⎛ ⎞−+⎜ ⎟

    ⎝ ⎠=+

    RN net radiation at the Earth surface [J day-1 m-2] λ heat of evaporation (λ = 2.45 MJ/kg ) [J kg-1] s slope of the saturation pressure curve [kPa K-1] cp specific heat of air (1004 J kg-1 K-1) [J kg-1 K-1] ρa density of air (1.205 kg/m3) [kg m-3] ρ density of water (1000 kg/m3) [kg m-3] ea actual vapour pressure of the air at 2 m elevation [kPa] es saturation vapour pressure for the temp. at 2 m elevation [kPa] γ psychrometer constant (γ = 0.066 kPa/oC) [kPa K-1] ra aerodynamic resistance [day m-1]

    [m/d]  ra =

    2450.54u2 + 0.5( )

    186400

    [d/m]

  • Penman-‐Monteith  

    1

    p aN s a

    aa

    c

    a

    csR e er

    Ersr

    ρ

    ρλ ρλ

    γ

    ⎛ ⎞−+⎜ ⎟

    ⎝ ⎠=⎛ ⎞

    + +⎜ ⎟⎝ ⎠

    [m/d]  

  • Crop  resistance  rc  

    §  Provides  a  constraint  on  the  transpira;on  of  vegeta;on  §  Depends  on  the  opening  of  stomata  in  leaves,  as  a  func;on  of:  

    §  Soil  moisture  availability  §  Rela2ve  humidity  §  Sunlight  §  Temperature  

     

  • Evapora-on  of  the  World  

  • Direct  measurement  of  evapora-on  

    §  Water  balance:  §  Evapora;on  pan  §  Lysimeter  §  Shallow  Lysimeter    

    E = P − QA− dSd t

    [L/T]  

  • Pan  evapora-on  

  • Lysimeter  

    Soil  

    Soil  saturated  with  water  

    Pump  

    Floater  

  • Intercep-on  measurement  Precipita3on  

    Canopy  intercep3on  

    Forest  floor    intercep3on  

    throughfall  

    stemflow  

    Infiltra3on  

  • Shallow  Lysimeter  

  • Shallow  Lysimeter  

    dSupperdt

    +dSlower

    dt= P − E − Q

    A

  • The  evapora-on  tower  

  • Further  reading  

    Mohamed,  Y.  A.,  van  den  Hurk,  B.  J.  J.  M.,  Savenije,  H.  H.  G.,  and  Bas;aanssen,  W.  G.  M.,  2005.  Hydroclimatology  of  the  Nile:  Results  from  a  regional  climate  model.  Hydrol.  and  Earth  Syst.  Sc.,  9:  263-‐27.  hjp://www.hydrol-‐earth-‐syst-‐sci.net/9/263/2005/hess-‐9-‐263-‐2005.html  Wang-‐Erlandsson,  L.,  R.  van  der  Ent,  L.  Gordon  and  H.H.G.  Savenije.  2014  Contras;ng  roles  of  intercep;on  and  transpira;on  in  the  hydrological  cycle  –  Part  1:  Simple  Terrestrial  Evapora;on  to  Atmosphere  Model,  Earth  Syst.  Dynam.  Discuss.,  5,  203-‐279.  hjp://www.earth-‐syst-‐dynam-‐discuss.net/5/203/2014/esdd-‐5-‐203-‐2014.html  

    Gerrits,  A.M.J.,  H.H.G.  Savenije,  L.  Hoffmann  and  L.  Pfister,  2007.  New  technique  to  measure  forest  floor  intercep;on  –  an  applica;on  in  a  beech  forest  in  Luxembourg,  Hydrol.  and  Earth  Syst.  Sc.,  11,  695–701.hjp://www.hydrol-‐earth-‐syst-‐sci.net/11/695/2007/hess-‐11-‐695-‐2007.html  Euser,  T.,  W.  M.  J.  Luxemburg,  C.  S.  Everson,  M.  G.  Mengistu,  A.  D.  Clulow,  and  W.  G.  M.  Bas;aanssen,  2014.  A  new  method  to  measure  Bowen  ra;os  using  high-‐resolu;on  ver;cal  dry  and  wet  bulb  temperature  profiles,  Hydrol.  Earth  Syst.  Sci.,  18,  2021-‐2032.    hjp://www.hydrol-‐earth-‐syst-‐sci.net/18/2021/2014/hess-‐18-‐2021-‐2014.html      

  • Prof.dr.ir.  Hubert  H.G.  Savenije  

    GWC  2:  Evapora-on  

    CTB3300WCx:  Introduc2on  to  Water  and  Climate  

  • Prof.dr.ir.  Hubert  H.G.  Savenije  

    GWC  2:  Evapora-on  

    CTB3300WCx:  Introduc2on  to  Water  and  Climate  

  • Ques-ons  

    1.  Why  is  actual  evapora2on  smaller  than  poten2al    evapora2on?  

    2.  Why  is  average  annual  evapora2on  less  than  average  annual    precipita2on?  

    3.  Is  evapora2on  also  less  than  precipita2on  on  a  daily  basis?