GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A...

12
GSA DATA REPOSITORY 2013345

Transcript of GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A...

Page 1: GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2 621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2 607 225 1526

GSA DATA REPOSITORY 2013345

Page 2: GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2 621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2 607 225 1526

Bowman et al. Cretaceous winter sea ice?

Stra

tigra

phic

hei

ght (

m)

Lith

ostra

tigra

phy

Impl

etos

phae

ridiu

m c

lavu

s

Impl

etos

phae

ridiu

m c

lavu

s

Pal

ynom

orph

eve

nts

Not

hofa

gidi

tes

spp.

Not

hofa

gidi

tes

spp.

Tric

olpi

tes

retic

ulat

us

Cla

vam

onoc

olpi

tes

poly

gona

lis

Eric

ipite

s sc

abra

tus

Fung

al p

alyn

omor

ph p

rese

nce

Tota

l con

tem

pora

neou

sm

arin

e pa

lyno

mor

phs

Tota

l con

tem

pora

neou

s te

rres

trial

pal

ynom

orph

s

Mar

ine:

Terr

estri

al ra

tio

(con

tem

pora

neou

s)

Sam

ple/

slid

e nu

mbe

r

Sub

-sec

tion

Sam

ple

heig

ht w

ithin

sub

-sec

tion

No.

trav

erse

s co

unte

d on

eac

h sl

ide

Rawcount

Cystsper g

Rawcount

Pollengrainsper g

Rawcount

Rawcount

Rawcount

Rawcount

Rawcount

Rawcount

1084 SF 371 22648 49 2989 528 164 0.76 D5.1387.1A D5.229 110 11074 248 1375 53 294 x 394 186 0.68 D5.1379.1A,B D5.229 100 111064 41 1251 91 2776 x 58 320 0.15 D5.1363.1A D5.229 90 21054 141 2867 77 1566 182 300 0.38 D5.1343.1A D5.229 80 31044 56 3416 74 4514 255 199 0.56 D5.1331.1A D5.229 70 11034 21 1281 26 1586 x 1091 95 0.92 D5.1320.1A D5.229 60 1

Equation used for calculation of palynomorphs per gram (g) of dry sediment: 1024 61 3721 24 1464 258 130 0.66 D5.1309.1A D5.229 50 11014 147 1281 53 462 184 246 0.43 D5.1299.1A D5.229 40 7

Pg 1008 39 2379 18 1098 247 62 0.80 D5.1293.1A D5.229 34 1K 1004 55 1118 37 752 1 97 251 0.28 D5.1289.1A D5.229 30 3

994 12 244 12 244 1 233 157 0.60 D5.1279.1A D5.229 20 3988 63 3843 27 1647 159 184 0.46 D5.1253.1A D5.222 40 1984 35 2135 33 2013 87 222 0.28 D5.1268.1A D5.229 10 1978 25 305 44 537 x 45 330 0.12 D5.1248.1A D5.222 30 5974 31 378 39 476 91 297 0.23 D5.1258.1A D5.229 0 5968 48 1464 43 1312 1 97 247 0.28 D5.1242.1A D5.222 20 2958 8 488 16 976 239 122 0.66 D5.1237.1A D5.222 10 1948 14 142 41 417 x 57 245 0.19 D5.1230.1A D5.222 0 6940 41 834 30 610 x 114 244 0.32 D5.1225.1A D5.220 70 3930 34 519 31 473 1 74 306 0.19 D5.1220.1A D5.220 60 4920 96 1464 41 625 1 x x 133 307 0.30 D5.1215.1A D5.220 50 4910 16 325 32 651 x 1 x 39 279 0.12 D5.1210.1A D5.220 40 3

Laboratory processing methodology: 900 34 519 35 534 x x 71 299 0.19 D5.1205.1A D5.220 30 4890 6 92 63 961 x x 29 347 0.08 D5.1198.1A D5.220 20 4880 80 1220 45 686 x x x x 143 239 0.37 D5.1192.1A D5.220 10 4870 23 468 35 712 x 1 x 64 279 0.19 D5.1187.1A D5.220 0 3866 31 630 27 549 x x x 150 224 0.40 D5.1184.1A D5.219 180 3856 18 366 35 712 x x 73 249 0.23 D5.1179.1A D5.219 170 3846 48 732 50 763 4 x 106 268 0.28 D5.1174.1A D5.219 160 4836 117 649 64 355 2 x 163 296 0.36 D5.1168.1A D5.219 150 11833 93 567 56 342 1 x 138 269 0.34 D5.1165.1A D5.219 147 10830 910 9250 56 569 1 1 x 941 280 0.77 D5.1162.1A D5.219 144 6826 1426 21744 51 778 1449 315 0.82 D5.1160.1A D5.219 140 4816 2440 37203 34 519 2466 288 0.90 D5.1155.1A D5.219 130 4808 1120 13661 38 464 x 1154 276 0.81 D5.1151.1A D5.219 122 5796 961 29316 57 1739 x 999 396 0.72 D5.1147.1A D5.219 110 2786 645 5617 62 540 1 693 290 0.70 D5.1142.1A D5.219 100 7776 1675 51080 58 1769 1 x x 1699 293 0.85 D5.1137.1A D5.219 90 2766 2952 45018 63 961 2 x 2997 281 0.91 D5.1132.1A D5.219 80 4756 2905 59061 53 1078 2957 303 0.91 D5.1128.1A D5.219 70 3

736 2543 77564 67 2044 2569 343 0.88 D5.1116.1A D5.219 50 2726 2070 63139 67 2044 2085 315 0.87 D5.1106.1A D5.219 40 2716 3514 53582 40 610 3561 372 0.91 D5.1096.1A D5.219 30 4706 414 8422 33 671 444 310 0.59 D5.1086.1A D5.219 20 3696 1162 35445 71 2166 1183 396 0.75 D5.1077.1A D5.219 10 2681 445 13572 81 2471 476 452 0.51 D5.1061.1A D5.218 60 2661 2174 44195 72 1464 x 2239 341 0.87 D5.1040.1A D5.218 40 3641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2607 225 1526 34 230 305 245 0.55 D5.691.1A D5.215 220 9587 251 7651 71 2166 x 312 324 0.49 D5.672.1A D5.215 200 2567 430 8748 56 1139 x 472 319 0.60 D5.388.1A D5.215 180 3547 345 10527 69 2105 x 385 341 0.53 D5.368.1A D5.215 160 2527 158 4804 103 3142 234 406 0.37 D5.347.1A D5.215 140 2507 170 5189 67 2044 229 308 0.43 D5.327.1A D5.215 120 2487 1872 57096 89 2715 1919 418 0.82 D5.307.1A D5.215 100 2467 176 5372 86 2623 232 350 0.40 D5.990.1A D5.215 80 2447 1092 33296 112 3416 1137 411 0.73 D5.970.1A D5.215 60 2427 1545 47112 122 3721 1625 382 0.81 D5.950.1A D5.215 40 2

383 944 28782 70 2135 1012 307 0.77 D5.905.1A D5.212 320 2363 516 10485 54 1098 x 565 300 0.65 D5.886.1A D5.212 300 3343 456 13921 89 2715 x 497 330 0.60 D5.866.1A D5.212 280 2323 350 10661 68 2074 420 221 0.65 D5.846.1A D5.212 260 2303 340 3458 67 681 x 415 276 0.60 D5.827.1A D5.212 240 6283 601 18327 86 2623 728 328 0.69 D5.807.1A D5.212 220 2263 336 10252 92 2806 x 385 320 0.55 D5.587.1A D5.212 200 2243 453 9216 81 1647 x 514 269 0.66 D5.567.1A D5.212 180 3223 776 15771 129 2623 x 845 367 0.70 D5.545.1A D5.212 160 3203 474 28911 32 1952 x 732 148 0.83 D5.525.1A D5.212 140 1183 494 15081 72 2196 528 323 0.62 D5.504.1A D5.212 120 2163 4077 62171 66 1007 4133 292 0.93 D5.487.1A D5.212 100 4

123 184 5608 105 3203 x 252 343 0.42 D5.445.1A D5.212 60 2105 131 3991 86 2623 x 178 297 0.37 D5.430.1A D5.212 42 285 637 7769 101 1232 x 674 329 0.67 D5.414.1A D5.212 22 563 207 2521 82 1000 263 246 0.52 D5.401.1A D5.212 0 540 164 3337 89 1810 x 234 295 0.44 D5.641.1A D5.201 40 320 36 634 61 1074 x 100 218 0.31 D5.621.1A D5.201 20 50 82 1031 51 641 153 157 0.49 D5.601.1A D5.201 0 7

0.92

Table DR1. Palynological methodology and data relevant to this study for section D5.251, Seymour Island, Antarctica.

Samples D5.601.1A and D5.621.1A were counted on a Leica DM750P transmitted light microscope at x40 magnification (total number of traverses per cover slip = 44).All other samples were counted on a Leitz Ortholux transmitted light microscope at x25 magnification (total number of traverse per cover slip = 30.5).

=(count * (total number traverses per cover slip/number traverses counted to reach approx. 300 palynomorphs where possible))/amount of organic residue mounted on slide in grams

In the data table, data in italics refers to a questionable occurrence; x, specimen(s) present in slide beyond formal count.

The sediment was sieved at 180 µm, treated with hydrochloric acid and hydrofluoric acid then oxidized briefly with nitric acid. The organic residue was concentrated by centrifugation and sieved again at 10 µm before a standard aliquot (0.5 grams) was mounted on a glass slide. At least 300 palynomorphs were counted from each slide. All samples and slides are curated by the British Antarctic Survey, Cambridge, UK.

746 2794 85217 C 69 2105 2831 340 D5.1121.1A0.89 D5.219 60 2

407 4482 136692 B 112 3416 4629 383 D5.930.1A D5.215 20 20.92

143 3137 95665 A 88 2684 3182 262

SH

IFLó

pez

de B

erto

dano

For

mat

ion

This table includes both the raw count data and the cysts/pollen grains calculated per gram of dried sediment (equation used stated below). Reworked palynomorphs were rare, so not included here. Note, only data for the López de Bertodano Formation is plotted in Figure 2.

K, Cretaceous; Pg, Paleogene; SHIF, Snow Hill Island Formation; SF, Sobral Formation. Lithostratigraphy after Pirrie et al. (1997), Crame et al. (2004) and Olivero et al. (2008). Unconformities separate the three formations.

D

D5.466.1A D5.212 80 2

Page 3: GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2 621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2 607 225 1526

Bowman et al. Cretaceous winter sea ice?

Table DR2. Biostratigraphical references to support the age model of the López de

Bertodano Formation, Seymour Island, Antarctic Peninsula.

Dating by other authors of measured sections through the López de Bertodano Formation on

Seymour Island has allowed the construction of a robust age model for section D5.251 (this study)

using the K/Pg boundary as a datum. Magnetic polarity zonal boundaries (Tobin et al., 2012) and

strontium isotope ratios (McArthur et al., 1998) have been correlated to D5.251 using stratigraphic

height (in metres) relative to the K/Pg boundary identified in each study. We have had to assume

planar bedding and continuous sedimentation for these correlations. Due to these assumptions,

direct comparison of individual data points between Tobin et al.’s (2012) dataset and our own (for

example, on Fig. 2) at any specific stratigraphic horizon is not valid due to these assumptions made.

However, we consider any error in stratigraphic position of the correlated data is likely to be

minimal based on field knowledge of the outcrop along strike from our measured section and

comparisons between our own dinoflagellate cyst biostratigraphy (Bowman et al., 2012) and Tobin

et al.’s (2012) magnetic polarity zonal boundaries.

The timescale has been added by linear interpolation between the known ages of reversal

boundaries after Gradstein et al. (2012). Strontium isotope ratios measured by McArthur et al.

(1998) compare favorably with our age model by comparison with the updated strontium

stratigraphy for the Maastrichtian Stage (Vonhof et al., 2011). No discrete ashes have been recorded

from the López de Bertodano Formation. Biostratigraphical studies in support of this age model

include those listed below.

Fossil group Reference

Dinoflagellate cysts Askin, 1988

Askin and Jacobson, 1996

Bowman et al., 2012

Thorn et al., 2007, 2009

Other microfossils (foraminifera, diatoms,

sillicoflagellates, calcareous nannoplankton)

Harwood, 1988

Huber, 1985

Huber, 1988

Huber et al., 1983

Macrofossils Crame et al., 1999, 2004

Macellari, 1987

Marshall, 1995

Olivero and Medina, 2000

Tobin et al., 2012

Zinsmeister, 1998

Zinsmeister et al., 1989

Page 4: GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2 621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2 607 225 1526

Bowman et al. Cretaceous winter sea ice?

Table DR3. Modern analogue interpretation of key terrestrial palynomorphs.

The terrestrial palynomorph assemblage from the López de Bertodano Formation, Seymour Island,

Antarctic Peninsula, was found to have close similarity to that of the New Zealand Late Cretaceous

palynoflora, many detailed within an online database: “New Zealand fossil spores and pollen: an

illustrated catalogue” (Raine et al., 2011). These taxa are illustrated in Figure DR1.

Terrestrial palynomorph

taxa

Nearest modern

relatives

Modern

climatic/habitat

preference

References

Tricolpites reticulatus

Cookson 1947 ex Couper

1953

Gunneraceae.

Specimens of Tricolpites

reticulatus previously

found on Vega Island

(Dettmann and Thomson,

1987) have been compared

to the pollen of Gunnera

macrophylla, a modern

species from Papua New

Guinea. This particular

Gunnera pollen

morphotype was also found

in all the New Zealand and

Tasmanian Milligania

species (a primitive sub-

genus of Gunnera), but is

absent in South America

today (Wanntorp et al.,

2004).

Tropical and south

temperate super-

humid environments,

commonly with

moderate to heavy

rainfall and at

moderate to high

elevation.

Jarzen, 1980

(and

references

therein).

Clavamonocolpites

polygonalis Askin 1994

?Chloranthaceae (evergreen

plants with distinctly

serrate-margined leaves).

Tropical and warm

temperate latitudes.

Askin 1994;

Mabberley,

1997.

Ericipites scabratus Harris

1965

Ericaceae (dicotyledonous

angiosperm families).

Most Epacridaceae

(now included within

Ericaceae, Kron et al.,

2002) occur today in

arid, strongly seasonal

regions where pollen

does not preserve

well. Macrofossils of

epacrids tend to imply

growth in temperate

climates (Jordan and

Hill, 1996).

Harris, 1965;

Askin, 1990;

Dettmann,

1994;

Jordan and

Hill, 1996.

Page 5: GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2 621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2 607 225 1526

Bowman et al. Cretaceous winter sea ice?

Table DR4. List of fossil and modern species.

This table lists all formally defined botanical and zoological species mentioned in this paper, both

fossil and modern, together with full author citations. The species are listed alphabetically and

grouped by type.

Dinoflagellate cysts:

Impletosphaeridium clavus Wrenn & Hart 1988 emend. Bowman et al. 2013

Islandinium minutum (Harland and Reid in Harland et al. 1980) Head et al. 2001

Bryophyte spores:

Stereisporites antiquasporites (Wilson & Webster 1946) Dettmann 1963

Pteridophyte spores:

Laevigatosporites ovatus Wilson & Webster 1946

Gymnospermous pollen:

Phyllocladidites mawsonii Cookson 1947 ex Couper 1953

Angiospermous pollen:

Clavamonocolpites polygonalis Askin 1994

Ericipites scabratus Harris 1965

Peninsulapollis gillii (Cookson 1957) Dettmann & Jarzen 1988

Tricolpites reticulatus Cookson 1947 ex Couper 1953

Plantae:

Gunnera macrophylla Blume 1826

Belemnite:

Dimitobelus (Dimitocamax) seymouriensis Doyle & Zinsmeister 1988

Page 6: GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2 621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2 607 225 1526

Bowman et al. Cretaceous winter sea ice?

Bivalves:

Pycnodonte cf. P. vesiculosa Sowerby 1823

Linotrigonia pygoscelium Wilckens 1910

Page 7: GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2 621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2 607 225 1526

Bowman et al. Cretaceous winter sea ice?

REFERENCES FOR DATA REPOSITORY:

Askin, R.A., 1988, Campanian to Paleocene palynological succession of Seymour and adjacent

islands, northeastern Antarctic Peninsula, in Feldmann, R.M., and Woodburne, M.O., eds., The

Geology and Paleontology of Seymour Island: Geological Society of America Memoir, v. 169,

p. 131–153.

Askin, R.A., 1990, Campanian to Paleocene spore and pollen assemblages of Seymour Island,

Antarctica: Review of Palaeobotany and Palynology, v. 65, p. 105-113.

Askin, R.A., 1994, Monosulcate angiosperm pollen from the López de Bertodano Formation (upper

Campanian – Maastrichtian – Danian) of Seymour Island, Antarctica: Review of Palaeobotany

and Palynology, v. 81, p. 151-164.

Askin, R.A., Jacobson, S.R., 1996, Palynological change across the Cretaceous–Tertiary boundary

on Seymour Island, Antarctica: environmental and depositional factors, in Macleod, N., Keller,

G., eds., Cretaceous–Tertiary Mass Extinctions: Biotic and Environmental Changes. W.W.

Norton and Company, New York, p. 7–25.

Blume, C.L. von, 1826, Bijdragen tot de Flora van Nederlandsch Indie, v. 10, p. 513.

Bowman, V.C., Francis, J.E., Riding, J.B., Hunter, S.J., and Haywood, A.M., 2012, A latest

Cretaceous to earliest Paleogene dinoflagellate cyst zonation from Antarctica, and implications

for phytoprovincialism in the high southern latitudes: Review of Palaeobotany and Palynology,

v. 171, p. 40-56.

Bowman, V.C., Riding, J.B., Francis, J.E., Crame, J.A., and Hannah, M.J., 2013, The taxonomy and

palaeobiogeography of small chorate dinoflagellate cysts from the Late Cretaceous to

Quaternary of Antarctica: Palynology, v. 37, p. 151-169.

Page 8: GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2 621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2 607 225 1526

Bowman et al. Cretaceous winter sea ice?

Cookson, I.C., 1947, Plant microfossils from the lignites of the Kerguelen Archipelago: British and

New Zealand Antarctic Research Expedition, 1929-1931, Reports (Series A), v. 2(8), p. 129-

142.

Cookson, I.C., 1957, On some Australian Tertiary spores and pollen grains that extend the

geological and geographical distribution of living genera: Proceedings of the Royal Society of

Victoria, v. 69, p. 41-53.

Couper, R.A., 1953, Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand:

New Zealand Geological Survey Palaeontological Bulletin, v. 22, 77 pp.

Crame, J.A., McArthur, J.M., Pirrie, D., and Riding, J.B., 1999, Strontium isotope correlation of the

basal Maastrichtian Stage in Antarctica to the European and US biostratigraphic schemes:

Journal of the Geological Society of London, v. 156, p. 957–964.

Crame, J.A., Francis, J.E., Cantrill, D.J., and Pirrie, D., 2004. Maastrichtian stratigraphy of

Antarctica: Cretaceous Research, v. 25, p. 411–423.

Dettmann, M.E., 1963, Upper Mesozoic microfloras from south-eastern Australia: Proceedings of

the Royal Society of Victoria, v. 77, p. 1-148.

Dettmann, M.E., 1994, Cretaceous vegetation: the microfossil record, in Hill, R.S., ed., History of

the Australian Vegetation: Cretaceous to Recent: Cambridge, U.K., Cambridge University

Press, p. 143-170.

Dettmann, M.E., and Jarzen, D.M., 1988, Angiosperm pollen from uppermost Cretaceous strata of

southeastern Australia and the Antarctic Peninsula: Memoire of the Association of Australasian

Palaeontologists, v. 5, p. 217-237.

Dettmann, M.E., and Thomson, M.R.A., 1987, Cretaceous palynomorphs from the James Ross

Island area, Antarctica - a pilot study: British Antarctic Survey Bulletin, v. 77, p. 13-59.

Page 9: GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2 621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2 607 225 1526

Bowman et al. Cretaceous winter sea ice?

Doyle, P., and Zinsmeister, W.J., 1988, The new dimitobelid belemnite from the Upper Cretaceous

of Seymour Island, Antarctic Peninsula, in Feldmann, R.M., and Woodburne, M.O., eds., The

Geology and Paleontology of Seymour Island: Geological Society of America Memoir, v. 169,

p. 285-290.

Gradstein, F.M., Ogg, J.G., Schmitz, M., and Ogg, G., 2012, The Geologic Time Scale 2012.

Elsevier Science Limited, 1152 pp.

Harland, R., Reid, P.C., Dobell, P., and Norris, G., 1980, Recent and sub-Recent dinoflagellate

cysts from the Beaufort Sea, Canadian Arctic: Grana, v. 19, p. 211-225.

Harris, W.K., 1965, Basal Tertiary microfloras from the Princetown area, Victoria, Australia:

Palaeontographica Abteilung B, v. 115, p. 75-106.

Harwood, D.M., 1988, Upper Cretaceous and lower Paleocene diatom and silicoflagellate

biostratigraphy from Seymour Island, eastern Antarctic Peninsula, in Feldmann, R.M., and

Woodburne, M.O., eds., The Geology and Paleontology of Seymour Island: Geological Society

of America Memoir, v. 169, p. 55-130.

Head, M.J., Harland, R., and Matthiessen, J., 2001, Cold marine indicators of the late Quaternary:

the new dinoflagellate cyst genus Islandinium and related morphotypes: Journal of Quaternary

Science, v. 16, p. 621-636.

Huber, B.T., 1985, The location of the Cretaceous/Tertiary contact on Seymour Island, Antarctic

Peninsula: Antarctic Journal of the United States, v. 20, p. 46–48.

Huber, B.T., 1988, Upper Campanian–Paleocene foraminifera from the James Ross Island region,

Antarctic Peninsula, in Feldmann, R.M., and Woodburne, M.O., eds., The Geology and

Paleontology of Seymour Island: Geological Society of America Memoir, v. 169, p. 163–252.

Huber, B.T., Harwood, D.M., and Webb, P.N., 1983, Upper Cretaceous microfossil biostratigraphy

of Seymour Island, Antarctic Peninsula: Antarctic Journal of the United States, v. 18, p. 72–74.

Page 10: GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2 621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2 607 225 1526

Bowman et al. Cretaceous winter sea ice?

Jarzen, D.M., 1980, The occurrence of Gunnera pollen in the fossil record: Biotropica, v. 12, p.

117-123.

Jordan, G.J., and Hill, R.S., 1996, The fossil record of the Epacridaceae: Annals of Botany, v. 77, p.

341-346.

Kron, K.A., Judd, W.S., Stevens, P.F., Crayn, D.M., Anderberg, A.A., Gadek, P.A., Quinn, C.J.,

and Luteyn, J.L., 2002, Phylogenetic Classification of Ericaceae: Molecular and Morphological

Evidence: The Botanical Review, v. 68, p. 335–423.

Mabberley, D.J., 1997, The Plant-Book: Cambridge, U.K., Cambridge University Press, 858 pp.

Macellari, C.E., 1987, Progressive endemism in the Late Cretaceous ammonite family

Kossmaticeratidae and the breakup of Gondwanaland, in McKenzie, G.D., ed., Gondwana Six:

Stratigraphy, Sedimentology, and Paleontology: American Geophysical Union, Geophysical

Monograph, v. 41, p. 85-92.

Marshall, C.R., 1995, Distinguishing between sudden and gradual extinctions in the fossil record:

predicting the position of the Cretaceous-Tertiary iridium anomaly using the ammonite fossil

record on Seymour Island, Antarctica: Geology, v. 23, p. 731– 734.

McArthur, J.M., Thirlwall, M.F., Engkilde, M., Zinsmeister, W.J., and Howarth, R.J., 1998,

Strontium isotope profiles across K/T boundary sequences in Denmark and Antarctica: Earth

and Planetary Science Letters, v. 160, p. 179-192.

Olivero, E.B., and Medina, F.A., 2000, Patterns of Late Cretaceous ammonite biogeography in

southern high latitudes: the Family Kossmaticeratidae in Antarctica: Cretaceous Research, v.

21, p. 269–279.

Olivero, E.B., Ponce, J.J., and Martinioni, D.R., 2008, Sedimentology and architecture of sharp-

based tidal sandstones in the upper Marambio Group, Maastrichtian of Antarctica: Sedimentary

Geology, v. 210, p. 11-26.

Page 11: GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2 621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2 607 225 1526

Bowman et al. Cretaceous winter sea ice?

Pirrie, D., Crame, J.A., Lomas, S.A., and Riding, J.B., 1997, Late Cretaceous stratigraphy of the

Admiralty Sound region, James Ross Basin, Antarctica: Cretaceous Research, v. 18, p. 109-137.

Raine, J.I., Mildenhall, D.C., and Kennedy, E.M., 2011, New Zealand fossil spores and pollen: an

illustrated catalogue, 4th edition: GNS Science Miscellaneous Series, v. 4,

http://data.gns.cri.nz/sporepollen/index.htm (November 2012).

Sowerby, J., 1823, The mineral conchology of Great Britain, Benjamin Meredith, London, v. 4, 160

pp.

Thorn, V.C., Francis, J.E., Riding, J.B., Raiswell, R.W., Pirrie, D., Haywood, A.M., Crame, J.A.,

and Marshall, J.M., 2007. Terminal Cretaceous climate change and biotic response in

Antarctica, in Cooper, A., Raymond, C., and the 10th ISAES Editorial Team, eds., U.S.

Geological Survey Open File Report 2007–1047, http://pubs.usgs.gov/of/2007/1047/. Extended

Abstract 096.

Thorn, V.C., Riding, J.B., and Francis, J.E., 2009, The Late Cretaceous dinoflagellate cyst

Manumiella – biostratigraphy, systematics, and palaeoecological signals in Antarctica: Review

of Palaeobotany and Palynology, v. 156, p. 436-448.

Tobin, T.S., Ward, P.D., Steig, E.J., Olivero, E.B., Hilburn, I.A., Mitchell, R.N., Diamond, M.R.,

Raub, T.D., and Kirschvink, J.L., 2012, Extinction patterns, δ18O trends, and

magnetostratigraphy from a southern high-latitude Cretaceous-Paleogene section: links with

Deccan volcanism: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 350-352, p. 180-

188.

Vonhof, H.B., Jagt, J.W.M., Immenhauser, A., Smit, J., Van den Berg, Y.W., Saher, M., Keutgen,

N., and Reijmer, J.J.G., 2011, Belemnite-based strontium, carbon and oxygen isotope

stratigraphy of the type area of the Maastrichtian Stage, in Jagt, J.W.M., Jagt-Yazykova, E.A.,

Page 12: GSA DATA REPOSITORY 2013345 - geosociety.org · 641 1083 33019 25 763 x 1165 210 0.85 D5.1021.1A D5.218 20 2 621 474 14455 51 1556 x 591 317 0.65 D5.1001.1A D5.218 0 2 607 225 1526

Bowman et al. Cretaceous winter sea ice?

and Schins, W.J.H., eds., A tribute to the late Felder brothers – pioneers of Limburg geology

and prehistoric archaeology: Netherlands Journal of Geosciences, v. 90, p. 259-270.

Wanntorp, L., Dettmann, M.E., and Jarzen, D.M., 2004, Tracking the Mesozoic distribution of

Gunnera: comparison with the fossil pollen species Tricolpites reticulatus Cookson: Review of

Palaeobotany and Palynology, v. 132, p. 163-174.

Wilckens, O., 1910, Die Anneliden, Bivalven und Gastropoden der Antarktischen Kreidefor-

mation: Wissenschaftliche Ergebnisse der Schwedischen Siidpolar-Expedition 1901-1903,

Stockholm, v. 3, p. 1-132.

Wilson, L.R., and Webster, R.M., 1946, Plant microfossils from a Fort Union coal of Montana:

American Journal of Botany, v. 33, p. 271-278.

Wrenn, J.H., and Hart, G.F., 1988, Paleogene dinoflagellate cyst biostratigraphy of Seymour Island,

Antarctica, in Woodburne, M.O., and Feldmann, R.M., eds., The Geology and Paleontology of

Seymour Island: Geological Society of America Memoir, v. 169, p. 321-447.

Zinsmeister, W.J., 1998, Discovery of a fish mortality horizon at the K–T boundary on Seymour

Island: re-evaluation of events at the end of the Cretaceous: Journal of Paleontology, v. 72, p.

556–571.

Zinsmeister, W.J., Feldmann, R.M., Woodburne, M.O., and Elliot, D.H., 1989, Latest

Cretaceous/earliest Tertiary transition on Seymour Island, Antarctica: Journal of Palaeontology,

v. 63, p. 731–738.