Growth and characterization of multiferroic BiFeO3 thin...

39
Taimur Ahmed Chalmers University of Technology, Sweden

Transcript of Growth and characterization of multiferroic BiFeO3 thin...

Taimur Ahmed Chalmers University of Technology, Sweden

Background Ferromagnetics Ferroelectrics Multiferroics BiFeO3 (BFO)

Design & modeling of dielectric response Device fabrication Characterization & Analysis Conclusion Future outlook

2

Ferromagnetic materials Materials retain their magnetic polarization Curie-Weiss law (susceptibility is inverse dependent

on Curie temperature)

T>Tc: Ferromagnetics changes to paramagnetics T=Tc: Material is in phase transition

3

( )CTTC−

=χC = Curie constant of material T = Absolute temperature Tc= Curie temperature

Ferroelectric materials Materials retain their electric (dipole) polarization Curie temperature defines Polar (ferroelectric) and non-polar (paraelectric) phase

4

Tc

T

Polar phase Non-polar phase

T < Tc T > Tc

5

P E

P E

Perovskite - ABO3

A B O

Non-polar phase Polar phase

6

Non-polar phase Polar phase

S. Gevorgian. Springer, 2009.

( )EPE∂∂

=0

ε

Hans Schmid (1990): “A material that combines two (or more) of the

primary ferroic orders in one phase”

In practice often:

7

Multiferroic = Magnetoelectric

ME = Ferromagnetic +

Ferroelectric

L. W. Martin et al. Mater. Sci. Eng., R, 68(4-6):89-133, May 2010.

8

Tunable resonator Tunable filter Tunable phase shifter/delay line

Adapted from: Ce-Wen Nan et al., J. Appl. Phys., 103, 03101 (2008)

Magnetoelectric memories Magneto-mechanical actuators Tunable microwave devices Sensors

Bismuth ferrite – BiFeO3 (BFO) High Curie temperature, TC (850⁰C)

9

8 9 17 24 34 72

120

254 274

345

161

Published articles

Data collected from: www.webofknowledge.com June 2010.

10

Fe 2.022

2.022

2.022

1.998

1.998

1.998

Distorted Rhombohedral Perovskite Oxygen octahedron

Adapted from: C. Michel et al. Solid State Commun., 7(9), 1969.

Leakage current Non-stoichiometric thin films (Bi depletion) Microstructural defects (grain boundaries etc.)

Weak magnetoelectric coupling

11

Optimization of growth temperature of BiFeO3 (BFO) thin films To have stoichiometric thin films To have low leakage current

12

Background Design & modeling

Design configurations Grain structure of BiFeO3 films Parallel plate configuration Co-planar configuration Co-planar configuration with buried ID electrode

Permittivity models Device fabrication Characterization & Analysis Conclusion

13

14

R. Zheng et al. J. Am. Ceram. Soc. 91 (2008) 463. M.S. Kartavtseva et al. Surface and Coatings

Technology 201 (2007) 9149.

MOCVD RF sputtering

Design configurations Parallel plate configuration Co-planar inter digital (ID) configuration

15

16

Bottom electrode

Substrate

Top electrode

Ci1

Ci2

Cg1 Cb1 Cbi Cgi CgN CbN

( )∑ +∑ −−+=−

gibeq CCCC 11 1

Multiferroic film Grain boundary E-Field

Cb = Capacitance of grain boundaries

Cg = Capacitance of grains

Ci = Capacitance of interface layers

Interfacial layer

17

∑∑∑−−−−

++= CCCC gibeq1111

Substrate

Electrode Electrode

Ci1

Cg1

Cb1

Cgi

Cbi

CgN

Ci2

Multiferroic film Grain boundary E-Field

Cb = Capacitance of grain boundaries

Cg = Capacitance of grains

Ci = Capacitance of interface layers

18

Substrate

Electrode Electrode

Adhesion layer

Ci1

Cg

Ci2

Cb

( )∑∑ ++=−−−

CCC bgieq111

∑−−

≈ CC geq11

Cb = Capacitance of grain boundaries

Cg = Capacitance of grains

Ci = Capacitance of interface layers

Grain boundary E-Field

Objective Background Design & modeling of dielectric response Device micro fabrication

Patterning of IDC electrodes BFO thin film growth (PLD) Contact pads deposition

Characterization & Analysis Conclusion Future outlook

19

20

Ion Beam Milling 45⁰ tilt

Pulsed Laser Deposition (PLD)

21

Parameters Comments Laser source KrF

Laser wavelength 248 nm

Energy 1.5 mJ/cm2

Target Bi1.1FeO3

Oxygen pressure 1 x 10-2 mbar

Repetition rate 10 Hz

Substrate Au/Ti/SiO2

Substrate temperature 500⁰C -750⁰C

Substrate-target distance 6cm

22

Substrate

Pads Pads

E-beam evaporator Ti: 50 nm Au: 500 nm

ID pads ID finger

ID pads BFO film

Background Design & modeling of dielectric response Device fabrication Characterization & Analysis

Microstructure of deposited thin films Dielectric response Magnetoelectric response

Conclusion

23

24

600⁰C

700⁰C 750⁰C

550⁰C

6μm

25

XRD Spectra

As – deposited BFO thin films

26

Better stoichiometry

Better microstructure

27

EcC Epitaxial BiFeO3 thin films Tg = 600⁰C

80kV/cm

H. W. Jang et al. Phys. Rev. Lett. 01

(2008) 107602-1

28

As deposited Tg = 500⁰C Tg =500⁰C & Annealed at 700⁰C

6μm

Ex – situ annealed (700⁰C) BFO thin film

29

30

εBFO=26 Bulk BiFeO3 ceramic

Yu.E. Roginskaya, et al. Sov.

Phys. JETP, 23 (1966) 47

Dielectric constant (Farnell’s model)

31 ME tunability = ∆ε/ε =0.21%

Tg=600⁰C

B ⊥ E

F. B. A. Ahad, J. Appl. Phys. 105, 07D912 (2009)

BiFeO3/quartz substrate

B=0.2T

Background Objective Design & modeling of dielectric response Device fabrication Characterization & Analysis Conclusion

32

Effect of Tg on BFO films growth Strong dependence on film’s microstructure and

stoichiometry

BFO films grown over Au IDC electrodes Improved microstructure/large in-plane grains Reduced parasitics/less grain boundaries

Permittivity (26), Ec (80kV/cm) and ME tunability of 0.21% by 0.2 T @ Tg=600⁰C are close to bulk BFO

33

Post deposition ex-situ annealing results higher permittivity than as-deposited films Improved microstructure/Increased grain size Simultaneously preserving stoichiometry

34

Taimur Ahmed, A. Vorobiev, S. Gevorgian, “Growth temperature dependent dielectric properties of BiFeO3 thin films deposited on silica glass substrates” Thin Solid Films, 520 (13) pp. 4470-4474 (2012).

A. Vorobiev, Taimur Ahmed, S. Gevorgian, “Microwave

response of BiFeO3 films in parallel-plate capacitors” Integrated Ferroelectrics, 134 pp. 111-117 (2010).

35

36

37

38

FG FW λ

Farnell’s model

39

−+

=

129.0

5.1

Lh

K

sKCBFO

εε

Parameters Dimensions

(μm)

FL Finger length 700

FW Finger width 3

FG Finger gap 6

h Finger/electrode

thickness 0.55

P Number of finger

pairs 25

37.208.15.6

2

++=

LFW

LFW

K

C = Measured capacitance εs= Dielectric constant of substrate (SiO2) L = (FW + FG)