Groupe Mission MERCATOR / CORIOLIS

11
1 APPEL A PROJETS 2010 Groupe Mission MERCATOR / CORIOLIS CNES, CNRS/INSU, IFREMER, IPEV, IRD, Météo-France, SHOM FORMULAIRE DE DEMANDE 2010 RESPONSABLE SCIENTIFIQUE DU PROJET: Fabrizio D’Ortenzio Julia Uitz UNITÉ DE RATTACHEMENT DU RESPONSABLE SCIENTIFIQUE : Laboratoire d’Océanographie de Villefranche (LOV) UMR 7093 Tél : 04 93763715 Courriel : [email protected] Directeur : Louis Legendre Scripps Institution of Oceanography (SIO) University of California San Diego La Jolla, Californie, Etats-Unis Tél : +00 1 (858) 534-7841 Courriel : [email protected] Directeur : Tony Haymet Titre du projet : PROKEOPS Type de projet proposé : X PAC - Projet d’Action Ciblée PPR - Projet en Partenariat Renforcé LI – Lettre d’Intention Résumé du projet : Understanding the mechanisms underpinning the space-time variability of phytoplankton dynamics and associated carbon fluxes is an absolute requirement to predict how oceanic ecosystems will respond to future climate change with biogeochemical implications and feedbacks on the climate system. In the context of the KEOPS-2 cruise, we propose to deploy 4 biogeochemical profiling floats in a key region of the Southern Ocean, the naturally iron-enriched waters off the Kerguelen Plateau where dense phytoplankton blooms develop. This innovative observational strategy will enable characterizing, in situ and over a broad range of timescales, the biological and biogeochemical responses to rapid changes in physical forcing, especially mixing layer dynamics and mesoscale activity. In addition, these biogeochemical floats will contribute to increase the density of the Argo network, which is particularly low in Southern waters. In the present GMMC proposal, we request 4 PROVOR T/S profiling floats that will be converted into biogeochemical (PROVBIO) floats by means of specific biogeochemical sensors and IRIDIUM antenna demanded in a parallel LEFE-CYBER proposal. The floats will be deployed at the beginning of the cruise with a sampling strategy adjusted in real time to address specifically KEOPS-2 objectives. Afterwards, the sampling strategy will be modified to match Argo protocol.

Transcript of Groupe Mission MERCATOR / CORIOLIS

1

APPEL A PROJETS 2010

Groupe Mission MERCATOR / CORIOLIS

CNES, CNRS/INSU, IFREMER, IPEV, IRD, Météo-France, SHOM

FORMULAIRE DE DEMANDE 2010 RESPONSABLE SCIENTIFIQUE DU PROJET: Fabrizio D’Ortenzio Julia Uitz UNITÉ DE RATTACHEMENT DU RESPONSABLE SCIENTIFIQUE : Laboratoire d’Océanographie de Villefranche (LOV) UMR 7093 Tél : 04 93763715 Courriel : [email protected] Directeur : Louis Legendre Scripps Institution of Oceanography (SIO) University of California San Diego La Jolla, Californie, Etats-Unis Tél : +00 1 (858) 534-7841 Courriel : [email protected] Directeur : Tony Haymet Titre du projet : PROKEOPS Type de projet proposé :

X PAC - Projet d’Action Ciblée PPR - Projet en Partenariat Renforcé LI – Lettre d’Intention

Résumé du projet : Understanding the mechanisms underpinning the space-time variability of phytoplankton dynamics and associated carbon fluxes is an absolute requirement to predict how oceanic ecosystems will respond to future climate change with biogeochemical implications and feedbacks on the climate system. In the context of the KEOPS-2 cruise, we propose to deploy 4 biogeochemical profiling floats in a key region of the Southern Ocean, the naturally iron-enriched waters off the Kerguelen Plateau where dense phytoplankton blooms develop. This innovative observational strategy will enable characterizing, in situ and over a broad range of timescales, the biological and biogeochemical responses to rapid changes in physical forcing, especially mixing layer dynamics and mesoscale activity. In addition, these biogeochemical floats will contribute to increase the density of the Argo network, which is particularly low in Southern waters. In the present GMMC proposal, we request 4 PROVOR T/S profiling floats that will be converted into biogeochemical (PROVBIO) floats by means of specific biogeochemical sensors and IRIDIUM antenna demanded in a parallel LEFE-CYBER proposal. The floats will be deployed at the beginning of the cruise with a sampling strategy adjusted in real time to address specifically KEOPS-2 objectives. Afterwards, the sampling strategy will be modified to match Argo protocol.

2

Autres laboratoires impliqués : Intitulé du laboratoire Organisme(s)

de tutelle Adresse (ville)

Nom du responsable du projet dans le laboratoire

Statut du responsable

Obs. Banyuls CNRS Banyuls Stéphane Blain PR1 Centre Oceanol. Marseille CNRS Marseille Bernard Quéguiner PR1

Lab. Plankt. Ecology SZN Naples Daniele Iudicone CR1 equiv Durée du contrat demandé : 3 ans Montant total demandé (HT) : Visa obligatoire du responsable de l'unité : Signature du responsable scientifique : Louis Legendre Fabrizio D’Ortenzio

3

DOSSIER SCIENTIFIQUE 1. Intérêt scientifique et adéquation aux objectifs de l’Appel à Projets 2010 du Groupe Mission Mercator / Coriolis: Scientific context The Southern Ocean is a critical component of the climate system as it represents an important sink for atmospheric CO2. Nevertheless, the magnitude of this carbon sink is subject to large uncertainties (Takahashi et al. 2002; 2009) and recent studies suggest a reduction in carbon uptake, possibly due to changes in climate forcing (Le Quéré et al. 2007; Metzl 2009). The contribution of the biological pump –whereby phytoplankton photosynthesis and subsequent export of particulate matter lead to carbon sequestration in deep oceans– to the Southern Ocean carbon sink and to its variability remains poorly understood. The major part of the Southern Ocean is characterized by large concentrations of macronutrients with comparatively low algal biomass and primary production rates. Iron availability and light-mixing regime are two major bottom-up controlling factors of phytoplankton growth in the region (e.g. Boyd et al. 2002). The first “Kerguelen: compared study of the Ocean and the Plateau Surface water” (KEOPS-1) cruise took place in late austral summer (Jan.–Feb. 2005), in the naturally iron-fertilized waters surrounding Kerguelen Islands where a large bloom occurs annually (Blain et al. 2007). This study demonstrated that natural iron fertilization of the Southern Ocean results in dramatic changes in ecosystem functioning with a large impact on biogeochemistry. However, following analysis of the results, new questions emerged that could not be solved with KEOPS-1 dataset, and raised the need for a second study. In particular, KEOPS-2 will seek to understand the mechanisms controlling the space-time variability of the phytoplankton bloom and associated biogeochemistry using a suite of novel techniques and strategies. The thickness of the mixing layer is a critical factor that controls the time and space patterns of algal biomass and primary production, through its effects on the light and nutrient regime experienced by phytoplankton in the upper ocean. Because it is driven by atmospheric forcing (e.g. wind stress) and ocean dynamics (e.g. mesoscale activity), the mixing layer is highly dynamic and influences biological activity on a broad range of spatial and temporal scales. For example, on seasonal timescales, deep winter mixing sets up the stock of nutrients available for phytoplankton during the growth season during which the average irradiance is controlled by variations in thickness of the wind mixed layer. On event (i.e. a few hours to a few days) timescales, intermittent deepenings of the mixing layer induce variations in nutrient injection and light regime that may promote phytoplankton growth by alleviating nutrient limitation, or inhibit it by decreasing the average irradiance in the upper ocean. Such short-term (event–season) physical forcing may be responsible for interannual variations in the characteristics of seasonal blooms (i.e. onset, temporal evolution, and magnitude) with the potential occurrence of additional “secondary” blooms. In terms of biogeochemical budgets, the thickness of the mixing layer is an important variable that should be accurately determined for building robust seasonal budgets of chemical elements. In the case of carbon, for example, such a budget is a powerful tool to provide indirect estimates of carbon export on seasonal timescales. Furthermore, the interannual variability in the air-sea CO2 flux and its response to different forcing variables (temperature, biology, and water column mixing) can be investigated using a combination of various tools, from in situ measurements to satellite observations and models. Nevertheless such investigations are, again, limited by a proper determination of the mixing layer depth and dynamics with concomitant biological observations. Achieving a comprehensive understanding of the influence of physical forcing on biological activity and biogeochemistry requires observing simultaneously biological/biogeochemical and physical

4

variables in situ, in the ocean interior (i.e. vertical dimension), and over a broad range of timescales. Autonomous Lagrangian profiling floats allow such observations, complementing nicely ship-based and satellite measurements. In addition, these platforms are typically deployed in the beginning of the cruise and recovered several months after, which extends (up to one year) the period of in situ observations. In the KEOPS study region, two main blooming areas have been identified from satellite imagery. The first one is relatively well localized on the Kerguelen Plateau and was intensively studied during KEOPS-1. The second area, which will be the focus of KEOPS-2, extends offshore and is strongly affected by mesoscale activity. It is expected that mixing layer dynamics and thickness are different inside and outside mesoscale structures (e.g. eddies), thus offering an ideal site for investigating the responses of biological activity and biogeochemistry to rapid changes in physical forcing. In the framework of KEOPS-2, we propose to deploy 4 biogeochemical profiling floats to monitor these bio-physical interactions in the offshore bloom area. In this GMMC proposal, we request 4 PROVOR T/S floats. They will be converted into PROVBIO (see later) by means of a specific request (submitted to LEFE by the KEOPS-2 PI, S. Blain) to acquire the biogeochemical sensors, the IRIDIUM antennas, and to ensure the transmission costs. A PROVBIO float (see www.obs-vlfr.fr/OAO for an example of active floats) is composed of a PROVOR-CTS3 float with the following additional features:

1. An IRIDIUM antenna necessary to ensure the increased amount of transmitted data; it also allows a two-way communication system, which permits to send commands to the float to change the sampling strategy.

2. A biogeochemical puck composed of a fluorimeter calibrated for chlorophyll and a backscatterometer (Wetlabs FLBBAP2), plus an oxygen optode (Aandera)

Data processing and quality control (QC) for physical parameters will be ensured by the Coriolis data center, whereas for the biogeochemical parameters, the PABIM protocols (D’Ortenzio et al. 2009) will be used. Main Questions Complementing ship-based measurements and satellite data with in situ, near real-time observations of biogeochemical profiling floats will enable addressing several key questions that could not be answered in KEOPS-1:

1. What are the timescales of variability associated with upper ocean mixing and how is it modulated by mesoscale activity?

2. What are the typical space and time scales of physical (i.e. mixing layer) and biological (i.e. algal bloom) interactions in the KEOPS study region, especially in terms of mixing-induced variability in light harvesting and nutrient utilization by phytoplankton?

3. Can we build robust biogeochemical budgets of biological production and carbon export using in situ seasonal data of chlorophyll concentration and particulate organic matter obtained from the biogeochemical profiling floats?

2. Plan de recherche et calendrier d’exécution Sampling Strategy The KEOPS offshore bloom region is a continuous sequence of mesoscale physical structures (eddies), which are enriched in macronutrients and iron on the Kerguelen plateau, and allow phytoplankton to develop in an “entrapped” environment. The combination of ship-based and satellite observations will allow the identification of one (or more) of these mesoscale structures, which will be characterized in

5

their starting phase (i.e. close to Kerguelen). For each of these structures, we propose to deploy 4 biogeochemical profiling floats (2 floats inside “in”, and 2 floats outside “out”) with adaptive sampling strategy determined on the basis of ship and satellite data. More specifically:

1. The “in” float observations will be considered representative of the “entrapped” environment, while the “out” float will be used as reference; consequently, the “out” float will need to be deployed outside the selected structure, though not so far;

2. A complete standard station (i.e. CTD cast, water sample for HPLC pigments, nutrients, and oxygen analysis, etc.) will be performed at float deployments for calibration issues;

3. The temporal resolution of profiling cycle (which could be remotely modified in real-time on the PROVBIO floats) will be initially set at the maximum available value (i.e. three profiles per day); temporal resolution will be decreased (one profile per day or per week) when the algal bloom is decaying and/or when the mesoscale structure starts to lose energy; the vertical resolution of measurements will be also enhanced when possible.

4. To maintain the “in” floats inside the selected structure, the parking depths (another sampling parameter that could be modified remotely and in real-time on PROVBIO) will be adjusted to the “thickness“ of the mixed layer as determined from the ship based observations or from the firsts profiles of the floats;

5. After 2–3 weeks, PROVBIO sampling strategies will be remotely changed to meet the requirements of Argo sampling (sampling frequency of 10 days, parking depth of 1000 m, and profiling depth of 2000 m).

Expected results The innovative observational approach we propose to utilize in KEOPS-2 will improve our understanding of the mechanisms underlying the space-time variability in phytoplankton bloom development and reduce uncertainties in biogeochemical budgets. Specifically, we will gain insights into how short-term changes in oceanic physical forcing and mesoscale structures affect biological activity and shape the characteristics of seasonal blooms, thus determining their interannual variability. Combining the measurements obtained from the biogeochemical profiling floats to appropriate modeling will enable establishing seasonal carbon budgets, both inside and outside the mesoscale structures, which are key elements required to address the effects of bio-physical interactions on carbon cycling. Such studies are critical steps in enhancing our ability to predict the biological responses to climate-driven environmental changes with biogeochemical consequences. Adequacy to CORIOLIS objectives The Southern Ocean is one of the world’s regions where the density of the Argo network is particularly low (see Figure 1). The 4 floats deployed in the framework of PROKEOPS will contribute to increase network density in the area. Although initial sampling strategy will be different of the standard Argo, after an initial period dedicated specifically to KEOPS-2 objectives, floats will be remotely switched to Argo protocol. Additionally, 4 biogeochemical APEX floats will be deployed during KEOPS-2 (PI T. Trull, CSIRO Marine and Atmospheric Research, Australia). They will be equipped with the same biogeochemical puck than the PROKEOPS floats, and will be deployed with the same sampling strategy. A first comparison on the performances of the two platforms (PROVOR and APEX), when used with biogeochemical sensors, will then be attempted. Finally, PROKEOPS floats will provide a first dataset of observations of biogeochemical parameters in the Southern Ocean, which could be used to test the feasibility of the PABIM (GMMC PPR, PI F. D’Ortenzio) QC in polar regions.

6

Figure 1. Argo density in the Southern Ocean (100% = 4 Floats).

From Jcommops web site. References cited in the text Boyd, P. W. (2002). Environmental factors controlling phytoplankton processes in the Southern Ocean, Journal of Phycology,

38, 844-861. Blain, S., B. Quéguiner, L. K. Armand, S. Belviso, B. Bombled, L. Bopp, A. Bowie, C. Brunet, C. P. D. Brussaard, F.

Carlotti, U. Christaki, A. Corbière, I. Durand, F. Ebersbach, J. L. Fuda, N. Garcia, L. Gerringa, F. B. Griffiths, C. Guigue, C. Guillerm, S. Jacquet, C. Jeandel, P. Laan, D. Lefèvre, C. Lomonaco, A. Malits, J. Mosseri, I. Obernosterer, Y. H. Park, M. Picheral, P. Pondaven, T. Remenyi, V. Sandroni, G. Sarthou, N. Savoye, L. Scouarnec, M. Souhaut, D. Thuiller, K. R. Timmermans, T. W. Trull, J. Uitz, P. van-Beek, M. J. W. Veldhuis, D. Vincent, E. Viollier, L. Vong, and T. Wagener (2007). Impact of natural iron fertilization on carbon sequestration in the Southern Ocean, Nature, 446, 1070-1075.

D'Ortenzio, F., and the PABIM Group (2009). Biogeochemical Autonomous Platforms: Instrumentation and Measures (PABIM Project), Mercator Ocean Quarterly Newsletter, October 2009, available online: http://www.mercator-ocean.fr/documents/lettre/lettre_35_en.pdf.

Metzl, N. (2009). Decadal increase of oceanic carbon dioxide in Southern Indian Ocean surface waters (1991-2007), Deep-Sea Research II, 56, 607-619, doi:10.1016/j.dsr2.2008.12.007.

Takahashi, K., S. C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. R. Bates, R. Wanninkhof, R. A. Feely, C. Sabine, J. Olafsson, and Y. Nojiri (2002). Global sea-air CO2 flux based on climatological surface ocean pCO2 and seasonal biological and temperature effect, Deep-Sea Research II, 49, 1601– 1622.

Takahashi, T., S. C. Sutherland, R. Wanninkhof, C. Sweeney, R. A. Feely, D. W. Chipman, B. Hales, G. Friederich, F. P. Chavez, C. Sabine, A. Watson, D. C. E. Bakker, U. Schuster, N. Metzl, H. Yoshikawa-Inoue, M. Ishii, T. Midorikawa, Y. Nojiri, A. Körtzinger, T. Steinhoff, M. Hoppema, J. Olafsson, T. S. Arnarson, B. Tilbrook, T. Johannessen, A. Olsen, R. Bellerby, C. S. Wong, B. Delille, N. R. Bates, and H. J. W. de Baar (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans, Deep-Sea Research II, 56, 554-577.

3. Pour les PPRs uniquement : sujet de thèse ou de post-doc pour lequel un parrainage est demandé (titre, encadrant, laboratoire, descriptif du sujet en 1 page maximum) Néant 4. Pour les PPRs uniquement : méthode de coordination du consortium Néant

7

5. Références bibliographiques de l’équipe proposante (sur le sujet de la demande) Claustre, H., Sciandra A., and D. Vaulot (2008), Introduction to the special section Bio-optical and biogeochemical

conditions in the South East Pacific in late 2004: the BIOSOPE program. Biogeosciences, 5, 679-691. Claustre, H., Y. Huot, I. Obernosterer, B. Gentili, D. Tailliez, and M. Lewis (2008). Gross community production and

metabolic balance in the South Pacific Gyre, using a non intrusive bio-optical method. Biogeosciences, 5, 463-474. Claustre, H., Antoine, D., Boehme, L., Boss, E., D'Ortenzio, F., Fanton D’Andon, O., Guinet, C., Gruber, N.,

Handegard, N. O., Hood, M., Johnson, K., Körtzinger, A, Lampitt, R., LeTraon, P.-Y., Lequéré, C., Lewis, M., Perry, M.-J., Platt, T., Roemmich, D., Sathyendranath, S., Testor, P., Send, U. and J. Yoder (2010). “Guidelines towards an integrated ocean observation system for ecosystems and biogeochemical cycles”. in Proceedings of the "OceanObs’09: Sustained Ocean Observations and Information for Society" Conference (Vol. 1), Venice, Italy, 21-25 September 2009, Hall, J., Harrison D.E. and Stammer, D., Eds., ESA Publication WPP-306, in press.

Claustre, H., Bishop, J., Boss, E., Stewart, B., Berthon, J.-F., Coatanoan, C., Johnson, K., Lotiker, A., Ulloa, O., Perry, M.-J., D'Ortenzio, F., Hembise Fanton D’Andon, O. and J. Uitz (2010). “Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies”, in Proceedings of the "OceanObs’09: Sustained Ocean Observations and Information for Society" Conference (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., Harrison D.E. and Stammer, D., Eds., ESA Publication WPP-306, in press.

D'Ortenzio F., and M.R. d'Alcala, (2009). On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6 (2), 139-148.

D’Ortenzio F., and the PABIM group, (2009), Biogeochemical Autonomous Platforms: Instrumentation and Measures (PABIM Project), Mercator Ocean Quertelry Newsletters, N. 35

Le Reste S., Andre X., Claustre H., D'Ortenzio F., Poteau A., (2009), First succes of PROVBIO floats, Coriolis Newsletters numero 5, January 2009, pag 6-8.

D'Ortenzio, F., Iudicone, D., Montegut, C. D., Testor, P., Antoine, D., Marullo, S., Santoleri, R., and Madec, G. (2005) Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles, Geophysical Research Letters, 32.

Niewiadomska, K., Claustre, H., Prieur, L., D'Ortenzio, F. (2008). Submesoscale physical-biogeochemical coupling across the Ligurian current (northwestern Mediterranean) using a bio-optical glider, Limnology and Oceanography, 53, 2210-2225.

Taillandier V., A. Griffa, P.M. Poulain, K. Be ranger, (2006). Assimilation of Argo float positions in the north western Mediterranean Sea and impacton ocean circulation simulations. Geophysical Research Letters, 33, L11604

Taillandier, V., A. Griffa, (2006). Implementation of position assimilation from Argo floats in a realistic Mediterranean Sea model and twin experiment testing. Ocean Science, 2, 223-236

Taillandier, V., S. Dobricic, P. Testor, N. Pinardi, A. Griffa, L. Mortier, G-P. Gasparini. Integration of ARGO trajectories in the Mediterranean Forecasting System and impact on the regional analysis of the Western Mediterranean circulation. Journal of Geophysical Research Oceans, in press.

Uitz, J., Claustre, H., Morel, A., Hooker, S. (2006). Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. Journal of Geophysical Research, 111, (C08005, doi:10.1029/2005JC003207).

Uitz, J., Huot, Y., Bruyant, F., Babin, M., and H. Claustre (2008). Relating phytoplankton photophysiological properties to community structure on large scale, Limnology and Oceanography, 53(2), 614-630.

Uitz, J., H. Claustre, F.B. Griffiths, J. Ras, N. Garcia, V. Sandroni (2009). A phytoplankton class-specific primary production model applied to the Kerguelen Islands region (Southern Ocean), Deep-Sea Research I, 56(4): 541-560.

Uitz J., H. Claustre, B. Gentili, D. Stramski (2010). Phytoplankton class-specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations, Global Biogeochemical Cycles, 24(GB3016), doi:10.1029/2009GB003680.

8

MOYENS DONT DISPOSE LE PROPOSANT ET QUI SERONT AFFECTÉS À LA RÉALISATION DU PROJET

1. Chercheurs et ingénieurs impliqués (avec indication du % de temps consacré au projet) - dans les unités de recherche : Equipe Nome Titre % de temps LOV Fabrizio D’Ortenzio CR1 15 SIO Julia Uitz Post-doc 15 LOV Hervé Claustre DR 5 LOV Antoine Poteau ITA 5 LOV Vincent Taillandier ITA 5 SZN Daniele Iudicone CR1 Expertise Obs. Banyuls Stéphane Blain PR1 Expertise Centre Oceanol. Marseille

Bernard Quéguiner PR1 Expertise

2. Equipement disponible pour la réalisation du projet 1 workstation to process and stock biogeochemical floats data at LOV (ANR – PABO 5000 !)

DEMANDE BUDGÉTAIRE Demande à CORIOLIS de la mise à disposition des 4 flotteurs de type PROVOR. 1. Fonctionnement : 2. Missions (à détailler et justifier): 3. Equipements : 4. Total général des crédits demandés (HT): 5. Autres financements attribués ou demandés qui concourent à la réalisation des mêmes objectifs que la proposition :

Demande à LEFE-CYBER, projet KEOPS-2 : 80K!

9

ANNEXE

Evaluations of the KEOPS-2 experiment

1. Evaluation of the fleet national commission. 2. Evaluation of the ANR proposal Keops-2

Sujet: Proposition de financementDe : [email protected] : 22 Jul 2010 17:13:47 +0200Pour : [email protected] à : [email protected]

Chèr(e) collègue,

Je vous remercie de votre proposition de projet KEOPS 2 soumise à l’appel à projets Sciencesde l'information, de la matière et de l'ingénierie : Système Terre, environnement, risques2010 de l'ANR.

En accord avec les recommandations du Comité de pilotage émises lors de sa réunion du 20mai 2010, j’ai le plaisir de vous informer que votre projet a été sélectionné en vue d’unepoursuite de l’instruction du dossier. Sur les 95 propositions soumises, la liste principalecomporte 18 projets, la liste complémentaire comporte 4 projets.

Les propositions ont été évaluées selon les critères figurant dans l’appel à projets etsélectionnés par les comités d’évaluation et de pilotage en suivant le processus décrit sur lesite web de l’ANR (www.agence-nationalerecherche.fr), sur lequel se trouve également lacomposition des différents comités. Le Comité d’évaluation était présidé par MarcCHAUSSIDON, coprésidé par Yves COQUET, et le Comité de pilotage présidé par le directeurgénéral de l'ANR. La décision de financement du projet dont vous êtes porteur estconditionnée en particulier par :- les résultats de l'analyse financière des partenaires privés- l'intégration dans les dossiers des recommandations scientifiques ou budgétaires qui serontfaites,- la conformité des devis par rapport au règlement financier de l’agence et aux dispositionsfigurant dans l’appel à projets,- la fourniture en temps voulu pour chaque partenaire des informations administratives etfinancières nécessaires.

A l’issue de ce processus, la décision d'aide finale précisant le montant exact du financementpour chacun des partenaires du projet sera prise par l’ANR.

Vous trouverez ci-joint la synthèse des commentaires émis lors de l’évaluation de votre projet.Je vous laisse le soin d'avertir les autres partenaires du projet KEOPS 2 de ce succès et deleur communiquer cette synthèse.

Vous pouvez dès à présent vous connecter au site de soumission en ligne pour compléter ledocument de financement de votre projet, en vous identifiant avec le login et le mot de passeutilisés lors du dépôt du projet. Si vous avez perdu votre mot de passe, vous avez la possibilitéd'en générer un nouveau en cliquant sur le lien "Mot de passe oublié" situé sur la page deconnexion. Nous vous rappelons l’url du site : https://aap.agencerecherche.fr

Je vous adresse mes plus chaleureuses félicitations et vous prie d’agréer, chèr(e) collègue,l’expression de ma considération distinguée.

Abou-Kandil HishamResponsable du programme Blanc SIMI 6

Proposition de financement

1 sur 2 28/09/2010 15:46