Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof...

87
Grothendieck expansions of symmetric polynomials Jason Bandlow (joint work with Jennifer Morse) University of Pennsylvania August 3rd, 2010 – FPSAC San Francisco State University

Transcript of Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof...

Page 1: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Grothendieck expansions of symmetricpolynomials

Jason Bandlow (joint work with Jennifer Morse)

University of Pennsylvania

August 3rd, 2010 – FPSACSan Francisco State University

Page 2: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Outline

Symmetric functions

Tableaux–Schur expansions

Grothendieck functions and their dual basis

Main theorem

Examples

Sketch of proof

Page 3: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The monomial basis

The monomial symmetric functions are indexed by partitions

λ = (λ1, λ2, . . . , λk) λi ≥ λi+1

mλ =∑α

α a rearrangement of the parts of λ and infinitely many 0’s

Example

m2,1 =(x21x2 + x1x2

2 ) + (x1x23 + x2

1x3) + . . .

+ (x22x3 + x2x2

3 ) + . . .

Page 4: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The complete homogeneous basis

The (complete) homogeneous symmetric functions are defined by

hi =∑λ`i

hλ = hλ1hλ2 . . . hλk

Example

h3 = m3 + m2,1 + m1,1,1

h4,2,1 = h4h2h1

Page 5: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The Hall inner product

Defined by

〈hλ,mµ〉 =

{1 if λ = µ

0 otherwise

Proposition

If {fλ}, {f ∗λ } and {gλ}, {g∗λ} are two pairs of dual bases with

fλ =∑µ

Mλ,µgµ

then

g∗µ =∑λ

Mλ,µf ∗λ

Page 6: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The Hall inner product

Defined by

〈hλ,mµ〉 =

{1 if λ = µ

0 otherwise

Proposition

If {fλ}, {f ∗λ } and {gλ}, {g∗λ} are two pairs of dual bases with

fλ =∑µ

Mλ,µgµ

then

g∗µ =∑λ

Mλ,µf ∗λ

Page 7: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Semistandard Young tableaux

A left-and-bottom justified, partition-shaped array of numbers,weakly increasing across rows and strictly increasing up columns.

Example

7 75 6 6 83 3 4 71 1 2 2 2

Shape: (5, 4, 4, 2)Evaluation: (2, 3, 2, 1, 1, 2, 3, 1)Reading word: 775668334711222

Page 8: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Semistandard Young tableaux

A left-and-bottom justified, partition-shaped array of numbers,weakly increasing across rows and strictly increasing up columns.

Example

7 75 6 6 83 3 4 71 1 2 2 2

Shape: (5, 4, 4, 2)Evaluation: (2, 3, 2, 1, 1, 2, 3, 1)Reading word: 775668334711222

Page 9: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Knuth equivalence

An equivalence relation on words generated by

yxz ≡ yzx if x < y ≤ z

xzy ≡ zxy if x ≤ y < z

Key Fact

Every word is Knuth equivalent to the reading word of exactly onetableau.

Example

rw

(3 41 2 3

)= 34123 ≡ 31423 ≡ 31243 ≡ 13243 ≡ 13423

Page 10: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The Schur basis

DefinitionThe Schur functions are given by

sλ =∑

T∈SSYT (λ)

xev(T )

Example

s2,1 = x21x2+ x1x2

2+ 2x1x2x3+ · · ·21 1

21 2

31 2

21 3 · · ·

Fact: Schur functions are a self-dual basis of the symmetricfunctions.

Page 11: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The Schur basis

DefinitionThe Schur functions are given by

sλ =∑

T∈SSYT (λ)

xev(T )

Example

s2,1 = x21x2+ x1x2

2+ 2x1x2x3+ · · ·21 1

21 2

31 2

21 3 · · ·

Fact: Schur functions are a self-dual basis of the symmetricfunctions.

Page 12: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The Schur basis

DefinitionThe Schur functions are given by

sλ =∑

T∈SSYT (λ)

xev(T )

Example

s2,1 = x21x2+ x1x2

2+ 2x1x2x3+ · · ·21 1

21 2

31 2

21 3 · · ·

Fact: Schur functions are a self-dual basis of the symmetricfunctions.

Page 13: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The Schur basis

Using the fact that Schur functions are symmetric, we can rewritethe definition as

sλ =∑µ

Kλ,µmµ

where Kλ,µ is the number of semistandard tableaux of shape λ andevaluation µ.

Using the proposition about dual bases, we get

hµ =∑λ

Kλ,µsλ

which can be rewritten as

hµ =∑T∈Tµ

ssh(T )

where Tµ is the set of all semistandard tableaux of evaluation µ.

Page 14: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The Schur basis

Using the fact that Schur functions are symmetric, we can rewritethe definition as

sλ =∑µ

Kλ,µmµ

where Kλ,µ is the number of semistandard tableaux of shape λ andevaluation µ.Using the proposition about dual bases, we get

hµ =∑λ

Kλ,µsλ

which can be rewritten as

hµ =∑T∈Tµ

ssh(T )

where Tµ is the set of all semistandard tableaux of evaluation µ.

Page 15: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The Schur basis

Using the fact that Schur functions are symmetric, we can rewritethe definition as

sλ =∑µ

Kλ,µmµ

where Kλ,µ is the number of semistandard tableaux of shape λ andevaluation µ.Using the proposition about dual bases, we get

hµ =∑λ

Kλ,µsλ

which can be rewritten as

hµ =∑T∈Tµ

ssh(T )

where Tµ is the set of all semistandard tableaux of evaluation µ.

Page 16: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Tableaux–Schur expansions

Elements of a family {fα} of symmetric functions havetableaux–Schur expansions if there exist sets Tα of semistandardtableaux and weight functions wtα such that

fα =∑T∈Tα

wtα(T )ssh(T )

Goal: find appropriate sets and modifications of wt so that

fα =∑S∈Sα

wtα(S)Gsh(S)

fα =∑R∈Rα

wtα(R)gsh(R)

where G and g are, respectively, the Grothendieck anddual-Grothendieck functions.

Page 17: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Tableaux–Schur expansions

Elements of a family {fα} of symmetric functions havetableaux–Schur expansions if there exist sets Tα of semistandardtableaux and weight functions wtα such that

fα =∑T∈Tα

wtα(T )ssh(T )

Goal: find appropriate sets and modifications of wt so that

fα =∑S∈Sα

wtα(S)Gsh(S)

fα =∑R∈Rα

wtα(R)gsh(R)

where G and g are, respectively, the Grothendieck anddual-Grothendieck functions.

Page 18: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Tableaux–Schur expansions

Examples

I hµ =∑

T∈Tµ ssh(T )

I Hµ[X ; t] =∑

T∈Tµ tch(T )ssh(T )

I sλsµ =∑

T∈Tλ,µ ssh(T )

I Fσ =∑

T∈Tσ ssh(T )

I A(k)µ [X ; t] =

∑T∈Tk,µ

tch(T )ssh(T )

I Hµ[X ; 1, t] =∑

T∈T(1n)tchµ(T )ssh(T )

I Hµ[X ; q, t]?=∑

T∈T(1n)qaµ(T )tbµ(T )ssh(T )

Page 19: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Tableaux–Schur expansions

Examples

I hµ =∑

T∈Tµ ssh(T )

I Hµ[X ; t] =∑

T∈Tµ tch(T )ssh(T )

I sλsµ =∑

T∈Tλ,µ ssh(T )

I Fσ =∑

T∈Tσ ssh(T )

I A(k)µ [X ; t] =

∑T∈Tk,µ

tch(T )ssh(T )

I Hµ[X ; 1, t] =∑

T∈T(1n)tchµ(T )ssh(T )

I Hµ[X ; q, t]?=∑

T∈T(1n)qaµ(T )tbµ(T )ssh(T )

Page 20: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Tableaux–Schur expansions

Examples

I hµ =∑

T∈Tµ ssh(T )

I Hµ[X ; t] =∑

T∈Tµ tch(T )ssh(T )

I sλsµ =∑

T∈Tλ,µ ssh(T )

I Fσ =∑

T∈Tσ ssh(T )

I A(k)µ [X ; t] =

∑T∈Tk,µ

tch(T )ssh(T )

I Hµ[X ; 1, t] =∑

T∈T(1n)tchµ(T )ssh(T )

I Hµ[X ; q, t]?=∑

T∈T(1n)qaµ(T )tbµ(T )ssh(T )

Page 21: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Tableaux–Schur expansions

Examples

I hµ =∑

T∈Tµ ssh(T )

I Hµ[X ; t] =∑

T∈Tµ tch(T )ssh(T )

I sλsµ =∑

T∈Tλ,µ ssh(T )

I Fσ =∑

T∈Tσ ssh(T )

I A(k)µ [X ; t] =

∑T∈Tk,µ

tch(T )ssh(T )

I Hµ[X ; 1, t] =∑

T∈T(1n)tchµ(T )ssh(T )

I Hµ[X ; q, t]?=∑

T∈T(1n)qaµ(T )tbµ(T )ssh(T )

Page 22: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Tableaux–Schur expansions

Examples

I hµ =∑

T∈Tµ ssh(T )

I Hµ[X ; t] =∑

T∈Tµ tch(T )ssh(T )

I sλsµ =∑

T∈Tλ,µ ssh(T )

I Fσ =∑

T∈Tσ ssh(T )

I A(k)µ [X ; t] =

∑T∈Tk,µ

tch(T )ssh(T )

I Hµ[X ; 1, t] =∑

T∈T(1n)tchµ(T )ssh(T )

I Hµ[X ; q, t]?=∑

T∈T(1n)qaµ(T )tbµ(T )ssh(T )

Page 23: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Tableaux–Schur expansions

Examples

I hµ =∑

T∈Tµ ssh(T )

I Hµ[X ; t] =∑

T∈Tµ tch(T )ssh(T )

I sλsµ =∑

T∈Tλ,µ ssh(T )

I Fσ =∑

T∈Tσ ssh(T )

I A(k)µ [X ; t] =

∑T∈Tk,µ

tch(T )ssh(T )

I Hµ[X ; 1, t] =∑

T∈T(1n)tchµ(T )ssh(T )

I Hµ[X ; q, t]?=∑

T∈T(1n)qaµ(T )tbµ(T )ssh(T )

Page 24: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Tableaux–Schur expansions

Examples

I hµ =∑

T∈Tµ ssh(T )

I Hµ[X ; t] =∑

T∈Tµ tch(T )ssh(T )

I sλsµ =∑

T∈Tλ,µ ssh(T )

I Fσ =∑

T∈Tσ ssh(T )

I A(k)µ [X ; t] =

∑T∈Tk,µ

tch(T )ssh(T )

I Hµ[X ; 1, t] =∑

T∈T(1n)tchµ(T )ssh(T )

I Hµ[X ; q, t]?=∑

T∈T(1n)qaµ(T )tbµ(T )ssh(T )

Page 25: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Tableaux–Schur expansions

Examples

I hµ =∑

T∈Tµ ssh(T )

I Hµ[X ; t] =∑

T∈Tµ tch(T )ssh(T )

I sλsµ =∑

T∈Tλ,µ ssh(T )

I Fσ =∑

T∈Tσ ssh(T )

I A(k)µ [X ; t] =

∑T∈Tk,µ

tch(T )ssh(T )

I Hµ[X ; 1, t] =∑

T∈T(1n)tchµ(T )ssh(T )

I Hµ[X ; q, t]?=∑

T∈T(1n)qaµ(T )tbµ(T )ssh(T )

Page 26: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Grothendieck polynomials

I Introduced by Lascoux-Schutzenberger (1982)

I Represent K -theory classes of structure sheaves of Schubertvarieties in GLn

I Given by elements of Z[[x1, . . . , xn]]

I Analogous to Schubert polynomials

I Sign-alternating by degree, equal to Schubert polynomial inbottom degree

Page 27: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Stable Grassmannian Grothendieck functions

Stable:

I Due to Fomin-Kirillov

I Limit as number of variables →∞

Grassmannian:

I Indexed by partitions

I Power series of symmetric functions

I Sign-alternating by degree in the Schur basis

I Analog of Schur functions

Page 28: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Stable Grassmannian Grothendieck functions

Stable:

I Due to Fomin-Kirillov

I Limit as number of variables →∞Grassmannian:

I Indexed by partitions

I Power series of symmetric functions

I Sign-alternating by degree in the Schur basis

I Analog of Schur functions

Page 29: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Grassmannian Grothendieck functions

Theorem (Buch)

Gλ =∑

S∈SVT (λ)

ε(S)xev(S)

where SVT (λ) is the set of set-valued tableaux of shape λ.

Example

G1 = s1 −s1,1 +s1,1,1 . . .

1 12 123 · · ·

23 234 · · ·...

...

Page 30: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Grassmannian Grothendieck functions

Theorem (Buch)

Gλ =∑

S∈SVT (λ)

ε(S)xev(S)

where SVT (λ) is the set of set-valued tableaux of shape λ.

Example

G1 = s1 −s1,1 +s1,1,1 . . .

1 12 123 · · ·

23 234 · · ·...

...

Page 31: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Set-valued tableaux

Example

234 45

1 12 3

shape(S) = (3, 2) evaluation(S) = (2, 2, 2, 2, 1)

ε(S) = (−1)|ev(S)|+|sh(S)| = 1

From

Gλ =∑

S∈SVT (λ)

ε(S)xev(S)

we seeGλ = sλ ± higher degree terms

Page 32: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Set-valued tableaux

Example

234 45

1 12 3

shape(S) = (3, 2) evaluation(S) = (2, 2, 2, 2, 1)

ε(S) = (−1)|ev(S)|+|sh(S)| = 1

From

Gλ =∑

S∈SVT (λ)

ε(S)xev(S)

we seeGλ = sλ ± higher degree terms

Page 33: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Set-valued tableaux

Example

234 45

1 12 3

shape(S) = (3, 2) evaluation(S) = (2, 2, 2, 2, 1)

ε(S) = (−1)|ev(S)|+|sh(S)| = 1

From

Gλ =∑

S∈SVT (λ)

ε(S)xev(S)

we seeGλ = sλ ± higher degree terms

Page 34: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Set-valued tableaux

We introduce the reading word of a set-valued tableau, defined by:

I Proceed row by row, from top to bottom

I In each row, first ignore the smallest element of each cell.Then read the remaining elements from right to left, and fromlargest to smallest within each cell.

I Read the smallest elements of each cell from left to right.

Example

234 45

1 12 3

has reading word: 543242113.

Page 35: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Dual Grothendieck functionsWe denote the dual basis to the Grothendieck by g

Theorem (Lam, Pylyavskyy)

gλ =∑

R∈RPP(λ)

xev(R)

where RPP(λ) is the set of reverse plane partitions of shape λ.

Example

g2,1 = s2,1 +s2

21 1

11 1

21 3

11 2

......

Page 36: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Dual Grothendieck functionsWe denote the dual basis to the Grothendieck by g

Theorem (Lam, Pylyavskyy)

gλ =∑

R∈RPP(λ)

xev(R)

where RPP(λ) is the set of reverse plane partitions of shape λ.

Example

g2,1 = s2,1 +s2

21 1

11 1

21 3

11 2

......

Page 37: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Reverse plane partitions

Example

2 32 2 41 2 21 1 1 1

shape(R) = (4, 3, 3, 2) evaluation(R) = (4, 3, 1, 1)

From

gλ =∑

R∈RPP(λ)

xev(R)

we seegλ = sλ ± lower degree terms

Page 38: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Reverse plane partitions

Example

2 32 2 41 2 21 1 1 1

shape(R) = (4, 3, 3, 2) evaluation(R) = (4, 3, 1, 1)

From

gλ =∑

R∈RPP(λ)

xev(R)

we seegλ = sλ ± lower degree terms

Page 39: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Dual Grothendieck functions

We define the reading word of a reverse plane partition to be asubsequence of the usual reading word, where we only take thebottommost occurence of every letter in each column.

Example

2 32 2 41 2 21 1 1 1

has reading word 324221111.

Page 40: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Generalizing tableaux–Schur expansions

Given any set Tα of semistandard tableaux, we definecorresponding sets Sα (respectively Rα) of set-valued tableaux(reverse plane partitions) defined by

S ∈ Sα ⇐⇒ rw(S) ≡ rw(T ) for some T ∈ Tα

R ∈ Rα ⇐⇒ rw(R) ≡ rw(T ) for some T ∈ Tα

Given a statistic wtα on Tα, we can extend it to reading words bywtα(w) = wtα(T ) if w ≡ rw(T ).

Page 41: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Generalizing tableaux–Schur expansions

Given any set Tα of semistandard tableaux, we definecorresponding sets Sα (respectively Rα) of set-valued tableaux(reverse plane partitions) defined by

S ∈ Sα ⇐⇒ rw(S) ≡ rw(T ) for some T ∈ Tα

R ∈ Rα ⇐⇒ rw(R) ≡ rw(T ) for some T ∈ Tα

Given a statistic wtα on Tα, we can extend it to reading words bywtα(w) = wtα(T ) if w ≡ rw(T ).

Page 42: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Examples

If T =

43 41 2 ∈ Tα, then

43 41 2

431 24

34 41 2

4 41 23

4

1 234

43412 43412 43412 44312 44312

are in Sα

and

43 41 2

4 41 31 2

4 43 41 2

44 41 31 2 · · ·

43412 44312 43412 44312

are in Rα. All of these will have the same weight.

Page 43: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Examples

If T =

43 41 2 ∈ Tα, then

43 41 2

431 24

34 41 2

4 41 23

4

1 234

43412 43412 43412 44312 44312

are in Sα and

43 41 2

4 41 31 2

4 43 41 2

44 41 31 2 · · ·

43412 44312 43412 44312

are in Rα. All of these will have the same weight.

Page 44: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Statement of main theorem

Theorem (B-Morse)

Let fα be a family of symmetric functions with

fα =∑T∈Tα

wtα(T )ssh(T ).

Then

fα =∑S∈Sα

ε(S)wtα(S)gsh(S)

and

fα =∑R∈Rα

wtα(R)Gsh(R).

Page 45: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Complete homogeneous functions

We have a tableaux-Schur expansion of the homogeneous functionsby

hµ =∑T∈Tµ

ssh(T )

where Tµ is the set of all tableaux of evaluation µ. Thus we have

hµ =∑S∈Sµ

ε(S)gsh(S) =∑R∈Rµ

Gsh(R)

where Sµ is the set of all set-valued tableaux of evaluation µ andRµ is the set of all reverse plane partitions of evaluation µ.

Page 46: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Example

h3,2 = s3,2 +s4,1 +s5

2 21 1 1

21 1 1 2 1 1 1 2 2

= g3,2 +g4,1 +g5

−g3,1 −g4

21 1 12 1 1 12 2

= G3,2 +G4,1 +G5

+2G3,2,1 +2G4,1,1 + · · ·22 21 1 1

21 21 1 1

221 1 1 2

211 1 1 2

Page 47: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Example

h3,2 = s3,2 +s4,1 +s5

2 21 1 1

21 1 1 2 1 1 1 2 2

= g3,2 +g4,1 +g5

−g3,1 −g4

21 1 12 1 1 12 2

= G3,2 +G4,1 +G5

+2G3,2,1 +2G4,1,1 + · · ·22 21 1 1

21 21 1 1

221 1 1 2

211 1 1 2

Page 48: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Example

h3,2 = s3,2 +s4,1 +s5

2 21 1 1

21 1 1 2 1 1 1 2 2

= g3,2 +g4,1 +g5

−g3,1 −g4

21 1 12 1 1 12 2

= G3,2 +G4,1 +G5

+2G3,2,1 +2G4,1,1 + · · ·22 21 1 1

21 21 1 1

221 1 1 2

211 1 1 2

Page 49: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Hall-Littlewood functions

The Hall-Littlewood functions form a basis for the symmetricfunctions over the field Q(t). Interpretations as

I Deformation of Weyl character formula

I Graded Sn-character of certain cohomology rings

I Representation theory of groups of matrices over finite fields

among others.

We will use the version typically denoted by Hµ[X ; t] or Q ′µ(x ; t) inthe literature.

Example

H1,1,1[X ; t] = s1,1,1 + (t2 + t)s2,1 + t3s3

Page 50: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Hall-Littlewood functions

The Hall-Littlewood functions form a basis for the symmetricfunctions over the field Q(t). Interpretations as

I Deformation of Weyl character formula

I Graded Sn-character of certain cohomology rings

I Representation theory of groups of matrices over finite fields

among others.

We will use the version typically denoted by Hµ[X ; t] or Q ′µ(x ; t) inthe literature.

Example

H1,1,1[X ; t] = s1,1,1 + (t2 + t)s2,1 + t3s3

Page 51: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Hall-Littlewood functions

Theorem (Lascoux-Schutzenberger)

Hµ[X ; t] =∑T∈Tµ

tch(T )ssh(T )

where charge is a non-negative integer statistic defined on wordsand constant on Knuth equivalence classes.

Page 52: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The charge statistic

Example

3 42 2 31 1 1 2

3 4 2 2 3 1 1 1 2

Page 53: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The charge statistic

Example

3 42 2 31 1 1 2

0

3 4 2 2 3 1 1 1 2

Page 54: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The charge statistic

Example

3 42 2 31 1 1 2

0 0

3 4 2 2 3 1 1 1 2

Page 55: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The charge statistic

Example

3 42 2 31 1 1 2

0 0 0

3 4 2 2 3 1 1 1 2

Page 56: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The charge statistic

Example

3 42 2 31 1 1 2

0 1 0 0

3 4 2 2 3 1 1 1 2

Page 57: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The charge statistic

Example

3 42 2 31 1 1 2

0 1 0 0 0

3 4 2 2 3 1 1 1 2

Page 58: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The charge statistic

Example

3 42 2 31 1 1 2

0 1 0 0 0 0

3 4 2 2 3 1 1 1 2

Page 59: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The charge statistic

Example

3 42 2 31 1 1 2

0 1 0 0 1 0 0

3 4 2 2 3 1 1 1 2

Page 60: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The charge statistic

Example

3 42 2 31 1 1 2

0 1 0 0 1 0 0 0

3 4 2 2 3 1 1 1 2

Page 61: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The charge statistic

Example

3 42 2 31 1 1 2

0 1 0 0 1 0 0 0 1

3 4 2 2 3 1 1 1 2

charge(T ) = 3

Page 62: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Hall-Littlewood functions

We have

Hµ[X ; t] =∑T∈Tµ

tch(T )ssh(T )

where Tµ is again the set of all tableaux of evaluation µ. Hence

Hµ[X ; t] =∑S∈Sµ

ε(S)tch(S)gsh(S)

=∑R∈Rµ

tch(R)Gsh(R)

where Sµ (resp. Rµ) is the set of set-valued tableaux (resp. reverseplane partitions) of evaluation µ and the charge of S or R is thecharge of the reading word.

Page 63: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Example

H1,1,1[X ; t] = s1,1,1 + (t + t2)s2,1 + t3s3

=g1,1,1 + (t + t2)g2,1 + t3g3

− 2g1,1 − (t + t2)g2 + g1

321

21 3

31 2 1 2 3

231

312 12 3 1 23 123

Page 64: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Example

H1,1,1[X ; t] = s1,1,1 + (t + t2)s2,1 + t3s3

=g1,1,1 + (t + t2)g2,1 + t3g3

− 2g1,1 − (t + t2)g2 + g1

321

21 3

31 2 1 2 3

231

312 12 3 1 23 123

Page 65: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Littlewood-Richardson tableaux

One version of the Littlewood-Richardson rule states that

sλsµ =∑

T∈Tλ,µ

ssh(T )

where Tλ,µ is the set of tableaux:

I with evaluation (λ1, · · · , λ`(λ), µ1, · · · , µ`(µ))I which have the reverse lattice property with respect to the

letters 1, · · · , `(λ), and

I which have the reverse lattice property with respect to theletters `(λ) + 1, · · · , `(λ) + `(µ)

Page 66: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Littlewood-Richardson tableaux

Example

T(2,1),(2,1) is

2 41 1 3 3

421 1 3 3

2 3 41 1 3

42 31 1 3

32 41 1 3

4321 1 3

3 42 31 1

432 31 1

Page 67: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Littlewood-Richardson tableaux

Corollary

sλsµ =∑

S∈Sλ,µ

ε(S)gsh(S) =∑

R∈Rλ,µ

Gsh(R)

where Sλ,µ (resp. Rλ,µ) is the set of all set-valued tableaux (resp.reverse plane partitions)

I with evaluation (λ1, · · · , λ`(λ), µ1, · · · , µ`(µ))I which have the reverse lattice property with respect to the

letters 1, · · · , `(λ), and

I which have the reverse lattice property with respect to theletters `(λ) + 1, · · · , `(λ) + `(µ)

Page 68: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Grothendieck and Schur functions

Corollary

sλ =∑

S∈Sλ,∅

ε(S)gsh(S)

sλ =∑

R∈Rλ,∅

Gsh(S)

Duality gives expansions of G and g into Schur functions.A different form of these expansions was given by Lenart, in termsof combinatorial objects now called elegant fillings.

Page 69: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Sketch of proof

Given

fα =∑T∈Tα

wt(T )ssh(T )

=∑T∈Tα

wt(T )∑

T ′∈SSYT (sh(T ))

xev(T′)

we want to show

fα =∑S∈Sα

ε(S)wt(S)gsh(S)

=∑S∈Sα

ε(S)wt(S)∑

R∈RPP(sh(S))

xev(R)

Page 70: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Sketch of proof

Given

fα =∑T∈Tα

wt(T )ssh(T )

=∑T∈Tα

wt(T )∑

T ′∈SSYT (sh(T ))

xev(T′)

we want to show

fα =∑S∈Sα

ε(S)wt(S)gsh(S)

=∑S∈Sα

ε(S)wt(S)∑

R∈RPP(sh(S))

xev(R)

Page 71: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

423 41 23 4

21 31 3 4

Page 72: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

423 41 23 4

21 31 3 4

Page 73: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

432 41 23 4

21 31 3 4

Page 74: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

432 41 23 4

•21 31 3 4

Page 75: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

432 41 23 4

2•1 31 3 4

Page 76: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

432 41 23 4

21• 31 3 4

Page 77: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

432 41 23 4

211 31 3 4

Page 78: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

432 41 23 4

211 31 3 4

Page 79: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

432 41 23 4

21• 31 3 4

Page 80: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

432 41 23 4

2•1 31 3 4

Page 81: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

432 41 23 4

•21 31 3 4

Page 82: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

432 41 23 4

21 31 3 4

Page 83: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

432 41 23 4

21 31 3 4

Page 84: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

423 41 23 4

21 31 3 4

Page 85: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

The involution

Example

423 41 23 4

21 31 3 4

423 41 23 4

21 31 3 4

Page 86: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Sage-Combinat meeting tonight

Sage’s mission:

“To create a viable high-quality and open-source alternative toMapleTM, MathematicaTM, MagmaTM, and MATLABTM”

...“and to foster a friendly community of users and developers”

Tonight, Thorton Hall, Room 326

I 7pm-8pm: Introduction to Sage and Sage-Combinat

I 8pm-10pm: Help on installation & getting startedBring your laptop!

I Design discussions

Page 87: Grothendieck expansions of symmetric polynomialslinux.bucknell.edu/~pm040/Slides/Bandlow.pdf · gof symmetric functions have tableaux{Schur expansions if there exist sets T of semistandard

Thank you for your attention.