GreenPAK

download GreenPAK

of 65

Transcript of GreenPAK

  • 8/6/2019 GreenPAK

    1/65

    Silego Technology, Inc. Rev 1.07

    000-0046200-107 Revised May 2, 2011

    Production

    GreenPAK TMProgrammable Mixed Signal Array

    SLG46200

    Block Diagram

    Features Logic & Mixed Signal Circuits

    Highly Versatile Macro Cells

    3.3V Supply

    Operating Temperature Range: -40C to 85C

    RoHS Compliant / Halogen-Free

    Pb-Free TDFN-8 2mm x 2mm Package

    Applications

    Personal Computers and Servers

    PC Peripherals

    Consumer Electronics

    Data Communications Equipment

    Handheld and Portable Electronics

    Pin Configuration

    GNDI/O_PSOI/O_PSI

    I/O_PCLK

    I/OI/O_RST

    23

    4 5

    67

    8

    IN_VPP

    VDD 1

    Thermal Padconnected to GND

    TDFN-8(Top View)

    PIN1VDD

    PIN2Input

    PIN3I/O

    PIN4I/O

    PIN7I/O

    PIN8I/O

    Non-VolatileMemory

    POR

    VREF

    RC OSC

    S2P PIN6I/O

    PIN5GND

    ACMP1

    ACMP0PWM

    ADC

    Look-Up Tables

    2-bitLUT0

    2-bitLUT1

    3-bitLUT0

    3-bitLUT1

    3-bitLUT2

    3-bitLUT3

    4-bitLUT0

    DigitalComparator

    DCMP0

    DCMP1

    Counter/DelayGenerators

    CNT/DLY0

    CNT/DLY1

    CNT/DLY2

    D Flip-Flops/Latches

    DFF0

    DFF1

    DFF2

  • 8/6/2019 GreenPAK

    2/65

    000-0046200-107 Production

    SLG46200Table of Contents

    1.0 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2.0 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.1 Functional Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.2 Programming Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    3.0 User Programmability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    4.0 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45.0 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.1 Absolute Maximum Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.2 Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55.3 Logic Cell Current Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.4 Input Pin Current Measuremnts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76.0 Summary of Macro Cell Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    6.1 I/O Pins (6 total) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86.2 Delays/Counters (3 total) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86.3 Analog to Digital Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86.4 Analog Comparators (2 total) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    6.5 Pulse Width Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86.6 Digital Comparators (2 total). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86.7 Serial-to-Parallel / Parallel-to-Serial Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    6.8 Combinatorial Logic LUTs (7 total) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86.9 Logic Storage Devices (3 total). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    7.0 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    7.1 Input Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97.2 Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    7.2.1 Open Drain Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107.2.2 Push Pull with Output Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107.2.3 Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    7.3 Pull Up/Down Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    7.4 I/O Pins Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117.4.1 PIN 2 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117.4.2 PIN 3 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117.4.3 PIN 4 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127.4.4 PIN 6 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127.4.5 PIN 7 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137.4.6 PIN 8 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    8.0 Digital Comparator (DCMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148.1 DCMP Input Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

  • 8/6/2019 GreenPAK

    3/65

    000-0046200-107 Production

    SLG462008.2 DCMP Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148.3 DCMP0 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148.4 DCMP1 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    8.5 DCMP0 & DCMP1 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159.0 Pulse Width Modulator (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    9.1 PWM Input Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169.2 PWM Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    9.3 PWM Functional Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169.4 PWM Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    9.5 PWM Dead Band Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179.6 PWM Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    10.0 Serial to Parallel / Parallel to Serial Converter (S2P) . . . . . . . . . . . . . . . . . . . . . . 19

    10.1 S2P Functional Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1910.2 Serial to Parallel Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1910.3 Serial to Parallel Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2010.4 Parallel to Serial Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2010.5 Parallel to Serial Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    10.6 S2P Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2010.7 S2P Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    11.0 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2211.1 ADC Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    11.2 ADC Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2311.3 ADC 3-bit Programmable Gain Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2311.4 ADC 2-Channel Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    11.5 ADC Input Voltage Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2311.6 ADC Reference Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2411.7 ADC Power Down Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    11.8 ADC Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2411.9 ADC Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2511.10 ADC Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    12.0 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    12.1 ACMP0 Input Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2712.2 ACMP0 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2712.3 ACMP1 Input Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2712.4 ACMP1 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    12.5 ACMP Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2812.6 ACMP 1mA Input Current Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

  • 8/6/2019 GreenPAK

    4/65

    000-0046200-107 Production

    SLG4620012.7 ACMP Low Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2812.8 ACMP 50mV Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2912.9 ACMP0 & ACMP1 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    12.9.1 ACMP0 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2912.9.2 ACMP1 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    13.0 Voltage Reference Out (V REF Out). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3113.1 VREF Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3113.2 VREF Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    13.3 VREF Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3113.4 VREF Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    14.0 Power On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    15.0 RC Oscillator (RCO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3415.1 RC Oscillator Functional Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3415.2 RCO Frequency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    15.3 RCO Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3515.4 RCO Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    16.0 Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3616.1 Counter Functional Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    16.2 Counter Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3616.3 Counter2 as a Finite State Machine (FSM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3716.4 FSM (Counter2) Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3716.5 Counter Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    17.0 Delay Cells (DLY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    17.1 Delay Cells Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4017.2 Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4017.3 4Delay Cells Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    18.0 Combinatorial Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4218.1 2-Bit LUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4218.2 3-Bit LUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    18.3 4-Bit LUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4519.0 Digital Storage Elements (DFFs/Latches) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    19.1 DFF/Latch Functional Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    19.2 DFF/Latch Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4619.3 DFF/Latch Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    20.0 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4720.1 System Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    20.2 Combinatorial Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

  • 8/6/2019 GreenPAK

    5/65

    000-0046200-107 Production

    SLG4620020.3 Time Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    21.0 Development Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4821.1 Software & Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    21.1.1 GreenPAK Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4821.1.2 GreenPAK Programmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4821.1.3 Minimum System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    21.2 Development Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4821.3 Project Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    22.0 Package Top Marking System Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4923.0 Package Drawing and Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    23.1 8 Lead TDFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5024.0 Tape and Reel Drawing and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    24.1 Tape and Reel Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5124.2 Tape and Reel Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    25.0 Appendix - SLG46200 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5226.0 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    27.0 Silego Website & Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6027.1 Silego Technology Website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6027.2 Silego Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    27.2.1 Online Live Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6027.2.2 Contact Your Local Sales Representative . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    27.2.3 Contact Silego Directly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6027.3 Other Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

  • 8/6/2019 GreenPAK

    6/65

    000-0046200-107 Page 1 of 60Production

    SLG462001.0 Overview

    The SLG46200 provides a small, low power component for commonly used mixed-signal functions. The user creates their circuitdesign by programming the one time Non-Volatile Memory (NVM) to configure interconnect logic, I/O Pins and macro cells of theSLG46200. This highly versatile device allows a wide variety of mixed-signal functions to be designed within a very small, lowpower single integrated circuit. The macro cells in the device include the following:

    Pulse Width Modulator (PWM) 8-Bit Successive Approximation Analog to Digital Converter (SAR ADC) Serial to Parallel Converter (S2P) Power-On Reset Device (POR) Voltage Reference (V REF ) RC Oscillator (RC OSC) 3 Counter/Delay Generators (CNT/DLY) 3 D Flip-Flop/Latches (DFF) 2 Digital Comparators (DCMP) 2 Analog Comparators (ACMP) 7 Combinatorial Lookup Tables (LUT) Configurable I/O Pins (Open Drain, Push-Pull, Schmitt Trigger Input, Low Voltage Digital Input and Analog I/O)

    The specific functions that can be designed using the SLG46200 include:

    Power-On-Reset Generators Signal Delay Elements One-Shot Detection Voltage Level Detectors Voltage Level-Shift Circuits Signal De-Glitches

    The PWM and ADC macro cells also support more complex control circuits such fan speed controllers, stepper motor controllersand interface to a wide variety of sensor devices. Traditionally these devices were designed from combinations of low complexitylogic and discrete devices requiring costly board space while having complex testing strategies. Silegos SLG46200 allows thefunctionality of these circuits to be fully tested before being mounted onto a PCB greatly simplifying the system design andtesting procedures.

  • 8/6/2019 GreenPAK

    7/65

    000-0046200-107 Page 2 of 60Production

    SLG462002.0 Pin Description

    2.1 Functional Pin Description

    2.2 Programming Pin Description

    Pin # Pin Name Function1 VDD 3.3V Supply

    2 IN_VPP I

    3 I/O_RST I/O

    4 I/O I/O

    5 GND GND

    6 I/O_PSO I/O

    7 I/O_PSI I/O

    8 I/O_PCLK I/O

    ExposedBottom Pad GND GND

    Pin # Pin Name Programming Description

    1 VDD 3.3V Power

    2 IN_VPP Program Power Voltage

    3 I/O_RST Program Reset

    4 I/O N/A

    5 GND GND

    6 I/O_PSO Program Serial Data Out

    7 I/O_PSI Program Serial Data In

    8 I/O_PCLK Program Clock In

  • 8/6/2019 GreenPAK

    8/65

    000-0046200-107 Page 3 of 60Production

    SLG462003.0 User Programmability

    The SLG46200 is a user programmable device with One-Time-Programmable (OTP) memory elements that are able to constructcombinatorial logic elements. Three of the I/O Pins provide a connection for the bit patterns into the OTP on board memory. Aprogramming development kit allows the user the ability to create initial devices. Once the design is finalized, the hex pattern isforwarded to Silego to integrate into a production process.

    Figure 1. Steps to create a custom Silego GreenPAK device

    ProductDefinition

    Customer Creates their own design inGreenPAK Designer

    Program Engineering Samples withGreenPAK Programmer

    Customer verifies GreenPAKin system design

    E-mail HEX pattern [email protected]

    E-mail Product Idea, Definition, Drawing, or Schematic to [email protected]

    Silego Applications Engineers will review designspecifications with customer

    Samples and Design & CharacterizationReport sent to customer

    Customer verifies GreenPAK design

    Custom GreenPAK partenters production

    GreenPAK Designapproved in system test

    GreenPAK Design

    approved

    GreenPAK Design

    approved

  • 8/6/2019 GreenPAK

    9/65

    000-0046200-107 Page 4 of 60Production

    SLG462004.0 Ordering Information

    Part Number Type

    SLG46200V TDFN-8

    SLG46200VTR TDFN-8 - Tape and Reel (3k units)

  • 8/6/2019 GreenPAK

    10/65

    000-0046200-107 Page 5 of 60Production

    SLG462005.0 Electrical Specifications

    5.1 Absolute Maximum Conditions

    5.2 Electrical Characteristics

    Parameter Min. Max. UnitVHIGH to GND -0.3 4.6 V

    Voltage at Input Pin -0.3 4.6 V

    Current at Input Pin -1.0 1.0 mA

    Storage Temperature Range -65 150 C

    Junction Temperature -- 150 C

    ESD Human Body Model -- 2000 V

    ESD Machine Model -- 200 V

    Symbol Parameter Condition/Note Min. Typ. Max. Unit

    VDD Supply Voltage 3.0 3.3 3.6 V

    TA Operating TemperatureGuaranteed by design andcharacterization, not 100%tested in production for cus-tomer specific design.

    -40 25 85 C

    VO Output Voltage1.0 -- 3.3 V

    Voltage range applied to anyoutput in the high-impedance 0 -- VDD V

    VPP Programming VoltageChip programming -- 6.5 -- V

    Chip reading -- 5.0 -- V

    VAIR Analog Input Voltage Range 0 -- 2.2 V

    VIH HIGH-Level Input Voltage Logic Input 2.0 -- -- VVIL LOW-Level Input Voltage Logic Input -0.3 -- 0.8 V

    VIHYS Input HysteresisDigital Input with BufferedSchmitt Trigger -- 50 -- mV

    IIHHIGH-Level Input LeakageCurrent Logic Input Pins; V IN=3.3V -100 -- 100 nA

    IILLOW-Level Input LeakageCurrent Logic Input Pins; V IN=0V -100 -- 100 nA

    VOH HIGH-Level Output VoltageCMOS Push-Pull, Logic LevelOutputs 2.4 -- 3.3 V

    VOL LOW-Level Output VoltageCMOS Push-Pull, Open DrainLogic Level Outputs 0 -- 0.4 V

    IOH HIGH-Level Output CurrentPush-Pull Double Current -- 16 -- mAPush Pull -- 8 -- mA

    IOL LOW-Level Output Current

    1X Open Drain -- 20 -- mA

    2X Open Drain -- 40 -- mA

    Push-Pull Double Current -- -16 -- mA

    Push Pull -- -8 -- mA

    TSU Startup Time -- 7 -- ms

    TPD Propagation DelaySingle LUT Cellfrom Output Pin to Input Pin -- 25 -- ns

  • 8/6/2019 GreenPAK

    11/65

    000-0046200-107 Page 6 of 60Production

    SLG462005.3 Logic Cell Current Measurements

    VDD = 3.3V, T A = 25C (unless otherwise stated)

    Symbol Parameter Condition/Note Min. Typ. Max. Unit

    IVREF VREF Current

    VREF -- 15.0 --

    A

    VREF + 2 Comp -- 32.0 --

    VREF + ADC_Single(0V) -- 48.0 --

    VREF + ADC_Single(1.75V) -- 75.0 --

    VREF + ADC_Single(0V) +Osc(10MHz) -- 230.0 --

    VREF + ADC_diff(1V) +Osc(10MHz) -- 250.0 --

    VREF + ADC_Single(1.75V) +Osc(10MHz) -- 370.0 --

    IPWM PWM [email protected] -- 13.6 --

    [email protected] -- 15.9 --

    @3.6V -- 18.0 --

    IREG Regulator Current

    @3.0V -- 0.65 --

    [email protected] -- 0.75 --

    @3.6V -- 0.8 --

    IOSC RC Oscillator Current

    @43kHz -- 4.0 --

    A

    @ 43kHz + V REF -- 19.0 --

    @ 85kHz -- 6.0 --

    @ 85kHz + V REF -- 21.0 --

    @ 128kHz -- 7.5 --@ 128kHz + V REF -- 22.5 --

    @ 160kHz -- 9.5 --

    @ 160KHz + V REF -- 24.5 --

    @ 240kHz -- 12.0 --

    @ 240kHz + V REF -- 27.0 --

    @ 384kHz -- 15.5 --

    @ 384kHz + V REF -- 30.5 --

    @ 440kHz -- 20.0 --

    @ 440kHz + V REF -- 35.0 --

    @ 625kHz -- 24.0 --

    @ 625kHz + V REF -- 39.0 --

    @ 800kHz -- 45.0 --

    @ 800kHz + V REF -- 60.0 --

    @ 870kHz -- 36.0 --

    @ 870kHz + V REF -- 51.0 --

  • 8/6/2019 GreenPAK

    12/65

    000-0046200-107 Page 7 of 60Production

    SLG46200

    5.4 Input Pin Current Measurements

    VDD = 3.3V, T A = 25C (unless otherwise stated)

    IOSC RC Oscillator Current

    @ 950kHz -- 36.0 --

    A

    @ 950kHz + V REF -- 51.0 --

    @ 1290kHz -- 53.0 --

    @ 1290kHz + V REF -- 68.0 --

    @ 1750kHz -- 73.0 --

    @ 1750kHz + V REF -- 88.0 --

    @ 2100kHz -- 71.5 --

    @ 2100kHz + V REF -- 86.5 --

    @ 4800kHz -- 120.5 --

    @ 4800kHz + V REF -- 135.5 --

    @ 7812kHz -- 181.0 --

    @ 7812kHz + V REF -- 196.0 --

    Symbol Parameter Condition/Note Min. Typ. Max. Unit

    IINPUT Digital Input

    Digital Input (1MHz) w/outSchmitt Trigger -- 5.5 --

    ADigital Input (1MHz) w/outSchmitt Trigger -- 4.0 --

    IINPUT

    Low Voltage Digital Input Digital Input (1MHz) @ 0.9V -- 7.5 --

    ADigital Input (1MHz) @ 1.2V -- 6.5 --

    Digital Input (1MHz) @ 1.5V -- 6.5 --Digital Input (1MHz) @ 1.8V -- 6.5 --

    IINPUT

    Low Voltage Digital Input Digital Input (100KHz) @ 0.9V -- 1.0 --

    ADigital Input (100KHz) @ 1.2V -- 0.8 --

    Digital Input (100KHz) @ 1.5V -- 0.7 --

    Digital Input (100KHz) @ 1.8V -- 0.7 --

    IINPUTLow Voltage Digital Input Digital Input (No CLK) @ 0.0V --

  • 8/6/2019 GreenPAK

    13/65

    000-0046200-107 Page 8 of 60Production

    SLG462006.0 Summary of Macro Cell Function

    6.1 I/O Pins (6 total)

    Digital Input (low voltage or normal voltage, with or without Schmitt Trigger) Open Drain Push-Pull Analog I/O 50k /100k /300k pull-up/pull-down Resistors

    6.2 Delays/Counters (3 total)

    0.5 s to 380ms (4.5s for Delay1) delay time range Three 14-bit counters (one Finite State Machine counter)

    6.3 Analog to Digital Converter

    8-bit, 10kHz, Successive Approximation Register ADC

    DNL < 1LSB, INL < 2LSB VIN Range: 0 ~ 1.7V Common Mode Voltage Range: V PP /2 ~ V DD /2 3-bit Programmable Gain Amplifier with gain values of (1, 2, 4, 8,16X in differential mode and 0.5, 1, 2, 4, 8X in single-ended

    mode) SPI Output Format

    6.4 Analog Comparators (2 total)

    50mV Hysteresis

    6.5 Pulse Width Modulator

    8-bit

    Clock Frequency 10MHz, with dead band control

    6.6 Digital Comparators (2 total)

    8-bit Clock Frequency 10MHz

    6.7 Serial-to-Parallel / Parallel-to-Serial Converter

    Serial-to-Parallel Parallel-to-Serial SPI Format

    6.8 Combinatorial Logic LUTs (7 total)

    Used to create either standard or custom digital logic cells Two 2-bit Lookup Tables Four 3-bit Lookup Tables One 4-bit Lookup Tables

    6.9 Logic Storage Devices (3 total)

    D Flip-Flops or Latches

  • 8/6/2019 GreenPAK

    14/65

    000-0046200-107 Page 9 of 60Production

    SLG462007.0 I/O Pins

    The SLG46200 has a total of six multi-function I/O Pins which can function as either a user defined Input or Output as well asserve as a programmable function for the one time Non-Volatile Memory to configure interconnect logic.

    Normal Mode Pin Definition is as follows:

    PIN 2: (input pin only) used for ADC Channel Select PIN 3: Serial Data transfer for either SPI (input & output) or ADC (output) PIN 4: Analog Comparator 0 input, SPI clock input or ADC external clock PIN 6: ADC IN+ PIN 7: ADC IN- or Analog Comparator 1 input PIN 8: ADC & ACMP V REF input & output or V REF output

    For the one time programming of a SLG46200 the following pin connections are used:

    PIN 2: Voltage for Programming Power PIN 3: Program Reset PIN 6: Program Serial Data Output PIN 7: Program Serial Data Input PIN 8: Program Clock Input

    Of the six user defined I/O Pins in the SLG46200, five pins (PINs 3, 4, 6, 7 and 8) can be used for either input or output and onepin (PIN 2) is defined as input only.

    7.1 Input Modes

    Each input pin can be configured as a Digital Input with/without Buffered Schmitt Trigger, Low Voltage Digital In, or Analog In to

    control the user signals that are inputted into the SLG46200. All digital input pins will either have a logic 1 or 0 value inputtedinto the SLG46200, based on the configuration of the input pin which is defined by the user.

    Figure 2. I/O Pads Layout

    PAD(PIN 2)

    PAD(PINS 3, 4, 6, 7, 8)

    pad padPIN 2 PIN 3, 4, 6, 7, 8

    out out

    Digital data toSLG46200

    Digital data toSLG46200

    in

    oe

    Digital data fromSLG46200

    Push-Pull OutputEnable from matrix

    (For PIN 6, OE iscontrolled from reg

    instead of frommatrix)

  • 8/6/2019 GreenPAK

    15/65

    000-0046200-107 Page 10 of 60Production

    SLG462007.2 Output Modes

    PINs 3, 4, 6, 7 and 8 can be configured as either an open drain output or push-pull output (with Output Enable). Additionally PIN8 can be also be configured as an analog output in the SLG46200 device.

    The OE functionality for each of the output pins is controlled by the connection matrix except for PIN 6, which is controlled byreg.

    7.2.1 Open Drain Output

    The Open Drain Output setting has a 1X current ratio. The open drain output signal from the SLG46200 design will decide theports output state (Hi-Z or ground).

    If the signal = 1 , output will be Hi-Z (high impedance)

    If the signal = 0 , output will be connected to ground

    PINs 4 and 8 have a 2X current sinking option and the current of the output pin will be 40mA.

    7.2.2 Push Pull with Output Enable

    The Push Pull with Output Enable setting has either a 1X or 2x current ratio and the Output Enable signal will make the output Hi-Z

    PIN 4 and PIN 8 have an open drain 2X current sinking option that produces a 16mA current, all other pins only have a 1X currentsinking option that produces an 8mA current.

    7.2.3 Analog Output

    Analog output functionality is on available on PIN 8 and is configured via the V REF cell

    Analog Output = internal signal value

    7.3 Pull Up/Down Resistors

    All 6 I/O Pins have the option of a 50k/100k/300k pull up/down resistor. Resistors can be used with any of the input or output pinconfigurations previously defined.

  • 8/6/2019 GreenPAK

    16/65

    000-0046200-107 Page 11 of 60Production

    SLG462007.4 I/O Pins Register Settings

    7.4.1 PIN 2 Register Settings

    7.4.2 PIN 3 Register Settings

    Table 1. PIN 2 Register Settings

    Signal NameRegister BitAddress Register Definition

    PIN 2 Mode Control 00: Digital In without Schmitt Trigger01: Digital In with Schmitt Trigger10: Low Voltage Digital In11: Analog IO

    PIN 2 Pull Up/DownResistor ValueSelection

    00: Floating01: 50k Resistor10: 100k Resistor11: 300k Resistor

    PIN 2 Pull Up/DownResistor Enable

    0: Pull Down Resistor enable1: Pull Up Resistor enable

    Table 2. PIN 3 Register Settings

    Signal NameRegister BitAddress Register Definition

    PIN 3 Mode Control 000: Digital In with Schmitt Trigger001: Digital In without Schmitt Trigger010: Low Voltage Digital In without Schmitt Trigger011: Analog IO100: Digital Out (Double Current when OE = 1)101: Open Drain110: Push Pull (Output Tri-State when OE = 0; Output Enable when OE = 1)111: Push Pull (Output Tri-State when OE = 0; Output Enable when OE = 1)

    PIN 3 Pull Up/DownResistor ValueSelection

    00: Floating01: 50k Resistor10: 100k Resistor11: 300k Resistor

    PIN 3 Pull Up/DownResistor Enable

    0: Pull Down Resistor enable1: Pull Up Resistor enable

    PIN 3 Digital OutSource Selection

    00: From Connection Matrix01: From Connection Matrix10: S2P - Serial Output Data11: ADC - Serial Output Data

  • 8/6/2019 GreenPAK

    17/65

    000-0046200-107 Page 12 of 60Production

    SLG462007.4.3 PIN 4 Register Settings

    7.4.4 PIN 6 Register Settings

    Table 3. PIN 4 Register Settings

    Signal NameRegister BitAddress Register Definition

    PIN 4 Mode Control 000: Digital In with Schmitt Trigger001: Digital In without Schmitt Trigger010: Low Voltage Digital In without Schmitt Trigger011: Analog IO100: Digital Out (Double Current when OE = 1)101: Open Drain110: Push Pull (Output Tri-State when OE = 0; Output Enable when OE = 1)111: Push Pull (Output Tri-State when OE = 0; Output Enable when OE = 1)

    PIN 4 Pull Up/DownResistor ValueSelection

    00: Floating01: 50k Resistor10: 100k Resistor11: 300k Resistor

    PIN 4 Pull Up/DownResistor Enable 0: Pull Down Resistor enable1: Pull Up Resistor enable

    PIN 4 Open Drain 2xEnable

    0: Open Drain 2x disable1: Open Drain 2x enable

    PIN 4 Digital OutSource Selection

    0: From Connection Matrix1: ADC Output Clock

    Table 4. PIN 6 Register Settings

    Signal NameRegister BitAddress Register Definition

    PIN 6 Mode Control 000: Digital In with Schmitt Trigger

    001: Digital In without Schmitt Trigger010: Low Voltage Digital In without Schmitt Trigger011: Analog IO100: Digital Out (Double Current when OE = 1)101: Open Drain110: Push Pull (Output Tri-State when OE = 0; Output Enable when OE = 1)111: Push Pull (Output Tri-State when OE = 0; Output Enable when OE = 1)

    PIN 6 Pull Up/DownResistor ValueSelection

    00: Floating01: 50k Resistor10: 100k Resistor11: 300k Resistor

    PIN 6 Pull Up/DownResistor Enable

    0: Pull Down Resistor enable1: Pull Up Resistor enable

    PIN 6 Output EnableControl

    0: OE Disable1: OE Enable

  • 8/6/2019 GreenPAK

    18/65

    000-0046200-107 Page 13 of 60Production

    SLG462007.4.5 PIN 7 Register Settings

    7.4.6 PIN 8 Register Settings

    Table 5. PIN 7 Register Settings

    Signal NameRegister BitAddress Register Definition

    PIN 7 Mode Control 000: Digital In with Schmitt Trigger001: Digital In without Schmitt Trigger010: Low Voltage Digital In without Schmitt Trigger011: Analog IO100: Digital Out (Double Current when OE = 1)101: Open Drain110: Push Pull (Output Tri-State when OE = 0; Output Enable when OE = 1)111: Push Pull (Output Tri-State when OE = 0; Output Enable when OE = 1)

    PIN 7 Pull Up/DownResistor ValueSelection

    00: Floating01: 50k Resistor10: 100k Resistor11: 300k Resistor

    PIN 7 Pull Up/DownResistor Enable 0: Pull Down Resistor enable1: Pull Up Resistor enable

    Table 6. PIN 8 Register Settings

    Signal NameRegister BitAddress Register Definition

    PIN 8 Mode Control 000: Digital In with Schmitt Trigger001: Digital In without Schmitt Trigger010: Low Voltage Digital In without Schmitt Trigger011: Analog IO100: Digital Out (Double Current when OE = 1)101: Open Drain

    110: Push Pull (Output Tri-State when OE = 0; Output Enable when OE = 1)111: Push Pull (Output Tri-State when OE = 0; Output Enable when OE = 1)

    PIN 8 Pull Up/DownResistor ValueSelection

    00: Floating01: 50k Resistor10: 100k Resistor11: 300k Resistor

    PIN 8 Pull Up/DownResistor Enable

    0: Pull Down Resistor enable1: Pull Up Resistor enable

    PIN 8 Open Drain 2xEnable

    0: Open Drain 2x disable1: Open Drain 2x enable

  • 8/6/2019 GreenPAK

    19/65

    000-0046200-107 Page 14 of 60Production

    SLG462008.0 Digital Comparator (DCMP)

    The SLG46200 has two 8-bit digital comparator logic cells available that can operate at up to a frequency of 10MHz. The inputpower for each the two DCMP logic cells is controlled by two register bits, reg for DCMP0 and reg for DCMP1.

    8.1 DCMP Input Modes

    Both DCMP logic cells have a positive (IN+) and a negative (IN-) input that are compared within the logic cell. The ip signal(connected to the IN+ input) takes the value from a 2:1 mux selection between an 8-bit S2P logic cell output (S2P for DCMP0and S2P for DCMP1) and the output from the SLG46200s ADC Output. The in signal (connected to the IN- input) takesthe value from a 4:1 mux selection between the 8-bit S2P logic cell output (S2P) and one of three 8-bit registers whichcan have a programmed value ranging from 0 to 255.

    8.2 DCMP Output Modes

    The two 8-bit data inputs from IN+ and IN- are compared within the DCMP logic cells to produce the output and a match signal.

    If ip > in , the output is equal to 1, otherwise the output is equal to 0

    If ip = in , the match signal is equal to 1, otherwise the match is equal to 0

    Both the output and match signals are triggered by the falling edge of the CLK4PWM signal.

    8.3 DCMP0 Functional Diagram

    Figure 3. DCMP0 Functional Diagram

    1

    0S2P

    reg

    ADC

    8-bit comparator IN-

    IN+

    0100

    S2Preg

    1110

    regreg

    1

    0reg

    Connection Matrix output

    reg

    match

    output

    in

    ip

    DCMP0To Connection Matrix input

    To Connection Matrix input

    reg Power On Select0 = Power Down1 = Power On

  • 8/6/2019 GreenPAK

    20/65

    000-0046200-107 Page 15 of 60Production

    SLG462008.4 DCMP1 Functional Diagram

    8.5 DCMP0 & DCMP1 Register Settings

    Figure 4. DCMP1 Functional Diagram

    Table 7. DCMP0 & DCMP1 Register Settings

    Signal FunctionRegister BitAddress Register Definition

    DCMP IN- SelectionControl

    0: reg for DCMP0, reg for DCMP11: from Connection Matrix Out

    DCMP IN- Input Signal 00000000 to 11111111: User defined 8-bit signal inputIN1 for DCMP0 and IN3 for DCMP1

    DCMP IN- Input Signal 00000000 to 11111111: User defined 8-bit signal inputIN2 for DCMP0 and IN1 for DCMP1

    DCMP IN- Input Signal 00000000 to 11111111: User defined 8-bit signal inputIN3 for DCMP0 and IN2 for DCMP1

    DCMP0 IN- InputSelection from reg

    00: from S2P01: from reg10: from reg11: from reg

    DCMP0 IN+ InputSelection

    0: from S2P1: from ADC Output

    DCMP0 & DCMP1Power Down

    0: Power Down mode1: Power On mode

    DCMP1 IN- Input

    Selection from reg

    00: from S2P

    01: from reg10: from reg11: from reg

    DCMP1 IN+ InputSelection

    0: from S2P1: from ADC Output

    1

    0S2P

    reg

    ADC

    8-bit comparator IN-

    IN+

    0100

    S2P

    reg 1110

    regreg

    1

    0reg

    Connection Matrix output

    reg To Connection Matrix input

    To Connection Matrix input match

    output

    in

    ip

    DCMP1

    reg Power On Select0 = Power Down1 = Power On

    To PWM in in_out

  • 8/6/2019 GreenPAK

    21/65

    000-0046200-107 Page 16 of 60Production

    SLG462009.0 Pulse Width Modulator (PWM)

    The SLG46200 contains a 2-input Pulse Width Modulator with an 8-bit resolution and 10MHz clocking speed. The PWM isdesigned from four logic sections; a 4:1 mux for IN1 selection, an 8-bit Comparator, a Mode Selection cell and a Dead BandControl cell.

    9.1 PWM Input Modes

    IN1 for the PWM is an 8-bit data string that can be selected from one of four sources; the ADC Output, the S2P, the FiniteState Machine (through the Counter/Delay logic cells) or the DCMP1 logic cell. Reg is used as a 2-bit selection inputto the 4:1 mux with the previously mentioned 8-bit data strings.

    IN2s 8-bit data string is sourced from the Counter/Delay logic cell in the SLG46200 device.

    The 8-bit comparator logic cell has two control signals; a SET bit and a Power Down signal. Both of these signals come from theSLG46200s Connection Matrix.

    If SET = 1 then PWM IN1 = 255, otherwise PWM normal operation If Power Down = 1 then PWM is off, otherwise PWM is on

    9.2 PWM Output Modes

    The output (OUTp) duty cycle can be set to either 0% to 99.6% or 0.39% to 100%. When both inputs are equal the output signal(match) will go high. The outputs (OUTn and OUTp) are non-overlapping.

    9.3 PWM Functional Diagram

    Figure 5. PWM Functional Diagram

    8-bit comparator IN1

    IN2

    0100

    ADC

    From DCMP11110

    S2PS2P

    match

    output

    From Connection Matrix output

    reg

    Q4PWM(8 bits ramp data from counter)

    From Connection Matrix output

    Power On SET

    CLK4PWM

    To Connection Matrix input

    ModeSelect

    3-bit delaydead band

    control

    reg reg

    To Connection Matrix input

    To Connection Matrix input

    To Connection Matrix input

    outp

    outn

    out

  • 8/6/2019 GreenPAK

    22/65

    000-0046200-107 Page 17 of 60Production

    SLG462009.4 PWM Mode Select

    The PWM Mode Select (reg) is used to control the output duty cycle:

    When reg = 0

    PWM output duty cycle ranges from 0% to 99.6% and is determined by: Output Duty Cycle = IN1/256 (IN1 = 0: output duty cycle = 0/255 = 0%; IN1 = 255: output duty cycle = 255/256 = 99.6%) Output signals are triggered by the rising edge of CLK4PWM

    When reg = 1

    PWM output duty cycle ranges from 0.39% to 100% and is determined by Output Duty Cycle = (IN1+1)/256 (IN1 = 0: output duty cycle = 1/256 = 0.39%; IN1=255: output duty cycle = 256/256 = 100%) Output signals are triggered by the falling edge of CLK4PWM

    When IN1 = IN2 the match = 1

    9.5 PWM Dead Band Control

    The dead band interval can be controlled with NVM bits (reg). The typical dead band time starts at 8ns and can go to64ns, increasing by 8ns intervals.

    For the Delay dead band control, the dead time control range is;

    T D = (dead time + 1) x 8ns

    For the Counter dead band control, the maximum clock frequency is 10MHz;

    T C = Clock period x (dead time +1)

    The total dead band time is the sum of both the Delay and Counter dead band times:

    T T = T D + T C .

    PWM (out)Reference

    outp

    outn

    Dead time Dead time

  • 8/6/2019 GreenPAK

    23/65

    000-0046200-107 Page 18 of 60Production

    SLG462009.6 PWM Register Settings

    Table 8. PWM Register Settings

    Signal FunctionRegister BitAddress Register Definition

    PWM IN1 SelectionControl

    00: from ADC Output01: from S2P 00: from Finite State Machine Counter 00: from DCMP1 Negative Input

    PWM Dead BandSelection

    000: 8ns 100: 40ns001: 16ns 101: 48ns010: 24ns 110: 56ns011: 32ns 111: 64ns

    PWM Output Duty CycleControl

    0: 0 ~ 99.6% duty cycle1: 0.39 ~ 100% duty cycle

  • 8/6/2019 GreenPAK

    24/65

    000-0046200-107 Page 19 of 60Production

    SLG4620010.0 Serial to Parallel / Parallel to Serial Converter (S2P)

    The Serial to Parallel / Parallel to Serial Converter (S2P) transfers the data between the SLG46200 and the larger system designthrough either the serial to parallel or parallel to serial interface. It has two 16-bit registers (2 bytes) that are used for data transfer.The clock signal comes from PIN 4 and the CSB (Enable Control Signal) comes from the Connection Matrix Out.

    S2P uses edge detection from the dly2 signal for capturing Counter1 data.

    10.1 S2P Functional Diagram

    10.2 Serial to Parallel Operation

    For serial to parallel operation (S2P), the serial data in (SDI) comes from PIN 3 of the SLG46200. The S2P will produce a 16-bitparallel data output (PDO) which is used by the PWM, FSM, and the two Digital Comparators (DCMP0 and DCMP1).

    Figure 6. S2P Functional Diagram

    1

    0

    Serial toParallel

    PIN 4

    reg

    Parallel toSerial

    Serial data from PIN 3

    8-bit output from Counter1

    S C L K

    1

    0

    ADC_serial_out

    reg

    8-bit ADC

    PIN 6

    PIN 7

    From Connection Matrix output 1

    0From Connection

    Matrix output

    reg

    To PIN 3

    PWM

    FSM

    DCMP0

    DCMP1IN-IN+

    IN-IN+

    dly2 EdgeDetector

    reg

    C S B

    CAPTURE

  • 8/6/2019 GreenPAK

    25/65

    000-0046200-107 Page 20 of 60Production

    SLG4620010.3 Serial to Parallel Timing Diagram

    10.4 Parallel to Serial Operation

    For parallel to serial operation (P2S), the 8-bit parallel data in (PDI) comes in from either the ADC Output or the Counter1logic cell. PIN 3 is used to output the 8-bit serial data out (SDO) signal.

    10.5 Parallel to Serial Timing Diagram

    10.6 S2P Notes

    Some functions of the S2P Converter share logic cells within the SLG46200, and as a result only one of these functions can beenabled at a time. The logic cells that are shared are:

    S2P serial in parallel out/S2P parallel in serial out

    S2P parallel in serial out/Delay2

    Figure 7. Serial to Parallel Timing Diagram

    Figure 8. Parallel to Serial Timing Diagram

    SCLK

    12SDI MSB 14 1113 810 79 46 35 1 LSB2

    CSB

    PCLK

    PDO PDO

    SCLK

    SDO MSB 46 35 1 LSB2

    CSB

    PCLK (load)

    PDI PDO , 0, 0, 0, 0, 0, 0, 0, 0

    Capture

  • 8/6/2019 GreenPAK

    26/65

    000-0046200-107 Page 21 of 60Production

    SLG4620010.7 S2P Register Settings

    Table 9. S2P Register Settings

    Signal FunctionRegister BitAddress Register Definition

    S2P Clock Enable 0: disable1: enable

    S2P Output Sourceselection on PIN 3

    10: S2P serial output data11: ADC serial output data

    S2P Mode Selection 0: Serial Input (from PIN 3) / Parallel Output1: Parallel Input (from Counter1) / Serial Output

  • 8/6/2019 GreenPAK

    27/65

    000-0046200-107 Page 22 of 60Production

    SLG4620011.0 Analog to Digital Converter (ADC)

    The Analog to Digital Converter in the SLG46200 is an 8-bit Successive Approximation Analog to Digital Converter (SAR ADC)which operates at a maximum sampling speed of 10 kHz. User controlled inputs and outputs of the ADC are listed below:

    Inputs:

    2ch_sel: Single-Ended Mode ADC Selection and Analog Input Mux Control Signal IN+: Single-Ended Mode Input and Differential Mode Positive Input IN-: Differential Mode Negative Input Ext_ref: ADC External Voltage Reference Input Ext_clk: ADC External Clock Input ADC_pd: ADC Power Down Signal

    Outputs:

    PGA_Out: Output of the 3-bit PGA to Analog Comparator 0 ADC_Series_Out: Single bit ADC serial output to PIN 3 ADC_Parallel_Out: 8-bit ADC parallel data to either the PWM or Digital Comparator 0. ADC Clock Output to PIN 4

    11.1 ADC Functional Diagram

    Figure 9. ADC Functional Diagram

    PGA ADC

    Power Down

    PGA_Out (To ACOMP0)

    ADC_Series_Out

    ADC_Parallel_Out

    1

    0

    Ext_clk (PIN 4)

    Internal RC Oscillator

    reg

    VBG (1.796V)

    Ext_ref (PIN 8)

    VDD *0.547 10

    00

    01

    ADC_pd_sel

    ADC ProgrammableGain Amplifier

    reg

    1

    0

    PIN 6

    PIN 7reg

    reg

    reg

    1 0 reg

    2ch_sel (PIN 2) V DD

    VREF CLK

    IN-

    IN+

    From Connection Matrix output

    01

    0

    1

    reg

    reg

    From ConnectionMatrix output

    S2P SPI outputPIN 3

  • 8/6/2019 GreenPAK

    28/65

    000-0046200-107 Page 23 of 60Production

    SLG4620011.2 ADC Operation Modes

    The ADC has three operating modes:

    Single-Ended ADC operation using IN+ from PIN 6, when ADC_sel (reg ) is 0 Differential ADC operation using IN+ from PIN 6 and IN- from PIN 7, when ADC_sel (reg ) is 1 Pseudo-Differential ADC operation using IN+ from PIN 6 and IN- from PIN 7, when ADC_sel (reg ) and ADC_gndoff_en

    (reg ) bits are both set to 1

    11.3 ADC 3-bit Programmable Gain Amplifier

    The ADC has a 3-bit PGA, with gain values ranging from 0.5X to 16X. The ADC Output is non-buffered only when operating insingle-ended mode and the gain = 0.5X. Single-Ended ADC operation has gain values of (0.5, 1, 2, 4 and 8X), while Differentialmode has gain values of (1, 2, 4, 8 and 16X). The PGA gain is calculated from ADC_gain_control signal (reg ), basedon binary mathematics (see PGA Register Settings Table).

    For Pseudo-Differential mode, the PGA gain can only be 1X.

    11.4 ADC 2-Channel Selection

    When ADC_channel_sel (reg ) is set to 1, the PGA of the ADC will sample either PIN 6 or PIN 7 on the IN+ input, wherethe selection is controlled by PIN 2.

    When PIN 2 is set to 0, the ADC will sample PIN 7 When PIN 2 is set to 1, the ADC will sample PIN 6

    When ADC_channel_sel (reg ) is set to 0, the PGA of the ADC will sample PIN 6 on the IN+ input

    11.5 ADC Input Voltage Definition

    The ADCs input voltage (V IN_ADC ) is calculated based on either the single-ended or differential operation modes the logic cell isset to. In single-ended mode V IN_ADC is the sum of the positive input voltage and the gain of the 3-bit PGA. While in differentialmode the V IN_ADC is the difference between the positive and negative input voltages times the gain of the 3-bit PGA plus onehalf of the reference voltage.

    Figure 10. ADC 2-Channel Selection

    Equation 1. ADC Input Voltage equation

    1

    0

    PIN 6

    1 0 reg

    2ch_sel (PIN 2) V DD

    IN+

    PIN 7

    u

    u

    2ref gain pgainin

    gain pgainadc in V GV V

    GV V

    _

    _ _

    Single-ended mode

    Differential mode

  • 8/6/2019 GreenPAK

    29/65

    000-0046200-107 Page 24 of 60Production

    SLG4620011.6 ADC Reference Voltage

    The ADCs reference voltage (V REF ) is from a 3-input mux that is controlled by the 2-bit ADC_Vref_sel signal (reg ).The three reference voltage inputs are chosen from the following:

    VBG of 1.796V from Internal Source External User Defined Voltage Source (PIN 8) Power Divider of 0.547 * V DD

    11.7 ADC Power Down Mode

    The ADCs power down is controlled by the connection matrix output 3 where a value of 1 will drive the ADC to power downmode.

    11.8 ADC Clock Source

    The ADC clock source comes from either the internal RC Oscillator or an external clock from PIN 4. The selection is made fromthe ADC_clk_sel signal via reg where:

    The RC Oscillator is used when the ADC_clk_select is 0 An external clock from PIN 4 is used when the ADC_clk_sel is 1

    For additional information on the RC Oscillator, see section 15 of this datasheet.

    Figure 11. ADC Reference Voltage

    Table 10. ADC Reference Voltage.

    reg V REF00 V BG (1.796V)

    01 External (PIN 8)

    10 Power Divider (0.547* V DD)

    11 N/A

    Figure 12. ADC Clock Source

    VBG (1.796V)

    Ext_ref (PIN 8)

    VDD *0.547 10

    00

    01

    reg

    VREF

    1

    0

    Ext_clk (PIN 4)

    Internal RC Oscillator

    reg

    CLK

  • 8/6/2019 GreenPAK

    30/65

    000-0046200-107 Page 25 of 60Production

    SLG4620011.9 ADC Outputs

    Both of the ADCs outputs can be shifted out through the S2P logic cell. The ADC_Series_Out produces eight single data bitsover eight individual clock cycles when activated. While the ADC_Parallel_Out produces an 8-bit data string over 16 clock cycles.

    Refer to the figures below for examples showing standard output data

    Figure 13. ADC Output Timing (power on signal comes from external signal)

    Figure 14. ADC Output Timing (power on signal comes from register)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16CLK

    D7 D0

    ADC_Series_Out

    ADC_Parallel_Out

    16 cycles

    Tri-state

    ADC_pd_sel

    Tri-state

    T_ADC_startup = 10 s

    T_out_en = ~100ns

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16CLK

    reg : 00000

    B7 B0

    ADC_Series_Out

    ADC_Parallel_Out

    16 cycles

  • 8/6/2019 GreenPAK

    31/65

    000-0046200-107 Page 26 of 60Production

    SLG4620011.10 ADC Register Settings

    Table 11. ADC Register Settings

    Signal Name Signal FunctionRegister BitAddress Register Definition

    ADC_pd_sel ADC power downselection

    N/A to user

    ADC_mux_en ADC analog input muxenable

    0: mux disabled1: mux enabled

    ADC_clk_sel ADC clock selection 0: internal oscillator1: external clock

    ADC_Vref_sel V REF setting 00: V BG (1.796V from internal source)01: external voltage source10: power divider (V DD* 0.547)

    ADC_sel ADC mode select 0: single-ended operation using PIN 61: differential mode operation using PIN 6 & PIN 7

    ADC_gain_control ADC PGA gain control 000: single-ended (0.5X gain) or differential (N/A)001: single-ended (1X gain) or differential (1x gain)010: single-ended (2X gain) or differential (2X gain)011: single-ended (4X gain) or differential (4X gain)100: single-ended (8X gain) or differential (8X gain)101: single-ended (N/A) or differential (16X gain)

    ADC_DAC_Vref ADC reference DACfeedback select

    0: normal1: 0.5 gain (use this setting when V REF is externallyselected)

    ADC_gndoff_en ADC pseudo diff inputenable under ADC diffmode

    0: N/A1: enable

    Pin3_dig_out PIN 3 digital outputsource selection

    00/01: from connection matrix10: serial data from the S2P11: serial data from the ADC

  • 8/6/2019 GreenPAK

    32/65

    000-0046200-107 Page 27 of 60Production

    SLG4620012.0 Analog Comparator (ACMP)

    There are two Analog Comparator (ACMP) macro cells in the SLG46200. In order for the ACMP cells to be used in a GreenPAKdesign the power up signals ( ACMP0_pdb and ACMP1_pdb ) need to be active.

    Each of the two ACMP cells have positive and negative input signals that are either created from an internal V REF or provided byway of the external sources.

    12.1 ACMP0 Input Modes

    ACMP0s positive input (IN+) can be enabled from PIN 4 or ADC/PGA out by the ACMP0_PGA_en signal, reg. The negativeinput (IN-) of the ACMP0 cell can come from the internal V REF macro cell (which will generate a 50mV to 1.5V signal) or from anexternal voltage source that is placed on PIN 8. Selection is made using a 4-bit value from NVM, reg.

    12.2 ACMP0 Functional Diagram

    12.3 ACMP1 Input Modes

    ACMP1s positive input (IN+) comes from PIN 7 with selection gain of 1X or 0.5X (two 50k resistor divider). TheACMP1_0.5gain_en signal (reg) is used as a control signal into a mux which has the 1X and 0.5X signals as inputs.

    The negative input (IN-) of the ACMP1 cell can come from the internal V REF macro cell (which will generate a 50mV to 1.5Vsignal) or from an external voltage source that is placed on PIN 8. Selection is made using a 4-bit value from NVM, reg.

    Figure 15. ACMP0 Functional Diagram

    0.05V

    1.5V

    ACMP0

    reg

    1

    0PIN 4

    reg

    reg

    reg

    IN-

    IN+From ADC PGA

    Power Down

    0.1V

    PIN 8

    0000

    1111

    0001

    1110

    1.3V1101

    reg To Connection Matrix input

    From Connection Matrix output

  • 8/6/2019 GreenPAK

    33/65

    000-0046200-107 Page 28 of 60Production

    SLG4620012.4 ACMP1 Functional Diagram

    12.5 ACMP Output Modes

    When IN+ has a greater voltage than IN-, the ACMPs output will be 1. Otherwise, that output will be a 0 signal. The ACMP ofthe SLG46200 has an offset voltage of +/- 20mV.

    12.6 ACMP 1 A Input Current Option

    Both ACMPs can source 1 A on their respected outputs. This feature is controlled by the following signals:

    ACMP0_l1u_en , reg for AMCP0

    ACMP1_l1u_en , reg for AMCP1

    When either of these signals are equal to 1 the output will source a 1 A current.

    12.7 ACMP Low Bandwidth

    Both ACMPs have a low bandwidth enable feature; this is controlled by the following signals:

    ACMP0_low_bw , reg for AMCP0

    ACMP1_low_bw , reg for AMCP1

    When either of these signals are equal to 1 and the input frequency is more than 200kHz, the output retains its last value

    Figure 16. ACMP1 Functional Diagram

    0.05V

    1.5V

    ACMP1

    reg

    1

    0PIN 7

    reg

    reg

    reg

    IN-

    IN+

    Power Down

    0.1V

    PIN 8

    0000

    1111

    0001

    1110

    1.3V1101

    reg

    1X GAIN

    0.5X GAIN

    To Connection Matrix input

    From Connection Matrix output

  • 8/6/2019 GreenPAK

    34/65

    000-0046200-107 Page 29 of 60Production

    SLG4620012.8 ACMP 50mV Hysteresis

    Both ACMPs have a 50mV hysteresis feature, where either the addition or subtraction of 25mV to the IN- signal will change theACMPs output value. The 50mV hysteresis signals are controlled as follows:

    ACMP0_hy_en , reg when set to 1 will turn on the hysteresis,

    Output from 0 becomes 1 when IN+ IN- + 0.025V Output from 1 becomes 0 when IN+ IN- - 0.025V

    ACMP1_hy_en , reg when set to 1 will turn on the hysteresis,

    Output from 0 becomes 1 when IN+ IN- + 0.025V Output from 1 becomes 0 when IN+ IN- - 0.025V

    12.9 ACMP0 & ACMP1 Register Settings

    12.9.1 ACMP0 Register Settings

    Table 12. ACMP0 Register Settings

    Signal Name Signal FunctionRegister BitAddress Register Definition

    ACMP0_pdb ACMP0 power up N/A to user - set by connecting Power Up node on ACMP0

    ACMP0_l1u_en ACMP0 1 A inputcurrent option

    0: disable1: enable

    ACMP0_low_bw AMCP0 low bandwidthenable

    0: disable1: enable

    ACMP0_PGA_en PGA gain to ACMP0input enable

    0: disabled (IN+ input from PIN 4)1: enabled (IN+ input from ADC PGA Out)

    ACMP0_Vref_sel ACMP0 IN+ voltage

    select

    0000: 50mV 1000: 600mV

    0001: 100mV 1001: 700mV0010: 150mV 1010: 800mV0011: 200mV 1011: 900mV0100: 250mV 1100: 1100mV0101: 300mV 1101: 1300mV0110: 400mV 1110: 1500mV0111: 500mV 1111: Ext_Vref (PIN 8)

    ACMP0_hy_en AMCP0 50mVhysteresis enable

    0: disable1: enable

  • 8/6/2019 GreenPAK

    35/65

    000-0046200-107 Page 30 of 60Production

    SLG4620012.9.2 ACMP1 Register Settings

    Table 13. ACMP1 Register Settings

    Signal Name Signal FunctionRegister BitAddress Register Definition

    ACMP1_pdb ACMP1 power up N/A to user - set by connecting Power Up node on ACMP1

    ACMP1_l1u_en ACMP1 1 A inputcurrent option

    0: disable1: enable

    ACMP1_low_bw AMCP1 low bandwidthenable

    0: disable1: enable

    ACMP1_0.5gain_en ACMP1's 0.5 gainenable

    0: bypass (1X gain on PIN 7)1: enabled (0.5X gain on PIN 7)

    ACMP1_Vref_sel ACMP1 IN+ voltageselect

    0000: 50mV 1000: 600mV0001: 100mV 1001: 700mV0010: 150mV 1010: 800mV0011: 200mV 1011: 900mV

    0100: 250mV 1100: 1100mV0101: 300mV 1101: 1300mV0110: 400mV 1110: 1500mV0111: 500mV 1111: Ext_Vref (PIN 8)

    ACMP1_hy_en AMCP1 50mVhysteresis enable

    0: disable1: enable

  • 8/6/2019 GreenPAK

    36/65

    000-0046200-107 Page 31 of 60Production

    SLG4620013.0 Voltage Reference Out (V REF Out)

    The V REF macro cell supplies an accurate reference voltage for the SLG46200.

    13.1 V REF Output

    The output of the V REF cell can be connected to PIN 8 as a buffered or non-buffered output. In order to use the V REF cell withinthe SLG46200, the V REF output enable signal (reg) must be turned on.

    When the Output Buffer is enabled through the Vrefo_buf_en signal (reg) the V REF s internal resistance is 1k , otherwisethe internal resistance is 100k and the signal bypasses the Negative Feedback Op Amp within the V REF logic cell.

    13.2 V REF Sources

    The value of V REF can be set to either use V DD /2 as a voltage source or by setting the ACMP0 to provide the desired voltage(50mV to 1.5V is selectable). The V REF macro cell uses ACMP0s negative input for the desired reference voltage.

    13.3 V REF Functional Diagram

    Figure 17. V REF Functional Diagram

    1

    0

    VDD/2

    ACMP0_VREFPower On

    reg

    reg

    cvref

    V r ef o

    _ s el

    reg

    OP1

    0

    V r ef o

    _ b uf _

    en

    reg

    reg Vrefo_en

    Vref_in PIN 8

  • 8/6/2019 GreenPAK

    37/65

    000-0046200-107 Page 32 of 60Production

    SLG4620013.4 V REF Register Settings

    Table 14. V REF Register Settings

    Signal Name Signal FunctionRegister BitAddress Register Definition

    Vrefo_en V REF Output Enable 0: disable V REF output1: enable V REF output

    Vref_on V REF Power On 0: ACMP0_Vref off1: force V REF output with ACMP0_Vref power ON

    ACMP0_Vref_sel ACMP0 IN+ voltageselect

    0000: 50mV 1000: 600mV0001: 100mV 1001: 700mV0010: 150mV 1010: 800mV0011: 200mV 1011: 900mV0100: 250mV 1100: 1100mV0101: 300mV 1101: 1300mV0110: 400mV 1110: 1500mV0111: 500mV 1111: Ext_Vref (PIN 8)

    Vrefo_buf_en V REF Output BufferEnable 0: VREF output through buffer1: VREF output not through buffer

    Vrefo_sel V REF Output select 0: ACMPO reference voltage1: VDD /2

  • 8/6/2019 GreenPAK

    38/65

    000-0046200-107 Page 33 of 60Production

    SLG4620014.0 Power On Reset (POR)

    The Power On Reset (POR) macro cell will produce a 1 signal as an output when the power supply (V DD) rises to 2.5V or greater.This signal (POR4NVM) requires approximately 3ms of delay before it will go from low to high.

    When NVM data is ready, the oscillator must be stable at the same time. If the oscillator power on is controlled by auto power onsignals such as delay cells, ADC, or PWM, the oscillator will need a maximum of 5 s to become stable.

    Figure 18. Power on Reset Timing Diagram

    Figure 19. Stable Oscillator wait time

    POR4NVM

    VDD

    NVM data ready/oscillator stable

    2.4V

    ~3ms

    22 s

    Oscillator stable s

    Oscillator power on control signals

  • 8/6/2019 GreenPAK

    39/65

    000-0046200-107 Page 34 of 60Production

    SLG4620015.0 RC Oscillator (RCO)

    The RC Oscillator (RCO) of the SLG46200 provides an internal clock to the ADC, PWM, DLYs and Counters. It has a frequencyrange of 40kHz 10MHz which can be adjusted by setting V REF and I BIAS.

    15.1 RC Oscillator Functional Diagram

    15.2 RCO Frequency Control

    The RCO produces an output timing signal that has a pulse width of 5 or 10ns depending on the clock frequency.

    If Clock Frequency > 1MHz, then the pulse width is set to 5ns

    If Clock Frequency < 1MHz, then the pulse width is set to 10ns

    The frequency is set based on the RCO_Vref_sel , RCO_Ibias_sel and the RCO_fs signals. The following table shows the variousoutput frequencies of the four registers.

    Figure 20. RC Oscillator Functional Diagram

    RC Oscillator

    CLK4ADC ADC

    PWM

    Delay 0/1/2

    Counter 0/2

    CLK4PWM

    CLK4DLY

    CLK

    reg

    reg

    reg

    reg

    reg

    cnt1_cki_ext

    F r e

    q u en

    c y C on

    t r ol

    RCO_force

    RCO_fs

    RCO_Ibias_sel

    RCO_Vref_sel

    RCO_clk_sel

    PIN 2

    Counter 1CLK

    CLK/4CLK/8

    CLK/12

  • 8/6/2019 GreenPAK

    40/65

    000-0046200-107 Page 35 of 60Production

    SLG4620015.3 RCO Frequency Selection

    15.4 RCO Register Settings

    Table 15. RCO Frequency Selection

    RCO_Vref_sel RCO_Ibias_sel RCO_fs Frequency(kHz)reg reg reg reg

    0 0 0 0 43

    0 0 0 1 384

    0 0 1 0 85

    0 0 1 1 625

    0 1 0 0 160

    0 1 0 1 950

    0 1 1 0 800

    0 1 1 1 4800

    1 0 0 0 128

    1 0 0 1 870

    1 0 1 0 240

    1 0 1 1 1290

    1 1 0 0 440

    1 1 0 1 1750

    1 1 1 0 2100

    1 1 1 1 7812

    Table 16. RCO Register Settings

    Signal Name Signal Function Register BitAddress Register DefinitionRCO_Ibias_sel Internal OSC Current

    Select 00: 0.5 A

    01: 1.0 A10: 2.0 A11: 10.0 A

    RCO_Vref_sel Internal OSC V REF Select

    0: 1.5V1: 0.5V

    RCO_force Force Oscillator PowerOn

    0: Auto Power On from Delay Cell1: Force Power On

    RCO_fs Oscillator FrequencyBand Select

    0: Low Frequency1: High frequency

    RCO_clk_sel Clock Source Select 0: Internal OSC

    1: External Clock

  • 8/6/2019 GreenPAK

    41/65

    000-0046200-107 Page 36 of 60Production

    SLG4620016.0 Counters

    There are three configurable 14-bit counters in the SLG46200. Counter2s input can be sourced from the NVM, the ADC, or theS2P, while Counter0 and Counter1s input can be sourced from the connection matrix. The clock can be sourced from either theinternal RC Oscillator (with data divider for Counter1) or from another connection matrix output.

    The counters output their data to either the PWM or to the S2P. The supported counter functions include: count UP, count DOWN,KEEP, LOAD ONCE, and LOAD DATA (taken from either ADC or S2P). The three counters can also function as frequencydividers, FSM (Counter2), or PWM ramp (Counter1), while captured data is outputted to S2P.

    When in count DOWN mode, the count UP/DOWN, KEEP, and LOAD signals in Counter0 and Counter1 are tied to ground andthe RCO should be forced ON for counter work.

    16.1 Counter Functional Diagram

    16.2 Counter Timing

    Each of the counters behave as a frequency divider, where the output clock (Div_clk_out) is result of the input clock (CLK_IN)being divided by the value of the Counter Control Data (CNTx_d +1).

    For Counter0:

    div_clk_out0 = F CLK_IN / (reg + 1)

    For Counter1:

    div_clk_out1 = F CLK_IN / (reg + 1)

    For Counter2:

    div_clk_out2 = F CLK_IN / (reg + 1)

    And example waveform is shown below where the output clock goes high for only one of the input clocks cycles over a timeperiod that is equal to the Counter Control Data (CNTx_d +1).

    Figure 21. Counter Functional Diagram

    Figure 22. Counter Behavior

    Counter CNTx_cki_ext

    CNTx_out_sel

    CNTx_en

    CNTx_clk_is

    CNTx_d

    Counter_end To Connection Matrix

    CLK4DLY

    CLK_IN

    OUT

    (CNT0_d + 1) CLK_IN cycles

  • 8/6/2019 GreenPAK

    42/65

    000-0046200-107 Page 37 of 60Production

    SLG4620016.3 Counter2 as a Finite State Machine (FSM)

    Counter2 can be used as a Finite State Machine, which has features for UP/DOWN/KEEP control and loading data select.

    When UP = 1: Counter2 is in up-counting mode, the Q value will count from 0 to 16383. When Q reaches 16383, theDiv_clk_out2 generates a single clock cycle pulse.

    When UP = 0: Counter2 is in down-counting mode, the Q value will count from the loaded data value (based on reg+ 1) to 0. When Q reaches 0, the Div_clk_out2 generates a single clock cycle pulse.

    When KEEP = 1: Q will stay at its current value. The Loading Data is only used for down-counting mode. When the Div_clk_out2 is high, the data is then loaded in the counter.

    16.4 FSM (Counter2) Functional Diagram

    Figure 23. FSM (Counter2) Functional Diagram

    Figure 24. FSM Behavior

    FSM(Counter2)

    Counter2_end To Connection Matrix

    reg

    reg CNT2_en

    CNT2_d

    reg CNT2_clk_is

    reg CNT2_out_sel

    From Connection Matrix CNT2_cki_ext

    CLK4DLY

    LOAD

    KEEP

    UP

    From Connection Matrix

    From Connection Matrix

    From Connection Matrix

    OUT

    Q

    reg

    CNT2_load_en

    CNT_fsm_d_is

    reg

    reg CNT_fsm_load_sel

    CLK_IN

    OUT

    Q 16383

    01

    1638116382

    16383

    0

    LoadedData N

    LoadedData M

    23

    CLK_IN

    OUT

    Q

    01

    N-2N-1

    0

    21

    UP=1 UP=0

    16382

  • 8/6/2019 GreenPAK

    43/65

    000-0046200-107 Page 38 of 60Production

    SLG4620016.5 Counter Register Settings

    Table 17. Counter Register Settings

    Signal Name Signal FunctionRegister BitAddress Register Definition

    CNT_fsm_load_sel Counter2 14-bit inputdata selection for FSM

    0: from NVM reg1: 6 most significant bits are tied to 0 and the 8 less sig-nificant bits are sourced from S2P or ADC (controlled byreg)

    CNT0_en Counter0 Enable(Force Counter0 poweron)

    0: Auto Power On1: Force Power On

    CNT1_en Counter1 Enable(Force Counter1 poweron)

    0: Auto Power On1: Force Power On

    CNT2_en Counter2 Enable(Force Counter2 power

    on)

    0: Auto Power On1: Force Power On

    CNT0_d Counter0 Control Data 1-16384: (delay time = (counter control data + 1) / freq)

    CNT1_d Counter1 Control Data 1-16384: (delay time = (counter control data + 1) / freq)

    CNT2_d Counter2 Control Data 1-16384: (delay time = (counter control data + 1) / freq)

    CNT2_load_en Counter2 Load Signal 0: off1: enable

    CNT0_clk_is Counter0 Input ClockSource Select

    0: from internal oscillator clock1: from matrix

    CNT1_clk_is Counter1 Input ClockSource Select

    000: internal oscillator clock001: internal oscillator clock divided by 12010: internal oscillator clock divided by 4011: counter 2 over flow signal1X0: from matrix1X1: from matrix divided by 8 and synchronized by internalclock

    CNT2_clk_is Counter2 Input ClockSource Select

    0: internal oscillator clock1: from Counter 1 output

    CNT_fsm_d_is Data Source Select forFSM (Counter 2)

    0: from external source (though S2P module)1: from internal ADC output

    CNT0_out_sel Counter0 Output Select 0: delay output1: counter output

    CNT1_out_sel Counter1 Output Select 0: delay output1: counter output

    CNT2_out_sel Counter2 Output Select 0: delay output1: counter output

  • 8/6/2019 GreenPAK

    44/65

  • 8/6/2019 GreenPAK

    45/65

    000-0046200-107 Page 40 of 60Production

    SLG4620017.1 Delay Cells Functional Diagram

    17.2 Delay Timing

    The delay timing of each logic cell is determined by the frequency of the RC Oscillator and the Delay Time Control registers(reg for DLY0, reg for DLY1, reg for DLY2). The formulas below list the timing delay equationsfor each logic cell;

    For Delay0:

    T Delay0 = (1/F OSC ) * (reg + 1)

    For Delay1:

    T Delay1 = (1/F OSC ) * (reg + 1)

    For Delay2:

    T Delay2 = (1/F OSC ) * (reg + 1)

    Note: In order for these equations above to be valid the pulse width must be larger than the total rising and falling edge delay times.

    Figure 28. Delay Cells Functional Diagram

    Delay0

    reg

    reg

    reg

    reg

    From Connection Matrix Dly_in0

    DLY0_dt

    DLY0_opath_s

    DLY0_mode_s

    DLY0_d_mode_s

    Dly_out0 To Connection Matrix

    Delay1

    reg

    reg

    reg

    From Connection Matrix Dly_in1

    DLY1_dt

    DLY1_opath_s

    DLY1_d_mode_s

    Dly_out1 To Connection Matrix

    Delay2

    reg

    reg

    reg

  • 8/6/2019 GreenPAK

    46/65

    000-0046200-107 Page 41 of 60Production

    SLG4620017.3 Delay Cells Register Settings

    Table 18. Delay Cells Register Settings

    Signal Name Signal FunctionRegister BitAddress Register Definition

    DLY0_mode_s Delay0 Structure Select 0: structure 11: structure 2

    DLY0_dt Delay0 - Delay TimeControl

    1 - 16384: (delay time = (counter data + 1)/freq)

    DLY1_dt Delay1 - Delay TimeControl

    1 - 16384: (delay time = (counter data + 1)/freq)

    DLY2_dt Delay2 - Delay TimeControl

    1 - 16384: (delay time = (counter data + 1)/freq)

    DLY0_d_mode_s Delay0 Mode Select 00: delay on both falling and rising edges01: delay on falling edge only10: delay on rising edge only11: no delay on either falling or rising edges

    DLY1_d_mode_s Delay1 Mode Select 00: delay on both falling and rising edges01: delay on falling edge only10: delay on rising edge only11: no delay on either falling or rising edges

    DLY2_d_mode_s Delay2 Mode Select 00: delay on both falling and rising edges01: delay on falling edge only10: delay on rising edge only11: no delay on either falling or rising edges

    DLY0_opath_s Delay0 Output PathSelect

    0: Delay0 Output1: Counter0 Output

    DLY1_opath_s Delay1 Output PathSelect

    0: Delay1 Output1: Counter1 Output

    DLY2_opath_s Delay2 Output PathSelect 0: Delay2 Output1: Counter2 Output

    DLY_in_s Delay1 and Delay2 InputSource Enable

    0: Disable Delay1 and Delay2 inputs1: Enable Delay1 and Delay2 inputs from connectionmatrix

  • 8/6/2019 GreenPAK

    47/65

  • 8/6/2019 GreenPAK

    48/65

    000-0046200-107 Page 43 of 60Production

    SLG4620018.2 3-Bit LUT

    The four 3-bit LUTs within the SLG46200 each take in three input signals from the connection matrix and produce a single output.

    Figure 30. 3-bit LUTs

    3-bit LUT0in1in0 To Connection

    Matrix input out

    reg

    From ConnectionMatrix output

    From ConnectionMatrix output

    3-bit LUT1in1in0 To Connection

    Matrix input out

    reg

    From ConnectionMatrix output

    From ConnectionMatrix output

    3-bit LUT2To Connection

    Matrix input out

    reg

    in2From ConnectionMatrix output

    in2From ConnectionMatrix output

    in1

    in0From ConnectionMatrix output From Connection

    Matrix output

    in2From ConnectionMatrix output

    3-bit LUT3To Connection

    Matrix input out

    reg

    in1

    in0From ConnectionMatrix output From Connection

    Matrix output

    in2From ConnectionMatrix output

    Table 22. 3-bit LUT0 Truth Table.

    in1 in1 in0 out

    0 0 0 reg

    0 0 1 reg 0 1 0 reg

    0 1 1 reg

    1 0 0 reg

    1 0 1 reg

    1 1 0 reg

    1 1 1 reg

    Table 23. 3-bit LUT1 Truth Table.

    in1 in1 in0 out

    0 0 0 reg 0 0 1 reg

    0 1 0 reg

    0 1 1 reg

    1 0 0 reg

    1 0 1 reg

    1 1 0 reg

    1 1 1 reg

    Table 24. 3-bit LUT2 Truth Table.

    in1 in1 in0 out

    0 0 0 reg

    0 0 1 reg 0 1 0 reg

    0 1 1 reg

    1 0 0 reg

    1 0 1 reg

    1 1 0 reg

    1 1 1 reg

    Table 25. 3-bit LUT3 Truth Table.

    in1 in1 in0 out

    0 0 0 reg 0 0 1 reg

    0 1 0 reg

    0 1 1 reg

    1 0 0 reg

    1 0 1 reg

    1 1 0 reg

    1 1 1 reg

  • 8/6/2019 GreenPAK

    49/65

    000-0046200-107 Page 44 of 60Production

    SLG46200Each 3-bit LUT uses an 8-bit register signal to define their output functions;

    3-Bit LUT0 is defined by reg

    3-Bit LUT1 is defined by reg

    3-Bit LUT2 is defined by reg

    3-Bit LUT3 is defined by reg

    The table below shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can becreated within each of the four 3-bit LUT logic cells.

    Table 26. 3-bit LUT0/LUT1/LUT2/LUT3 Standard Digital Functions.

    Function MSB LSB

    AND-3 1 0 0 0 0 0 0 0

    NAND-3 0 1 1 1 1 1 1 1

    OR-3 1 1 1 1 1 1 1 0

    NOR-3 0 0 0 0 0 0 0 1

    XOR-3 0 1 1 1 1 1 1 0

    XNOR-3 1 0 0 0 0 0 0 1

  • 8/6/2019 GreenPAK

    50/65

    000-0046200-107 Page 45 of 60Production

    SLG4620018.3 4-Bit LUT

    The one 4-bit LUT within the SLG46200 has takes in four inputsignals from the connection matrix and produces a single out-

    put.

    The 4-bit LUT uses a 16-bit register signal to define the output function;

    4-Bit LUT0 is defined by reg

    The table below shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can becreated within the 4-bit LUT logic cell.

    Figure 31. 4-bit LUT

    4-bit LUT0in1

    in0To Connection

    Matrix input out

    reg

    From ConnectionMatrix output

    From ConnectionMatrix output

    in2From ConnectionMatrix output

    in3From ConnectionMatrix output

    Table 27. 4-bit LUT0 Truth Table.

    in3 in2 in1 in0 out

    0 0 0 0 reg

    0 0 0 1 reg

    0 0 1 0 reg

    0 0 1 1 reg

    0 1 0 0 reg

    0 1 0 1 reg

    0 1 1 0 reg

    0 1 1 1 reg

    1 0 0 0 reg

    1 0 0 1 reg

    1 0 1 0 reg

    1 0 1 1 reg

    1 1 0 0 reg

    1 1 0 1 reg

    1 1 1 0 reg

    1 1 1 1 reg

    Table 28. 4-bit LUT0 Standard Digital Functions.

    Function MSB LSB

    AND-4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    NAND-4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    OR-4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

    NOR-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

    XOR-4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

    XNOR-4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

  • 8/6/2019 GreenPAK

    51/65

    000-0046200-107 Page 46 of 60Production

    SLG4620019.0 Digital Storage Elements (DFFs/Latches)

    There are three DFF/Latches logic cells within the SLG46200 available for design. The source and destination of the inputs andoutputs for the three DFF/Latches are configured from the connection matrix.

    The operation of the D Flip-Flop and Latch will following the functional descriptions below:

    DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change

    Latch: if CLK = 0, then Q = D

    if CLK = 1, then Q will not change

    19.1 DFF/Latch Functional Diagram

    19.2 DFF/Latch Selection

    Each of the three DFF/Latch logic cells has a selection bit that is used to define if the logic cell will be used as a D Flip-Flop or aLatch within the design. Those control bits are shown in the table below.

    19.3 DFF/Latch Register Settings

    Figure 32. DFF/Latch Functional Diagram

    Table 29. DFF/Latch Register Settings

    Signal FunctionRegister BitAddress Register Definition

    DFF/Latch0 Selection 0: DFF1: Latch

    DFF/Latch1 Selection 0: DFF1: Latch

    DFF/Latch2 Selection 0: DFF1: Latch

    DFF/Latch0

    CK

    D To ConnectionMatrix input

    Q

    reg

    From ConnectionMatrix output

    From ConnectionMatrix output

    DFF/Latch1

    CK

    D To ConnectionMatrix input

    Q

    reg

    From ConnectionMatrix output

    From ConnectionMatrix output

    DFF/Latch2

    CK

    D To ConnectionMatrix input

    Q

    reg

    From ConnectionMatrix output

    From ConnectionMatrix output

  • 8/6/2019 GreenPAK

    52/65

    000-0046200-107 Page 47 of 60Production

    SLG4620020.0 Application Examples

    20.1 System Reset

    In the following application example, a system reset pulse can be generated from a command signal (from a microprocessor) oran external reset push button. The current reset state can be shown by adding a LED into the design. Implementing this functionwithin the SLG46200 requires the use of an input buffer, an open drain LED output driver, a de-glitch filter, and a one-shot circuit.In this example the SLG46200 replaces up to four off-the-shelf components.

    20.2 Combinatorial Logic

    In this application example one SLG46200 is used to replace three discrete 1G SOT23-5 packaged logic components. TheSLG46200s 2mm X 2mm TDFN packaging of this function will result in significant space savings due to fewer components usedin the final PCB design.

    20.3 Time Delay

    The SLG46200s independent oscillators and counter chains can be used to generate delays ranging from less than 1ms up toover 100ms. Below is an example in which a trigger on an input pin will appear at the output pin after a 4ms assertion. This canbe implemented by using a 20pF external capacitor to decrease the frequency of the oscillator from 125kHz to 31kHz (or a 32 sdelay) and configuring the associated 14-bit counter to divide by 125. In this example, minor adjustments to the delay can be

    made by adjusting the value of the external capacitor.

    Figure 33. Example: System Reset

    Figure 34. Example: Combinatorial Logic

    Figure 35. Example: Time Delay

    De-Glitcher

    Ext_RST#

    uC_RSTART#

    3.3V

    One-Shot

    RSTART#

    RST#

    IN1

    IN2

    IN3

    IN4

    OUT1

    OUT2

    Delay Adjust

    Osc. &Counter

    Trigger

    Out

    20pF

  • 8/6/2019 GreenPAK

    53/65

    000-0046200-107 Page 48 of 60Production

    SLG4620021.0 Development Tools

    21.1 Software & Hardware

    21.1.1 GreenPAK Designer

    At the core of the GreenPAK development software suite is GreenPAK Designer, graphical schematic design tool used to createcircuit designs within the GreenPAK IC. GreenPAK Designer requires no programming language or complier.

    GreenPAK Designer Software is available free of charge at http://www.silego.com/ .

    21.1.2 GreenPAK Programmer

    GreenPAK Programmer is flexible enough and is used on the bench in development and also suitable for factory programming.GreenPAK Programmer operates directly from GreenPAK Designer.

    21.1.3 Minimum System Requirements

    CPU: 800MHz RAM: 128MB Graphics RAM: 32MB Free Hard Disk Space: 50MB

    Both of Silegos GreenPAK Designer and Programmer software is supported in the following operating systems:

    32-bit WinXP / Vista / 7 64-bit WinXP / Vista / 7 Apple Mac OS X

    21.2 Development Kits

    The GreenPAK development kit is sold directly at the Silego Online Store. Please visit at http://store.silego.com/

    The GreenPAK Development kit is for prototyping and development with GreenPAK Designer. The kit contains a USB Program-ming stick, USB extension cable and 50 SLG46200 samples. Everything needed for a circuit designer to start prototyping designswith the GreenPAK IC.

    21.3 Project Examples

    Additional GreenPAK examples designs are available on the Silego website free of charge. These designs can be downloadedand reviewed in the GreenPAK designer as a quick and efficient way to become familiar with the project development.

    These examples can be found at http://support.silego.com/

  • 8/6/2019 GreenPAK

    54/65

    000-0046200-107 Page 49 of 60Production

    SLG4620022.0 Package Top Marking System Definition

    Part ID Assembly Code

    Datecode Lot

    Revision

    8 7 6 5

    1 2 3 4

    Part ID Field: identifies the specific device configuration Assembly Code Field: Assembly Location of the device. Date Code Field: Coded date of manufacture Lot Code: Designates Lot # Revision Code: Device Revision

    XX ADDLR

  • 8/6/2019 GreenPAK

    55/65

    000-0046200-107 Page 50 of 60Production

    SLG4620023.0 Package Drawing and Dimensions

    23.1 8 Lead TDFN Package

    D

    E

    AB

    C0.15

    C0.15

    A 1

    A 3

    A 2

    A

    DETAIL A

    bC0.10 A BMC0.05 M

    DETAIL B

    Symbol Min(mm)NOM(mm)

    Max(mm)

    0.70 0.75 0.80 A0.00 -- 0.05 A1

    -- 0.55 -- A2-- 0.20 -- A3

    0.20 0.25 0.30b1.90 2.00 2.10D1.50 1.60 1.70D2

    1.90 2.00 2.10E0.80 0.90 1.00E2

    0.50 BSCe0.20 0.30 0.40L

    SEATING PLANE

    DETAIL AC0.10

    C0.08

    C

    D2

    Pin 10.25x45

    L

    DETAIL B

    E 2

    e

  • 8/6/2019 GreenPAK

    56/65

    000-0046200-107 Page 51 of 60Production

    SLG4620024.0 Tape and Reel Drawing and Specifications

    24.1 Tape and Reel Specifications

    24.2 Tape and Reel Drawing

    Package Type # ofPinsNominalPackage

    SizeUnits per

    Reel

    Trailer A Leader B Pocket Tape (mm) ReelDiameter

    (mm)Pockets Length(mm) PocketsLength(mm) Width Pitch

    8TDFN 8 2x2mm 3,000 42 168 42 168 8 4 178

    F ( I I I )

    W

    E11.75 0.1

    P04.00 0.1 (II)

    A0P1

    P22.00 0.05 (I)D0

    1.55 0.05

    D11.00 MIN

    Y

    Y

    (I) Measured from centerline of sprocket hole(II) Cumulative tolerance of 10 sprocket holes is 0.20(III) Measured from centerline of sprocket hole to centerline of pocket(IV) Other material available

    ALL DIMENSIONS IN MILLIMETERS UNLESS OTHERWISE STATED

    2.25 0.1 A02.25 0.1B01.00 0.1K03.50 0.1F4.00 0.1P1

    8.00 0.1W

    (mm)Symbol

    T0.30 0.05

    B 0

    K0

    CL

    Crossection Y-Y

  • 8/6/2019 GreenPAK

    57/65

    000-0046200-107 Page 52 of 60Production

    SLG4620025.0 Appendix - SLG46200 Register Definition

    Bit Address Definition

    reg S2P input csb source selection (out0)reg PWM power down source selection (out1)

    reg PWM set source selection (out2)

    reg ADC power down source selection (out3)

    reg Counter0 external clock source selection (out4)

    reg ACMP0 & ACMP1 power down (sig_in_CMP1_pdb) source selection (out5)

    reg Counter keep source selection (out6)

    reg Counter load source selection (out7)

    reg Counter up source selection (out8)

    reg Delay0 input selection (out9)

    reg Delay1 or digital CMP source control input selection (out10)

    reg Delay2 or digital CMP source control input selection (out11)reg I/O PIN 3 input (digital out source) mux A port source selection (out12)

    reg I/O PIN 4 input (digital out source) mux A port source selection (out13)

    reg I/O PIN 6 input (digital out source) mux A port source selection (out14)

    reg I/O PIN 7 digital out source selection (out15)

    reg I/O PIN 8 digital out source selection (out16)

    reg I/O PIN 3 output enable selection (out17)

    reg I/O PIN 4 output enable selection (out18)

    reg Counter2 external clock source selection (out19)

    reg I/O PIN 7 output enable selection (out20)

    reg I/O PIN 8 output enable selection (out21)

    reg DFF0/Latch0 data selection (out22)reg DFF0/Latch0 ck selection (out23)

    reg DFF1/Latch1 data selection (out24)

    reg DFF1/Latch1 ck selection (out25)

    reg DFF2/Latch2 data selection (out26)

    reg DFF2/Latch2 ck selection (out27)

    reg 2-bit LUT0 input0 (less significant bit) selection (out28)

    reg 2-bit LUT0 input1 (most significant bit) selection (out29)

    reg 2-bit LUT1 input0 (less significant bit) selection (out30)

    reg 2-bit LUT1 input1 (most significant bit) selection (out31)

    reg 3-bit LUT0 input0 (less significant bit) selection (out32)

    reg 3-bit LUT0 input1 selection (out33)reg 3-bit LUT0 input2 (most significant bit) selection (out34)

    reg 3-bit LUT1 input0 (less significant bit) selection (out35)

    reg 3-bit LUT1 input1 selection (out36)

    reg 3-bit LUT1 input2 (most significant bit) selection (out37)

    reg 3-bit LUT2 input0 (less significant bit) selection (out38)

    reg 3-bit LUT2 input1 selection (out39)

    reg 3-bit LUT2 input2 (most significant bit) selection (out40)

    reg 3-bit LUT3 input0(less significant bit) selection (out41)

  • 8/6/2019 GreenPAK

    58/65

    000-0046200-107 Page 53 of 60Production

    SLG46200

    reg 3-bit LUT3 input1 selection (out42)

    reg 3-bit LUT3 input2(most significant bit) selection (out43)

    reg 4-bit LUT input0(less significant bit) selection (out44)reg 4-bit LUT input1 selection (out45)

    reg 4-bit LUT input2 selection (out46)

    reg 4-bit LUT input3(most significant bit) selection (out47)

    reg 2-bit LUT0 data

    reg 2-bit LUT1 data

    reg 3-bit LUT0 data

    reg 3-bit LUT1 data

    reg 3-bit LUT2 data

    reg 3-bit LUT3 data

    reg 4-bit LUT4 data

    reg PIN 6 mode control000: digital in mode with Schmitt trigger001: digital in mode w/o Schmitt trigger010: low voltage digital in mode w/o Schmitt trigger (I/O pad supports input