Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum...

47
1 Spectrometer format conversion and 1D-4D Complex Fourier Transform and Signal Enhancement Spectral Visualization 1D-4D Peak Detection and Quantification: Position, Amplitude, Width and Modulation/Evolution Resonance Assignment Extraction of Structural Parameters Distance (NOE) Assignment Molecular Structure Calculation Molecular Display and Structure Verification Exploitation of Structure Substantial Facilities Useful Contributions Still to do, or In- progress Ad Bax _ James Chou _ Gabriel Cornilescu _ Alex Grishaev Stephan Grzesiek _ Georg Kontaxis _ John Kuszewski _ John Pfeiffer Tobias Ulmer _ Gerteen Vuister _ Justin Wu _ Guang Zhu _Yang Shen Graphics Strategies in NMRPipe

Transcript of Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum...

Page 1: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 1

Spectrometer format conversion and 1D-4D ComplexFourier Transform and Signal Enhancement

Spectral Visualization

1D-4D Peak Detection and Quantification: Position,Amplitude, Width and Modulation/Evolution

Resonance Assignment

Extraction of Structural Parameters

Distance (NOE) Assignment

Molecular Structure Calculation

Molecular Display and Structure Verification

Exploitation of Structure

SubstantialFacilities

UsefulContributions

Still to do, or In-progress

Ad Bax _ James Chou _ Gabriel Cornilescu _ Alex Grishaev StephanGrzesiek _ Georg Kontaxis _ John Kuszewski _ John Pfeiffer Tobias

Ulmer _ Gerteen Vuister _ Justin Wu _ Guang Zhu _Yang Shen

Graphics Strategies inNMRPipe

Page 2: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 2

Graphics Strategies of Edward Tuftewww.edwardtufte.com

Above all, Show the Data

Show Cause and Effect

Represent Data and Scale Faithfully

Maximize “Data Ink” and Data Density, Minimize “Chart Junk”

Shrink Graphics - Integrate Text, Values, and Graphics - BeMultivariate

Use Layers – Use Macro and Micro Interpretations - Clarify byAdding Detail

Conserve Color Space

Use Small Multiples

Find Ways to Show All of the Data

Treat Design as a Solved Problem, then Find the BestExamples

Page 3: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 3

Napolean’s Route: 422,000 Men to 10,000 Men, Five Dimensions

Page 4: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 4

Page 5: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 5

Bax Group Figure: 18 values

Weather Statistics: 1,800+ Values, Four Variables, Notations

Page 6: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 6

Page 7: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 7

Page 8: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 8

Page 9: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 9

Page 10: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 10

Page 11: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 11

NMR Signal Processing

Page 12: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 12

Page 13: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 13

Page 14: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 14

Matrix Decomposition and LP

Page 15: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 15

Page 16: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 16

Page 17: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 17

Page 18: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 18

Page 19: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 19

Page 20: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 20

Non-Uniform Sampling

Page 21: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 21

Page 22: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 22

Matrix Decomposition and Non-Uniform Sampling

X X

Page 23: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 23

Matrix Decomposition and Non-Uniform Sampling

Maximum Likelihood Frequency Map

F(t) – λ exp( αt ) cos( 2πft)

For a given f, choose λ to minimize RMS.

RMS has minima when f matches afrequency in F(t)

Adjust via zero-order baseline correction.

Page 24: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 24

MEM and NUS

Page 25: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 25

Reproducibility of Shifts

HN Hz 15N Hz 13C Hz

LP 0.67 0.79 2.28

PCA LP 0.67 0.24 3.18

MEM 0.56 0.55 1.90

FDM 3.23 2.47 7.56

Structural Data from NMR

Page 26: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 26

Chemical Shift J-Coupling

NOE Distance

Page 27: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 27

Page 28: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 28

Page 29: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 29

Chemical Shift and Backbone Structure Motif

Match database triplet with target, based on sum-of squaresdifference in chemical shifts, plus residue type homology term.

Use central residue as predictor of phi and psi.

Page 30: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 30

Page 31: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 31

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C H S T A C D E F G H I K L M N P Q R S T V W Y c

RM

S(P

red

, Ob

s) [

pp

m]

N

HA

C'

CA

CB

HN

15N: 2.34, HA: 0.26, C’: 0.99, CA: 0.88, CB: 0.97 HN:0.46 ppm

Page 32: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 32

Alignment by Liquid Crystal

Page 33: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 33

• Search PDB for small fragments whosesimulated dipolar couplings and shifts match theobserved values.

• Use the fragment information to reconstitutelarger structural elements.

• Also: Sequential NOEs, J values, etc.• Nucleic Acid Applications

Molecular Fragment Replacement(MFR)

Page 34: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 34

Phi-Psi Trajectory of Homology Fragments

Chemical Shifts Dipolar Couplings Known Structure

Page 35: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 35

Initial Structure fromAverage Phi and Psi ofFragment Ensemble

1ubq vs MFR phi/psirefined structure

MFR Estimation of Tensor Parameters

• Magnitude

• Rhombicity

• Orientation (Euler Angles)

Page 36: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 36

Gamma S

• 177 Residues, two similar domains,homologous structure is known.

• 179 Amide-Amide NOEs, 70 Methyl-Methyl NOEs, including 6 inter-domain

• DC Medium 1: 144 HN-N, 111 CA-CB,150 CA-C’, 130 N-C’

• DC Medium 2: 147 HN-N, 135 CA-CB,153 CA-C’,

Page 37: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 37

• Conduct MFR Search with SVD (free tensor)

• Conduct second MFR Search with fixedtensor Da, Rh, and relative orientation

• Refine all fragments with fixed tensor Da, Rh

• Phi and Psi for 90% of residues; 50% havebetter than 5 degree RMS consenus; 33%are 3 degree RMS or better.

dynReadGMC -gmc $gmcDir -pdb $pdbName

for {set i 1} {$i <= $count} {incr i} \ { dynSimulateAnnealing -graph -print 50 -rasmol 500 \ -sa stepCount init 100 \ stepCount high 24000 \ stepCount cool 8000 \ timeStep all 3 \ temperature all 4000 \ temperature coolEnd 0 \ -fc dc coolEnd 2.0 \ torsion all 50 \ torsion coolEnd 10 \ noe all 25 \ noe coolEnd 100 \ radGyr all 0.0

set outName [format $outTemplate $i]

dynWrite -pdb -src $dynInfo(gmc,pdb) -out $outName –rem $dynInfo(energyText) dynRead -pdb -src $dynInfo(gmc,pdb) -in $pdbName

incr iseed 111 srand $iseed }

Page 38: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 38

Page 39: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 39

NMR Applications in DrugDiscovery

Page 40: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 40

NMR Spectral Series:Two Approaches

Applications of NMR in theDrug Discovery Process

SAR by NMR (Abbott Labs)

Observe Ligand SignalsObserve Protein Signals

Page 41: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 41

Amide-HN Chemical Shift of Residue i Am

ide-

N C

hem

ical

Shi

ft of

Res

idue

i

Page 42: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 42

Analyze Titration Curve to Estimate Kd

Entire spectrum is a singleobject in multdimensionalspace.

Coordinates of the object arethe spectral intensities.

Similar spectra clustertogether.

Spectra with similar featureslie along lines and curves

Page 43: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 43

Screen Many Samples or Mixtures for Binding(Display: PCA Method of Roche)

Page 44: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 44

Page 45: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 45

Identification of Stereochemistryby Dipolar Couplings

RMSD

ISOMER

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ABCD

RMSD

ISOMER

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ABCD

J.L. Yan, F. Delaglio, A. Kaerner, A.D. Kline, H.P. Mo, M.J. Shapiro, T.A. Smitka, G.A. Stephenson, E.R.Zartler: Complete relative stereochemistry of multiple stereocenters using only residual dipolar

couplings. J. Am. Chem. Soc., 126 (15) 5008-5017 (2004).

Page 46: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 46

Page 47: Graphics Strategies in NMRPipe• •23 Matrix Decomposition and Non-Uniform Sampling Maximum Likelihood Frequency Map F(t) – λ exp( αt ) cos( 2πft) For a given f, choose λ to

• •

• • 47

Resonance Assignment of Known Structures:

Permutation of PCS and DC Values