Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites...

21
National Aeronautics and Space Administration Graphene Pol mer Nanocomposites for Graphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James Gaier Ohio Aerospace Instit te Cle eland OH Ohio Aerospace Institute, Cleveland, OH NASA Glenn Research Center, Cleveland, OH FACSS – Oct. 4 th , Reno, NV www.nasa.gov 1 https://ntrs.nasa.gov/search.jsp?R=20150010365 2020-06-24T08:34:57+00:00Z

Transcript of Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites...

Page 1: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites forAerospace Applications

Mitra Yoonessi, James Gaier

Ohio Aerospace Instit te Cle eland OHOhio Aerospace Institute, Cleveland, OHNASA Glenn Research Center, Cleveland, OH

FACSS – Oct. 4th, Reno, NV

www.nasa.gov 1

https://ntrs.nasa.gov/search.jsp?R=20150010365 2020-06-24T08:34:57+00:00Z

Page 2: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Polymer Nano-Composites for Aerospace ApplicationsAerospace Applications

• GrapheneL d Sili t

Multi-Functional MaterialsReinforcements, Mechanical

t th i id t t

Conductive PolymersDC & AC Electrical - Permittivity –Stiffness / Ductility • Layered Silicates

• Carbon NT• Expanded Graphite• Carbon nanofibers• Magnetic nanoparticles

strength in a wide temperature range- Barrier - Toughness

y

g p• Organometallic physical

crosslink A two-seat F106B jet made 1,496 thunderstorm penetrations and got struck by lightning 714 times during NASA's eight-year Storm Hazards Research Program

SensorsStatic dischargeLightening strike

Smart Adaptive MaterialsActuation– Thermal, Magnetic, Electrical

year Storm Hazards Research Program. Credit: NASA

Lightening strikeActuators

Adaptive fan blade

www.nasa.gov 2

Adaptive fan bladeMorphing fan casing Blended wing body inletFlex. packagingSpace deployable structures

Page 3: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Graphite and GrapheneGraphite:Graphite:

Advantages: Naturally abundant material, Low cost

Graphene - Mechanical peelingp g- Acid intercalation, thermal shock, sonication - Acid intercalation followed by high pressure, high temperature treatments

800

1000

u. 3.48ÅAb f600

800

a.u.

1598 71356.8

200

400

600

nten

sity

, a.

graphite

Absence of a sharp peak

200

400

600

an In

teni

sty,

a

2942.52693.3

1598.7

~ 9.2x 15.1 micron

G bandE2g

D banddefects

Graphene: •In-plane stiffness of 1,060 Gpa Polymer nanocomposites,

optoelectronic applications;

20 30 400

In

2theta, degree

0 1000 2000 3000 40000R

am

Raman Shift, cm-1

700nm- 15 mic.Average of 3 mic.

•resistivity in the range of 50μΩ cm•98.7% transmission normal to the incident beam for the first layer, 2.3% reduction for the next layers in vacuum

•Thermal conductivity: ~ 3000 W/mK•Field effect mobility of 200 000 cm2/Vs1

optoelectronic applications; transparent conductors, field emission displays, supercapacitors, devices, emissive displays,

www.nasa.gov 33

Field effect mobility of 200 000 cm /Vs1micromechanical sensors, and future microprocessorsNovoselov, K.S., Geim, A.K., et al. Science Oct 22 (2004)

McAllister, M. J.; Prud’homme, R. K.; Aksay I. A. et al. Chem. Mater. 2007, 19, 4396- 4404.Schniepp, H. C.; Kudin, K. N.; Li J.-L.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. ACS Nano 2008, 2, 2577-2584.Schniepp, H.C.; Aksay, I. A. et al. J. Phys. Chem. B, 2006, 110, 8535-8539.

Page 4: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Graphene Surface and InterfaceTailored Interface •Compatibility with the polymer matrixTailored Interface Compatibility with the polymer matrix

•Improving dispersion •Load/stress transfer•Electron transfer•Thermal energy transport

Surface Characteritics:•SP2 hybridization for electron transport

van der Waal Interaction (aromatic structures)

Thermal energy transport

•Combination of sp3 and sp2 hybridization Covalent bonding; -OH, -COOH, -phenolic-OH, -epoxide

Covalent bonding

Grafting to

g

Grafting from

www.nasa.gov 4

Page 5: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space AdministrationGraphene Polymer NanocompositesMultifunctional actuators

C d ti N it Polymer+

Polycarbonate Polyimide

Electrical PerformanceElectrical, thermal, mechanical And actuation performance

Conductive Nanocomposites

O C

CH3

CH3

N

O

O

ON

O

O

C

CH3

CH3

O O

n

• Solution mixing• Emulsion mixing

• Solution mixingDispersion via sonication

Epoxy- DC electrical conductivity- AC electrical conductivity

Dynamic mechanical analyzer

Reinforcement, toughness and thermal properties

- DC electrical properties-Mechanical properties,

modulus, Tg-Morphology:

• Emulsion mixing

Epoxy - Dynamic mechanical analyzer, modulus, Tg

- Morphology: - electron microscopy- SANS

electron microscopyEpon 826

• Solution mixing

D 230

www.nasa.gov 5

- Dynamic mechanical analyzer, modulus, Tg- Fracture toughness- TGA- Morphology; electron microscopy

Page 6: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Electrical Percolation Low conductive nanoparticle concentration

Percolating the conductors

• Inherent conductivity of nanoparticle• Concentration

Increasing

• Concentration• Aspect ratio• Dispersion• Orientation

gC-nanoparticle concentration

Aggregation and Dispersion of ti lnanoparticles

www.nasa.gov 6

Conductive path Israelachvili Intermolecular Surface Forces, Academic Press, San Diego, Ed. 3, 2006

Page 7: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Graphene Polycarbonate

Lexan 121, Mw = 26,301 g/mol, PDI=1.72

700nm- 15 mic.Average of 3 mic.

-Excellent thermal properties- Good mechanical properties- High impact strength and toughness- Good processability

~ 9.2x 15.1 micronc

tCCfDC )]/()[( 1 s

cDC )/(k/)( 10

Extended pair approximation model

0.01 0.23 S/cm

S/cm

0.51 S/cm

0.14 vol. %1E-5

1E-3

0.1

S/cm 0.55 vol. %

1.1 vol. %

2.2 vol. %

ωc 100

1000

1E-5

S/cm

25 oCT

1E-8

ondu

ctiv

ity

0.38 vol. %

-8

-6

-4

-2

0

D

C ,

S/cm

0.01 1 100 100001E-9

1E-7

',

Frequency, Hz

0.41 vol. %

ωcσωc= 1.1σDC

10

100

'/

DC

0

10-2 100 1021E-6145 oC

',

S

Frequency, Hz

25 CT

0.0 0.8 1.6 2.41E-14

C

, (Vol.%)Ch i ll difi d h PS it 0 1 l %

-3.6 -3.0 -2.4 -1.8 -1.2-10

-8

(c )/(1-c)

S-G PC series t = 4.18 + 0.26σf, =106.55 + 0.69 S/cm E-G PC series t = 4.04 + 0.58 σf = 106.39 + 1.32 S/cm

1E-5 1E-3 0.1 10 1000

1

c

www.nasa.gov 7

Chemically modified graphene PS nanocomposites 0.1 vol. % Conductivity of 0.001 S/cm at 1 vol.% •Stankovich, S.; Ruoff, R.S. et al. Graphene-Based Composite Materials. Nature 2006, 442, 282- 286.

Kilbride, B. E.; et al. J. Appl. Phy. 2002, 92, 4024-4030.

Page 8: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Graphene PolycarbonateTunneling

1

Charge carrier can travel through the barrier insulating polymer gap, a distancelonger than the nanoparticle length

700

3.2x10-6 3.6x10-6 4.0x10-6 4.4x10-6

b

1E-3

0.1

0.01

0.1

1

, S/c

m

500

600

C

, Hz

ωc ~ σDCb

S-G-PC

3 5 4 0 4 5 5 0 5 5 6 0 6 51E-9

1E-7

1E-5

1E-4

1E-3D

C

3.5x10-5 4x10-5 4.5x10-5 5x10-55.5x10-5

400

b = 0.99 + 0.1E-G-PCb = 1.01 + 0.1

3.5 4.0 4.5 5.0 5.5 6.0 6.5

-1/3 DC, S/cmYoonessi, M.; Gaier, J. R. ACS Nano, 2010

www.nasa.gov 8Kilbride, B. E.; et al. J. Appl. Phy. 2002, 92, 4024-4030.

Page 9: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Epoxy Graphene Nanocomposites-ReinforcementObj i Reinforcement

Epoxy: Epon 826

Objectives:• To determine the effects of graphene addition and surface modification on the thermal and

dynamic modulus, fracture toughness of the low content graphene nanocomposites.

Epoxy: Epon 826 Low viscosity resinTransparent Jeffamine D230: a polyetheramine, (an amine terminated PPG)MW 230 X 2 5

MW 230, X~ 2.5

2500 – 27000 g/mol

Reduced graphene sp2 hybridized

Highly oxygenated graphene,sp2, and sp3

Amino propyl polydimethyl siloxane graphene,sp2, and sp3

0.1

Si O 1006 5788.4

CH3, CH2

100 320 oC25000 C1sSi-O

Abs

orba

nce

1562.5

1256

10941006.5

NH2

Si-CH3

60

80

Wei

ght,

%

86%

10000

15000

20000

nsity

, cou

nts

O1sOKLL

www.nasa.gov 9

4000 3000 2000 10000.0

CH3, CH2

Wave numbers, cm-1

3302 2956

0 100 200 300 400 500 600 700 800

20

40

W

Temperature, oC1200 1000 800 600 400 200 0

0

5000

S2p

Inte

n

Binding Energy, eV

Cl2p

OKLL

Page 10: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Epoxy Graphene NanocompositesGraphene loading 0 05 0 5 wt%Graphene loading 0.05 - 0.5 wt%

108

111

ratu

re, o C

108

110

atur

e, o C

108

110

prat

ure,

o C

102

105

108

ansi

tion

tem

per

Reduced grapheneTg

102

104

106

tran

sitio

n te

mep

102

104

106

tran

sitio

n te

mep

O-grapheneTg

PDMS-grapheneTg

0.0 0.1 0.2 0.3 0.4 0.5

99

Gla

ss tr

a

Graphene/epoxy nanocomposite, wt%0.0 0.1 0.2 0.3 0.4 0.5

100Gla

ss

Graphene epoxy nanocomposites, wt%

0.0 0.1 0.2 0.3 0.4 0.5

100

Gla

ss t

PDMS-Graphene/epoxy nanocomposite, wt%

Neat EpoxyNeat Epoxy Neat Epoxy

2100

2400

0 o C

), M

Pa

2400

2600

2800

60 o C

), M

Pa

2400

2700

(60

o C),

MPa

1200

1500

1800

age

mod

ulus

(60

1800

2000

2200

ge M

odul

us (6

1800

2100

orag

e M

odul

us

Reduced graphene,Modulus @ 60C O-graphene,

Modulus @ 60C

PDMS-graphene,Modulus @ 60C

N t E Neat Epoxy

www.nasa.gov 10

0.0 0.1 0.2 0.3 0.4 0.5

1200

Stor

aPDMS-Graphene/epoxy nanocomposite, wt%0.0 0.1 0.2 0.3 0.4 0.5

1400

1600

Stor

ag

Graphene epoxy nanocomposites, wt%

0.0 0.1 0.2 0.3 0.4 0.5

1500Sto

Graphene/epoxy nanocomposite, wt%

Neat EpoxyNeat Epoxy

Neat Epoxy

Page 11: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Epoxy Graphene Nanocomposites50P

30

40

50 O-Graphene Epoxy

KIC

, %

f(x)WB

P K maxIC

E-(1 G

22

ICicK)

10

20

30Graphene Epoxy

crea

se o

f K

PDMS-Graphene Epoxy

3/2

21/2

x)-2x)(1+(1)2.7x+3.93x-x)(2.15-x(1-1.996x f(x)

0.00 0.02 0.04 0.06 0.08 0.10

0Inc

Graphene, wt%

Neat Epoxy

405

410

415

395

400

395

400

o C

Graphene, wt%

Reduced graphene,

390

395

400

405

T d, o C

385

390

395

T d, o C

385

390

T d,

PDMS-graphene,O-graphene,

www.nasa.gov 11

0.0 0.1 0.2 0.3 0.4 0.5380

385

Graphene, wt%0.0 0.1 0.2 0.3 0.4 0.5

385

Graphene, wt%0.0 0.1 0.2 0.3 0.4 0.5

Graphene, wt%

Neat EpoxyNeat Epoxy

Neat Epoxy

Page 12: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space AdministrationEpoxy Graphene Nanocomposites-Dispersionp

PDMS modified

www.nasa.gov 12

PDMS modified graphene in epoxy 0.05wt%

Reduced graphene in epoxy

O-graphene in epoxy

Good dispersion was obtained in all nanocomposites

Page 13: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Polyimide Graphene Nanocomposites Aromatic polyimide: low color flexibility high T high thermal PMR 15

2 Polyimide, thermal stability >500 oC, Tg > 200 oC, flexible and semi-transparent.

Aromatic polyimide: low color, flexibility, high Tg, high thermal stability, and radiation resistance.1

PMR-15GRCAfter burner

Thermal imidization: - Mixing and dissolving equi-molar ratio diamine in anhydrous-NMP under dry N2 followed by addition

f d h d id d ti i f 24h i fl d i d lof dry anhydride and stirring for 24h in flame dried vessels.- Then, increasing the temperature ~230 oC (NMP reflux) for 3h and precipitating in methanol and drying

Solvent casting+ Polyimide

solutionsonication

www.nasa.gov 13

1Qu,L., Connell, J.W., Sun, Y.-P., Macromolecules, 2004, 37, 6055-6060.2Lebron-Colon, M. Meador, M. A., Gaier, J. R., Sola, F., Scheiman, D.A., McCorkle, L.S. ACS Applied Materials and Interfaces, 2010, 2 ,3 , 669–676 .

sonication

Page 14: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Polyimide Graphene Nanocomposites Addition of graphene resulted in

it i f t ith t

0.1

10

cm

tCCfDC )]/()[( 1

0.92 S/cm0.036%

2000

MPa

composite reinforcement without adverse effect on the Tg

1E 9

1E-7

1E-5

1E-3

ctiv

ity, S

/c

3

-2

-1

0

DC

), S/

cm 1500 150 oC

Mod

ulus

, M

50 oC

1E-15

1E-13

1E-11

1E-9

Con

du

-2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4-5

-4

-3

Log

(

Log (CC)

t= 3.79

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

1000

Stor

age

240

250

C

0 1 2 3 4 51E 15

Graphene vol. % Graphene wt%

210

220

230

T g, o CT g

, oC

www.nasa.gov

0.0 0.5 1.0 1.5 2.0 2.5200

210

Graphene vol %Graphene, vol.% 14

Flexible films at 2wt% with 200 micron thickness

Page 15: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Dispersion of graphene in polyimideTEMTEM

C d ti th10

10 micron

1.1 vol.%Conductive path

0.025 vol.%10 micron

1E-7

1E-5

1E-3

0.1

tivity

, S/c

m

1E-15

1E-13

1E-11

1E-9

Con

duct

www.nasa.gov 15

0 1 2 3 4 51E 15

Graphene vol. %200 nm 500 nm

Page 16: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Reinforcement: O-Graphene Surface ModificationsModifications

-Covalent bonding of imide moieties using grafting to method-Provide compatibility with the polyimide resin matrixGenerate steric hindrance and promote dispersion-Generate steric hindrance and promote dispersion

P-amino phenyl trimethoxy silane

3,3',4,4'-Biphenyl tetracarboxylicdianhydride (s-BPDA)

2,2'-Dimethyl-4,4'-diaminobiphenyl (m-Tolidine)

3 units were on the surface: 23 units were on the surface: 2 anhydride and 1 diamine After 2 months

80

100Imide modified graphene

O- graphene

280 oC

72%984 oC

40

60

Wei

ght,

%

g p

www.nasa.gov 16

O-grapheneGraphene with rigid surface modifierGraphene with flexible surface modiier

0 200 400 600 800 10000

20

Temperature, oC

Page 17: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Covalent Functionalization of imide structure to Graphene

Surface Modification of Graphene with Rigid Imides

Covalent Functionalization of imide structure to Graphene

0 060.070.080.090.10

y

0.020.030.040.050.06

Inte

nsity 3430

OH, NH2

2917.82853

CH2, CH3

Si-O1094

17241656

1572

imide arbonylamid carbonyl

1368

imide C-N

4500 4000 3500 3000 2500 2000 1500 1000 5000.000.01

Wavenumber, cm-1

28531775

1572

0.06

0.08

0.10

y

amid carbonyl1566

1248

0.02

0.041345

imide C-N-C

Inte

nsity

3430OH, NH2

2917.82853

CH2, CH3

Si-O1081

imide arbonyl imide C-N

1720

1771

www.nasa.gov 17

4000 3000 2000 1000 0

0.00

Wavenumber, cm-1

Mw 1058.28 g/mol: 3 unit

Page 18: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Surface Imidized Graphene Polyimide NanocompositesPolyimide Nanocomposites

Addition of graphene with rigid surface imide moieties resulted in increase in modulus and Tg

1600

1700

s@ 1

50 o C

, MPa

230

235

of G

raph

ene

o C

1 wt%

1400

1500

tora

ge m

oduo

us

225

8.5 oCansi

tion

Tem

p.

Poly

imid

e, o

17.1 oC

-0.25 0.00 0.25 0.50 0.75 1.00 1.25

1200

1300

Dyn

amic

St

G h i ht t %

0.1 0.2 0.3 0.4 0.5

2208.5 C

Gla

ss T

ra

Graphene weight Percent, %Graphene weight percent, %

www.nasa.gov 18

Page 19: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Conclusions

• Incorporation of reduced graphene in the both polycarbonate and polyimide resulted in superior electrical conductivity along with reinforcement with none or insignificant adverse effect on the glass transition temperature.

• The plateau electrical conductivity of graphene polyimide nanocomposite• The plateau electrical conductivity of graphene polyimide nanocompositereached to 0.92 S/cm with a critical percolation of 0.036 vol. fraction.

• Low graphene content (0.05-0.5 wt%) graphene epoxy nanocompositesexhibited improvements in glass transition temperature, modulus, thermal stability, and fracture toughness.

• Graphene surface characteristics is the key for the target propertyGraphene surface characteristics is the key for the target property enhancement in all three resin matrices.

www.nasa.gov 19

Page 20: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

Acknowledgements•The NASA Aeronautics-Subsonic Fixed Wing Program: Contract NNC07BA13B

• Dr. Michael A. Meador, Nanotechnology Lead, Polymer Branch Chief,NASA GRCNASA GRC

• Dr. Dave Kankam, NASA USRP program, NASA GRC• Dr. Kathy Chuang, NASA GRC• Dr. Marisabel Lebron-Colon, NASA GRC

Daniel Scheiman ASRC/NASA GRC• Daniel Scheiman, ASRC/NASA-GRC• Matthew Dittler, USRP student• Eileen Boyd, USRP student• Ying Shi, Graduate assistant, University of Akron

Dr Rick Rogers Dave Hull Derek Quade Terry McCue NASA/GRC• Dr. Rick Rogers, Dave Hull, Derek Quade, Terry McCue, NASA/GRC• Professor Aksay, Princeton University,• Vorbeck Materials Inc., John Lettow

www.nasa.gov 20

Page 21: Graphene Pol mer Nanocomposites forGraphene Polymer ...€¦ · Graphene Pol mer Nanocomposites forGraphene Polymer Nanocomposites for Aerospace Applications Mitra Yoonessi, James

National Aeronautics and Space Administration

NASA-University ProgramsGRC L d f th t h l

- NRA – Aeronautics - NASA inspire web site

GRC Lead for the agency nanotechnology

- NASA Graduate Student Researchers Program (GSRP)- http://fellowships.hq.nasa.gov/gsrp/nav/

NASA Undergraduate Student Research Program (USRP)- NASA Undergraduate Student Research Program (USRP)- http://usrp.usra.edu/

- NASA Experimental Program to Simulate Competitive Research (EPSCoR)

NASA Glenn Faculty Fellowship Program (NGFFP)- NASA Glenn Faculty Fellowship Program (NGFFP)- http://nbpo.grc.nasa.gov/university-affairs/ngffp/

- LERCIP Higher Education (College) – Undergraduate program

- Space Grant Consortium

www.nasa.gov 21