Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s...

164
Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University CA Workshop, 2006 – p.1/66

Transcript of Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s...

Page 1: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Graph Homomorphism TutorialField’s Institute Covering Arrays Workshop 2006

Rick Brewster

Thompson Rivers University

CA Workshop, 2006 – p.1/66

Page 2: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Preparing this talk

What should I say?

CA Workshop, 2006 – p.2/66

Page 3: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Preparing this talk

What should I say?

What do you want to know?

CA Workshop, 2006 – p.2/66

Page 4: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Talk Outline

CA Workshop, 2006 – p.3/66

Page 5: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Talk Outline

• Basic Definitions;

CA Workshop, 2006 – p.3/66

Page 6: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Talk Outline

• Basic Definitions;• Homomorphisms Generalize Colourings;

CA Workshop, 2006 – p.3/66

Page 7: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Talk Outline

• Basic Definitions;• Homomorphisms Generalize Colourings;• Graph Covering Arrays;

CA Workshop, 2006 – p.3/66

Page 8: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Talk Outline

• Basic Definitions;• Homomorphisms Generalize Colourings;• Graph Covering Arrays;• Categorical Aspects;

CA Workshop, 2006 – p.3/66

Page 9: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Talk Outline

• Basic Definitions;• Homomorphisms Generalize Colourings;• Graph Covering Arrays;• Categorical Aspects;• Computational Aspects.

CA Workshop, 2006 – p.3/66

Page 10: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

References

• P. Hell and J. Nešetril, Graphs and Homomorphisms,Oxford University Press, 2004.

• C. Godsil and G. Royle, Algebraic Graph Theory,Springer-Verlag, 2001.

• A. Pultr and V. Trnková, Combinatorial, Algebraic, andTopological Representations of Groups, Semigroupsand Categories, North-Holland, 1980.

CA Workshop, 2006 – p.4/66

Page 11: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

References

• G. Hahn and C. Tardif, Graph homomorphisms:structure and symmetry, in Graph Symmetry, AlgebraicMethods and Applications (G. Hahn and G. Sabidussieds.) NATO ASI Series C 497, Kluwer 1997.

• G. Hahn and G. MacGillivray, Graph homomorphisms:computational aspects and infinite graphs, manuscript,2002.

• P. Hell, Algorithmic aspects of graph homomorphisms,in Surveys in Combinatorics 2003 (C. D. Wensley ed.)London Math. Soc. Lecture Notes Series 307Cambridge University Press.

CA Workshop, 2006 – p.5/66

Page 12: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Graph Homomorphisms

Definition 1 Let G and H be graphs. Ahomomorphism of G to H is a

CA Workshop, 2006 – p.6/66

Page 13: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Graph Homomorphisms

Definition 1 Let G and H be graphs. Ahomomorphism of G to H is a functionf : V (G)→ V (H) such that

xy ∈ E(G)⇒ f(x)f(y) ∈ E(H).

CA Workshop, 2006 – p.6/66

Page 14: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Graph Homomorphisms

Definition 1 Let G and H be graphs. Ahomomorphism of G to H is a functionf : V (G)→ V (H) such that

xy ∈ E(G)⇒ f(x)f(y) ∈ E(H).

Adjacent vertices receive adjacent images.

CA Workshop, 2006 – p.6/66

Page 15: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Graph Homomorphisms

Definition 1 Let G and H be graphs. Ahomomorphism of G to H is a functionf : V (G)→ V (H) such that

xy ∈ E(G)⇒ f(x)f(y) ∈ E(H).

We write G→ H (G 6→ H) if there is ahomomorphism (no homomorphism) of G to H.

CA Workshop, 2006 – p.6/66

Page 16: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Beyond graphs

Definition of a homomorphism naturally extendsto:

• digraphs;• edge-coloured graphs;• relational systems.

CA Workshop, 2006 – p.7/66

Page 17: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Beyond graphs

Definition of a homomorphism naturally extendsto:

• digraphs;• edge-coloured graphs;• relational systems.

Hot idea: Constraint Satisfaction Problemsencoded as homomorphisms.

CA Workshop, 2006 – p.7/66

Page 18: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

An example

G

0

1 2

H

CA Workshop, 2006 – p.8/66

Page 19: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

An example

G

0

1 2

H

0

CA Workshop, 2006 – p.8/66

Page 20: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

An example

G

0

1 2

H

0

0

Why is this assignment not allowed?

CA Workshop, 2006 – p.8/66

Page 21: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

An example

G

0

1 2

H

0

0

This assignment requires a loop on vertex 0 (in H)

CA Workshop, 2006 – p.8/66

Page 22: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

An example

G

0

1 2

H

0

1

This assignment is allowed.

CA Workshop, 2006 – p.8/66

Page 23: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

An example

G

0

1 2

H

1

0

1

0 2

This labeling is a homomorphism G→ H.

CA Workshop, 2006 – p.8/66

Page 24: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

A partitioning problem

0

1 2

H

G

CA Workshop, 2006 – p.9/66

Page 25: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

A partitioning problem

0

1 2

H

G

CA Workshop, 2006 – p.9/66

Page 26: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

A partitioning problem

0

1 2

H

G

0

1

2

The quotient of the partition is a subgraph of H

The partition is the kernel of the map.

CA Workshop, 2006 – p.9/66

Page 27: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Some observations

Many keys ideas appear in our example:

CA Workshop, 2006 – p.10/66

Page 28: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Some observations

Many keys ideas appear in our example:• G→ K3 iff G is 3-colourable.• G→ Kn iff G is n-colourable.

CA Workshop, 2006 – p.10/66

Page 29: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Some observations

Many keys ideas appear in our example:• G→ K3 iff G is 3-colourable.• G→ Kn iff G is n-colourable.• Homomorphisms generalize colourings.• Testing the existence of a homomorphism is a

hard problem.

CA Workshop, 2006 – p.10/66

Page 30: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Some observations

Many keys ideas appear in our example:• G→ K3 iff G is 3-colourable.• G→ Kn iff G is n-colourable.• Homomorphisms generalize colourings.• Testing the existence of a homomorphism is a

hard problem.

Notation: G→ H is an H-colouring of G.

CA Workshop, 2006 – p.10/66

Page 31: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

The complexity ofH-colouring

Let H be a fixed graph.

H-colouringInstance: A graph G.Question: Does G admit an H-colouring.

Theorem 1 (Hell and Nešet ril, 1990) If H isbipartite or contains a loop, then H-colouring ispolynomial time solvable; otherwise, H isNP-complete.

CA Workshop, 2006 – p.11/66

Page 32: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

About loops

• If H contains a loop, then the testing G ?→ H

is trivial.• Variants of H-colouring remain difficult when

loops are allowed.

We will assume graphs are loop-free unlessstated otherwise.

CA Workshop, 2006 – p.12/66

Page 33: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

In the language ofhomomorphisms

• Chromatic number

χ(G) = minn{n|G→ Kn}

• Clique number

ω(G) = maxn{n|Kn → G}

• Odd girth

og(G) = minℓ{2ℓ+ 1|C2ℓ+1 → G}

CA Workshop, 2006 – p.13/66

Page 34: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Homomorphism language con’t

An H-colouring of G is a partition of V (G) subjectto the edge structure in H.

• Independence number 0 1

H

α(G) = maxf{|f−1(1)| | f : G→ H}

CA Workshop, 2006 – p.14/66

Page 35: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

General partitioning problems

• Split graphs 0 1

H

• G is a split-graph iff ∃g, g : G→ H such thatg−1(0) is complete.

CA Workshop, 2006 – p.15/66

Page 36: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

General partitioning problems

• Split graphs 0 1

H

• G is a split-graph iff ∃g, g : G→ H such thatg−1(0) is complete.

• M -partitions – Feder, Hell, Klein, andMotwani.

• Trigraphs in Hell and Nešetril book.

CA Workshop, 2006 – p.15/66

Page 37: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

General partitioning problems

• Split graphs 0 1

H

• G is a split-graph iff ∃g, g : G→ H such thatg−1(0) is complete.

• M -partitions – Feder, Hell, Klein, andMotwani.

• Trigraphs in Hell and Nešetril book.• clique-cut set, skew partition, homogenous

set, ...

CA Workshop, 2006 – p.15/66

Page 38: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

CSP encodings via Edge-colouredgraphs

• Graphs have coloured edges.• Homomorphisms preserve edges and their

colours.

CA Workshop, 2006 – p.16/66

Page 39: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

CSP encodings via Edge-colouredgraphs

• Graphs have coloured edges.• Homomorphisms preserve edges and their

colours.• Red edges encode same; and• blue edges encode different.

0 1H

CA Workshop, 2006 – p.16/66

Page 40: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

CSP encodings via Edge-colouredgraphs

0 1H

CA Workshop, 2006 – p.17/66

Page 41: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

CSP encodings via Edge-colouredgraphs

0 1H

G

CA Workshop, 2006 – p.17/66

Page 42: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Colouring interpolation theorem

• Achromatic number

ψ(G) = maxk{k|G

sur→ Kk}

• Complete k-colourings• Theorem 1 Let G be a graph. For each i,χ(G) ≤ i ≤ ψ(G), G admits a completei-colouring.

CA Workshop, 2006 – p.18/66

Page 43: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Another partitioning example0

1

2

3H

G

CA Workshop, 2006 – p.19/66

Page 44: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Another partitioning example0

1

2

3H

G

0

1

2

3

The quotient of the partitionis the homomorphic image, in this case H

CA Workshop, 2006 – p.19/66

Page 45: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Another partitioning example0

1

2

3H

G

0

1

2

3

The homomorphic image is theupper triangle of H

CA Workshop, 2006 – p.19/66

Page 46: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Another partitioning example0

1

2

3H

G

0

1

2

3

The homomorphic image is the edge on {0, 1}Note any bipartite graph will map to {0, 1}

CA Workshop, 2006 – p.19/66

Page 47: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

A few natural questions about thehom-image

Given f : G→ H:

CA Workshop, 2006 – p.20/66

Page 48: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

A few natural questions about thehom-image

Given f : G→ H:

• Is f vertex (edge) injective?

CA Workshop, 2006 – p.20/66

Page 49: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

A few natural questions about thehom-image

Given f : G→ H:

• Is f vertex (edge) injective?• Is f vertex (edge) surjective?

CA Workshop, 2006 – p.20/66

Page 50: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

A few natural questions about thehom-image

Given f : G→ H:

• Is f vertex (edge) injective?• Is f vertex (edge) surjective?

Homomorphisms generalize isomorphisms.

NP-complete versus Graph-Isomorphismcomplete.

CA Workshop, 2006 – p.20/66

Page 51: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Homomorphisms compose

0

1

2

3H

G

0

1

2

3

x

y

z

K3

CA Workshop, 2006 – p.21/66

Page 52: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Homomorphisms compose

0

1

2

3H

G

0

1

2

3

x

y

z

K3

CA Workshop, 2006 – p.21/66

Page 53: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Homomorphisms compose

0

1

2

3H

G

0

1

2

3

x

y

z

K3

x

y

z

CA Workshop, 2006 – p.21/66

Page 54: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Learning to say no

Let G and H be graphs.• If χ(G) > χ(H), then G 6→ H.

• If og(G) < og(H), then G 6→ H.• If F → G and F 6→ H, then G 6→ H.

CA Workshop, 2006 – p.22/66

Page 55: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

The core of a graph

In our example,• H → K3 and K3 → H.• H and K3 are homomorphism equivalent.• Every graph has a unique (up to iso) inclusion

minimal subgraph to which it ishom-equivalent called the core of the graph.

CA Workshop, 2006 – p.23/66

Page 56: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Core examples

H

CA Workshop, 2006 – p.24/66

Page 57: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Core examples

H

CA Workshop, 2006 – p.24/66

Page 58: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Core examples

H

CA Workshop, 2006 – p.24/66

Page 59: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

The mapping to the core

• C5 is a subgraph of H.• H maps to C5.

• C5g→ H

h→ C5

• h ◦ g = idC5

• The map h is a retraction.

CA Workshop, 2006 – p.25/66

Page 60: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

The mapping to the core

• C5 is a subgraph of H.• H maps to C5.

• C5g→ H

h→ C5

• h ◦ g = idC5

• The map h is a retraction.• Let H ′ ⊆ H. A retraction f : H → H ′ is a hom

that is the identity on H ′.

CA Workshop, 2006 – p.25/66

Page 61: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Core of an old friend

CA Workshop, 2006 – p.26/66

Page 62: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Core of an old friendFixed in the core.

Not in the core.

CA Workshop, 2006 – p.26/66

Page 63: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Core of an old friendFixed in the core.

Not in the core.

The hom-image contains K3 6⊆ P10.Petersen graph is a core.

CA Workshop, 2006 – p.26/66

Page 64: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Cores

• Every graph H contains a core, denoted H•.• The core is a subgraph.• There is a retraction r : H → H• (which fixesH•).

• For all G,

G→ H ⇔ G→ H•

• If H = H•, then H is a core.

CA Workshop, 2006 – p.27/66

Page 65: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Some popular cores

The following graphs are cores:• complete graphs Kn;• odd cycles C2n+1;

• directed cycles ~Ck.

CA Workshop, 2006 – p.28/66

Page 66: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Resumé

• Homomorphisms generalize colourings.• Homomorphisms generalize isomorphism.• Each graph contains a unique core.• Let H ′ ⊆ H. A retraction f : H → H ′ is a hom

that the identity on H ′.

CA Workshop, 2006 – p.29/66

Page 67: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Colouring Problems

Key idea: Many colouring problems can be for-

mulated as homomorphism problems by defining

a suitable collection of target graphs.

CA Workshop, 2006 – p.30/66

Page 68: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular colourings

A (p/q)-colouring of a graph G is:

• a function c : V (G)→ {0, 1, 2, . . . , p− 1};

• where uv ∈ E(G) impliesq ≤ |c(u)− c(v)| ≤ p− q.

In other words, adjacent vertices receive coloursthat differ by a least q modulo p.

CA Workshop, 2006 – p.31/66

Page 69: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular colourings

A (p/q)-colouring of a graph G is:

• a function c : V (G)→ {0, 1, 2, . . . , p− 1};

• where uv ∈ E(G) impliesq ≤ |c(u)− c(v)| ≤ p− q.

In other words, adjacent vertices receive coloursthat differ by a least q modulo p.

• Introduced by Vince (1988).• Combinatorial setting Bondy and Hell (1990).• Survey Zhu (2001).

CA Workshop, 2006 – p.31/66

Page 70: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular chromatic number

The circular chormatic number of a graph G is

χc(G) = inf

{

p

q|G is (p/q)− colourable

}

.

CA Workshop, 2006 – p.32/66

Page 71: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular chromatic number

The circular chormatic number of a graph G is

χc(G) = inf

{

p

q|G is (p/q)− colourable

}

.

Prop 2• A (p, 1)-colouring is simply a p-colouring.

Hence, (p, q)-colourings generalize classicalcolourings.

• χc(Kn) = χ(Kn) = n;

• χc(C2k+1) = 2 + 1/k.CA Workshop, 2006 – p.32/66

Page 72: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular chromatic number in thelanguage of homomorphisms

We require a suitable colleciton of calibratinggraphs.What is the correct target H for a(p/q)-colouring?

CA Workshop, 2006 – p.33/66

Page 73: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular chromatic number in thelanguage of homomorphisms

We require a suitable colleciton of calibratinggraphs.What is the correct target H for a(p/q)-colouring?

• V (H) = {0, 1, 2, . . . , p− 1};

• E(H) = {ij | q ≤ |i− j| ≤ p− q}.

CA Workshop, 2006 – p.33/66

Page 74: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular chromatic number in thelanguage of homomorphisms

We require a suitable colleciton of calibratinggraphs.What is the correct target H for a(p/q)-colouring?

• V (H) = {0, 1, 2, . . . , p− 1};

• E(H) = {ij | q ≤ |i− j| ≤ p− q}.

We call these graphs the Kp/q cliques.

χc(G) = inf

{

p

q|G→ Kp/q

}

CA Workshop, 2006 – p.33/66

Page 75: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

The circular cliqueK7/2

0

1

2

3

4

5

6

CA Workshop, 2006 – p.34/66

Page 76: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular cliques behave

The circular cliques have many nice propertieswe recognize from classical cliques.

CA Workshop, 2006 – p.35/66

Page 77: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular cliques behave

The circular cliques have many nice propertieswe recognize from classical cliques.

• For rationals r′ < r, Kr′ → Kr;

CA Workshop, 2006 – p.35/66

Page 78: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular cliques behave

The circular cliques have many nice propertieswe recognize from classical cliques.

• For rationals r′ < r, Kr′ → Kr;• for (p, q) = 1 and p/q ≥ 2

(Kp/q − {x})→ Kp′/q′

with p′/q′ < p/q, p′ < p and q′ < q;

CA Workshop, 2006 – p.35/66

Page 79: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular cliques behave

The circular cliques have many nice propertieswe recognize from classical cliques.

• For rationals r′ < r, Kr′ → Kr;• for (p, q) = 1 and p/q ≥ 2

(Kp/q − {x})→ Kp′/q′

with p′/q′ < p/q, p′ < p and q′ < q;• we can replace inf with min.

CA Workshop, 2006 – p.35/66

Page 80: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular colouring comments

CA Workshop, 2006 – p.36/66

Page 81: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular colouring comments

• χ(G)− 1 < χc(G) ≤ χ(G)

CA Workshop, 2006 – p.36/66

Page 82: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular colouring comments

• χ(G)− 1 < χc(G) ≤ χ(G)

• An orientation ~G of G is obtained by assigninga direction to each edge in G.

• Given a cycle C in G, C+(C−) is number offorward (backward) arcs.

CA Workshop, 2006 – p.36/66

Page 83: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Circular colouring comments

• χ(G)− 1 < χc(G) ≤ χ(G)

• An orientation ~G of G is obtained by assigninga direction to each edge in G.

• Given a cycle C in G, C+(C−) is number offorward (backward) arcs.

• Minty, 1962: χ(G) = min~G

maxC

|C+|

|C−|+ 1

• Goddyn, Tarsi, Zhang, 1998:

χc(G) = min~G

maxC

|C+|

|C−|+ 1

CA Workshop, 2006 – p.36/66

Page 84: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Fractional Colourings

A k-tuple, n-colouring of a graph G is:

CA Workshop, 2006 – p.37/66

Page 85: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Fractional Colourings

A k-tuple, n-colouring of a graph G is:

• an assignment to each vertex v, a k-set ofcolours from an n-set;

• adjacent vertices receive disjoint sets.

CA Workshop, 2006 – p.37/66

Page 86: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Fractional Colourings

A k-tuple, n-colouring of a graph G is:

• an assignment to each vertex v, a k-set ofcolours from an n-set;

• adjacent vertices receive disjoint sets.

When k = 1 we have a classical vertex colouring.

CA Workshop, 2006 – p.37/66

Page 87: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Fractional Colouring Targets

The Kneser graph K(n, k) is defined as follows:

CA Workshop, 2006 – p.38/66

Page 88: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Fractional Colouring Targets

The Kneser graph K(n, k) is defined as follows:

• vertices k-sets from an n-set;• two vertices are adjacent if they are disjoint.

CA Workshop, 2006 – p.38/66

Page 89: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

An old friend returns:K(5, 2)

CA Workshop, 2006 – p.39/66

Page 90: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

An old friend returns:K(5, 2)

12

45

23

15 34

35

13

14

2425

CA Workshop, 2006 – p.39/66

Page 91: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

K7/2 → K(7, 2)

CA Workshop, 2006 – p.40/66

Page 92: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

K7/2 → K(7, 2)

0

1

2

3

4

5

6

CA Workshop, 2006 – p.40/66

Page 93: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

K7/2 → K(7, 2)

{0, 1}

{1, 2}{2, 3}

{3, 4}

{4, 5}

{5, 6}{6, 0}

CA Workshop, 2006 – p.40/66

Page 94: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Integer Programming

We can formulate ordinary chromatic number asan integer program. Recall χ is the smallestnumber of independent sets into which we canpartition V (G).

CA Workshop, 2006 – p.41/66

Page 95: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Integer Programming

We can formulate ordinary chromatic number asan integer program. Recall χ is the smallestnumber of independent sets into which we canpartition V (G).

• For each independent set I, create a01-variable xI .

CA Workshop, 2006 – p.41/66

Page 96: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Integer Programming

We can formulate ordinary chromatic number asan integer program. Recall χ is the smallestnumber of independent sets into which we canpartition V (G).

• For each independent set I, create a01-variable xI .

• χ is the optimum value of:

min∑

I xI∑

v∈I = 1, for all v ∈ V (G)CA Workshop, 2006 – p.41/66

Page 97: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Fractional Relaxation

It is easy to verify that χf is the optimal value ofthe fractional relaxation of the IP above:

min∑

I xI∑

v∈I = 1, for all v ∈ V (G)

xI ≥ 0

CA Workshop, 2006 – p.42/66

Page 98: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Fractional Relaxation (2)

The dual to this problem (in standard form)defines the fractional clique. Gives lower boundson χf . For example,

χf(G) ≥|V (G)|

α

CA Workshop, 2006 – p.43/66

Page 99: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Fractional Relaxation (2)

The dual to this problem (in standard form)defines the fractional clique. Gives lower boundson χf . For example,

χf(G) ≥|V (G)|

α

Using this we get χf(K(n, k)) = nk .

CA Workshop, 2006 – p.43/66

Page 100: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Kneser graphs

• Unlike the circular cliques, we do not have afull understanding of the homomorphismstructure between K(n, k).

• We do know for n ≥ 2k ≥ 2• K(n, k)→ K(n+ 1, k)• K(n, k)→ K(tn, tk), for every positive

integer t• K(n, k)→ K(n− 2, k − 1), for k > 1

CA Workshop, 2006 – p.44/66

Page 101: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Chromatic number of Knesergraphs

Theorem 3 (Lovász, 1978) For everyn, k, n ≥ 2k,

χ(K(n, k)) = n− 2k + 2.

CA Workshop, 2006 – p.45/66

Page 102: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Chromatic number of Knesergraphs

Theorem 3 (Lovász, 1978) For everyn, k, n ≥ 2k,

χ(K(n, k)) = n− 2k + 2.

• Topological methods;

• Uses α(K(n, k)) =(

n−1k−2

)

from theErdos-Ko-Rado Theorem.

CA Workshop, 2006 – p.45/66

Page 103: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Chromatic number of Knesergraphs

Theorem 3 (Lovász, 1978) For everyn, k, n ≥ 2k,

χ(K(n, k)) = n− 2k + 2.

• Topological methods;

• Uses α(K(n, k)) =(

n−1k−2

)

from theErdos-Ko-Rado Theorem.

Stahl (and others) conjecture

K(n, k) 6→ K(tn− 2k + 1, tk − k + 1).

CA Workshop, 2006 – p.45/66

Page 104: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Covering Arrays andHomomorphisms

Can we express covering array problems in thelanguage of homomorphisms?Natural problems? Interesting?

CA Workshop, 2006 – p.46/66

Page 105: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Covering Arrays andHomomorphisms

Can we express covering array problems in thelanguage of homomorphisms?Natural problems? Interesting?

• Karen Meagher and Brett Stevens• Karen Meagher, Lucia Moura, and Latifa

Zekaoui• Chris Godsil, Karen Meagher, and Reza

Naserasr

CA Workshop, 2006 – p.46/66

Page 106: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Covering Arrays Targets

The graph QI(n, g) (with n ≥ g2)

• V strings of length n over {0, 1, . . . , g − 1};• E pairs of qualitatively independent strings.

CA Workshop, 2006 – p.47/66

Page 107: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Covering Arrays Targets

The graph QI(n, g) (with n ≥ g2)

• V strings of length n over {0, 1, . . . , g − 1};• E pairs of qualitatively independent strings.

A k-clique in QI(n, g) corresponds to a n× kcovering array.

CA Workshop, 2006 – p.47/66

Page 108: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

CA in the language ofhomomorphisms

There exists a CA(n, k, g)

CA Workshop, 2006 – p.48/66

Page 109: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

CA in the language ofhomomorphisms

There exists a CA(n, k, g)iff k ≤ ω(QI(n, g))

CA Workshop, 2006 – p.48/66

Page 110: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

CA in the language ofhomomorphisms

There exists a CA(n, k, g)iff k ≤ ω(QI(n, g))iff Kk → ω(QI(n, g))

CA Workshop, 2006 – p.48/66

Page 111: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

CA in the language ofhomomorphisms

There exists a CA(n, k, g)iff k ≤ ω(QI(n, g))iff Kk → ω(QI(n, g))

Again, we may restrict our attention to cores.

Observe QI•(4, 2) = K3, and is induced by the

balance strings starting with 0.

CA Workshop, 2006 – p.48/66

Page 112: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Continuing with homomorphisms

Let’s ask the question, for which graph G

G?→ QI(n, g)

CA Workshop, 2006 – p.49/66

Page 113: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Continuing with homomorphisms

Let’s ask the question, for which graph G

G?→ QI(n, g)

Covering array on a graph G is a homomorphismG→ QI(n, g).

CA Workshop, 2006 – p.49/66

Page 114: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Continuing with homomorphisms

Let’s ask the question, for which graph G

G?→ QI(n, g)

Covering array on a graph G is a homomorphismG→ QI(n, g).

CA(G, g) = minℓ∈N{ℓ : ∃CA(ℓ,G, g)}

Note: CAN(Kk, g) = CAN(k, g)

CA Workshop, 2006 – p.49/66

Page 115: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Some Results

CA Workshop, 2006 – p.50/66

Page 116: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Some Results

Prop 4 If G→ H, then CAN(G, g) ≤ CAN(H, g).In particular,

CAN(Kω(G), g) ≤ CAN(G, g) ≤ CAN(Kχ(G), g)

CA Workshop, 2006 – p.50/66

Page 117: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Some Results

Prop 4 If G→ H, then CAN(G, g) ≤ CAN(H, g).In particular,

CAN(Kω(G), g) ≤ CAN(G, g) ≤ CAN(Kχ(G), g)

Meagher and Stevens examined the problem offinding graphs such that

CAN(G, 2) < CAN(Kχ(G), 2)

CA Workshop, 2006 – p.50/66

Page 118: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Some Results

Prop 4 If G→ H, then CAN(G, g) ≤ CAN(H, g).In particular,

CAN(Kω(G), g) ≤ CAN(G, g) ≤ CAN(Kχ(G), g)

Meagher and Stevens examined the problem offinding graphs such that

CAN(G, 2) < CAN(Kχ(G), 2)

QI(5, 2) is such a graph.CA Workshop, 2006 – p.50/66

Page 119: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Do the target graphs behave?

CA Workshop, 2006 – p.51/66

Page 120: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Do the target graphs behave?

(The core of) QI(5, 2) is the complement of thePetersen graph.

CA Workshop, 2006 – p.51/66

Page 121: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Do the target graphs behave?

(The core of) QI(5, 2) is the complement of thePetersen graph.

Theorem 5 (MS) QI•(n, 2) is the complement ofa Kneser graph.• for n even the core is K( n

n/2)/2;

• for n odd the core is F (n, 2) = subgraphinduced by vectors of weight ⌊n/2⌋.

CA Workshop, 2006 – p.51/66

Page 122: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Karen’s Questions

CA Workshop, 2006 – p.52/66

Page 123: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Karen’s Questions

• QI(n, g)→ BQI(n, g)?

CA Workshop, 2006 – p.52/66

Page 124: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Karen’s Questions

• QI(n, g)→ BQI(n, g)?

• What is Aut(QI(n, k)) or Aut(QI(ck, k))?

CA Workshop, 2006 – p.52/66

Page 125: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Karen’s Questions

• QI(n, g)→ BQI(n, g)?

• What is Aut(QI(n, k)) or Aut(QI(ck, k))?

• Is BQI(k2, k) a core?

CA Workshop, 2006 – p.52/66

Page 126: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Karen’s Questions

• QI(n, g)→ BQI(n, g)?

• What is Aut(QI(n, k)) or Aut(QI(ck, k))?

• Is BQI(k2, k) a core?

• χ(BQI(k2, k)) =(

k+12

)

?

CA Workshop, 2006 – p.52/66

Page 127: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

List Homomorphisms

Definition 5 Let G and H be graphs. Let L(v) bea subset of V (H) for each vertex v ∈ V (G). A listhomomorphism f : G→ H is a homomorphismsuch that f(v) ∈ L(v) for all v.

CA Workshop, 2006 – p.53/66

Page 128: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Products

The natural product with homomorphisms is thecategorical product G×H.

(g1, h1)(g2, h2) ∈ E(G×H)

⇔ g1g2 ∈ E(G) and h1h2 ∈ E(H)

G

H

CA Workshop, 2006 – p.54/66

Page 129: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Products

The natural product with homomorphisms is thecategorical product G×H.

(g1, h1)(g2, h2) ∈ E(G×H)

⇔ g1g2 ∈ E(G) and h1h2 ∈ E(H)

G

H

CA Workshop, 2006 – p.54/66

Page 130: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Products

The natural product with homomorphisms is thecategorical product G×H.

(g1, h1)(g2, h2) ∈ E(G×H)

⇔ g1g2 ∈ E(G) and h1h2 ∈ E(H)

G

H π1 : G×H → G

Projections arehomomorphisms

CA Workshop, 2006 – p.54/66

Page 131: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Products

The natural product with homomorphisms is thecategorical product G×H.

(g1, h1)(g2, h2) ∈ E(G×H)

⇔ g1g2 ∈ E(G) and h1h2 ∈ E(H)

G

H π2 : G×H → H

Projections arehomomorphisms

CA Workshop, 2006 – p.54/66

Page 132: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Products (2)

Prop 6 X → G×H iff X → G and X → H

CA Workshop, 2006 – p.55/66

Page 133: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Products (2)

Prop 6 X → G×H iff X → G and X → H

G H

X

φ1 φ2

CA Workshop, 2006 – p.55/66

Page 134: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Products (2)

Prop 6 X → G×H iff X → G and X → H

G H

X

φ1 φ2G×H

π1 π2

CA Workshop, 2006 – p.55/66

Page 135: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Products (2)

Prop 6 X → G×H iff X → G and X → H

G H

X

φ1 φ2G×H

π1 π2

G×H

α

α(x) := (φ1(x), φ2(x)) (= φ1 × φ2(x))

φ1 = π1 ◦ α φ2 = π2 ◦ αCA Workshop, 2006 – p.55/66

Page 136: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Varieties

• A variety is a set of graphs closed underretracts and products.

• Let C be a family of graphs. The varietygenerated by C is the smallest varietycontaining C. Denoted V(C).

• Example, the variety generated by finite,reflexive paths is important in the study ofgraph retraction problems. Wellcharacterized.

CA Workshop, 2006 – p.56/66

Page 137: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Cops and Robbers

Consider reflexive graphs.• Cop picks a vertex.• Robber picks a vertex.• Take turns moving to an adjacent vertex.

CA Workshop, 2006 – p.57/66

Page 138: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Cops and Robbers

Consider reflexive graphs.• Cop picks a vertex.• Robber picks a vertex.• Take turns moving to an adjacent vertex.• Cop wins by occupying the same vertex as

the robber. A graph is cop-win if the cop hasa winning strategy.

• Observation: Cop-win graphs form a variety.• Nowakowski and Winkler, Disc Math, 1983.

CA Workshop, 2006 – p.57/66

Page 139: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Homomorphism Partial Order

• Let G be the set of all finite graphs.• G � H if G→ H.• Reflexive and Transitive: quasi-order.

CA Workshop, 2006 – p.58/66

Page 140: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Homomorphism Partial Order

• Let G be the set of all finite graphs.• G � H if G→ H.• Reflexive and Transitive: quasi-order.• Not-antisymmetric: C6 → K2 and K2 → C6.• Usual operation of moding out by hom-equiv

to obtain a partial order.• Cores are the natural representation of the

classes.

CA Workshop, 2006 – p.58/66

Page 141: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Homomorphism Partial Order (2)

• Rich structure.• Distributive lattice.

CA Workshop, 2006 – p.59/66

Page 142: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Homomorphism Partial Order (2)

• Rich structure.• Distributive lattice.• meet: G ∧H = G×H;• join: G ∨H = G+H, disjoint union or

co-product.

CA Workshop, 2006 – p.59/66

Page 143: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Chains and Antichains

• K1 → K2 → K3 → · · ·

• · · · → C7 → C5 → C3

CA Workshop, 2006 – p.60/66

Page 144: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Chains and Antichains

• K1 → K2 → K3 → · · ·

• · · · → C7 → C5 → C3

• Recall:

CA Workshop, 2006 – p.60/66

Page 145: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Chains and Antichains

• K1 → K2 → K3 → · · ·

• · · · → C7 → C5 → C3

• Recall:

• χ(G) > χ(H)⇒ G 6→ H.• og(G) > og(H)⇒ G 6← H.• Erdös: ∀i ≥ 3, there exists a graph Ri such

that χ(Ri) = i and og(Ri) = 2i+ 1.

CA Workshop, 2006 – p.60/66

Page 146: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Chains and Antichains

• K1 → K2 → K3 → · · ·

• · · · → C7 → C5 → C3

• Recall:

• χ(G) > χ(H)⇒ G 6→ H.• og(G) > og(H)⇒ G 6← H.• Erdös: ∀i ≥ 3, there exists a graph Ri such

that χ(Ri) = i and og(Ri) = 2i+ 1.

• Ri, i ≥ 3 form an antichain.

CA Workshop, 2006 – p.60/66

Page 147: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Density

Given G→ H and G 6← H:

CA Workshop, 2006 – p.61/66

Page 148: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Density

Given G→ H and G 6← H:• find Z such thatG→ Z → H and G 6← Z 6← H

CA Workshop, 2006 – p.61/66

Page 149: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Density

Given G→ H and G 6← H:• find Z such thatG→ Z → H and G 6← Z 6← H

• Theorem 7 (Welzl, 1982) If{G,H} 6= {K1,K2} with G→ H and G 6← H,then there exists Z such that

G→ Z → H and G 6← Z 6← H

CA Workshop, 2006 – p.61/66

Page 150: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Density

Given G→ H and G 6← H:• find Z such thatG→ Z → H and G 6← Z 6← H

• Theorem 7 (Welzl, 1982) If{G,H} 6= {K1,K2} with G→ H and G 6← H,then there exists Z such that

G→ Z → H and G 6← Z 6← H

• Proof indep Nešetril and Perles (1990).CA Workshop, 2006 – p.61/66

Page 151: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Duality and Gaps

Define→ H := {G |G→ H}.When can we nicely describe→ H?

CA Workshop, 2006 – p.62/66

Page 152: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Duality and Gaps

Define→ H := {G |G→ H}.When can we nicely describe→ H?

• G→ K2 iff C 6→ G for all odd cycles C.• G→ K1 iff K2 6→ G.

CA Workshop, 2006 – p.62/66

Page 153: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Duality and Gaps

Define→ H := {G |G→ H}.When can we nicely describe→ H?

• G→ K2 iff C 6→ G for all odd cycles C.• G→ K1 iff K2 6→ G.• duality pair: (F,H)

∀G,G→ H ⇔ F 6→ G

CA Workshop, 2006 – p.62/66

Page 154: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Duality and Gaps

Define→ H := {G |G→ H}.When can we nicely describe→ H?

• G→ K2 iff C 6→ G for all odd cycles C.• G→ K1 iff K2 6→ G.• duality pair: (F,H)

∀G,G→ H ⇔ F 6→ G

• finite duality: ({F1, . . . , Ft}, H)

∀G,G→ H ⇔ ∀i, Fi 6→ GCA Workshop, 2006 – p.62/66

Page 155: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Gaps

A pair [G,H] with G < H is a gap if no X satisfiesG < X < H.

CA Workshop, 2006 – p.63/66

Page 156: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Gaps

A pair [G,H] with G < H is a gap if no X satisfiesG < X < H.The result of Welzl tell us that [K1,K2] is the onlygap in G.

CA Workshop, 2006 – p.63/66

Page 157: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Gaps

A pair [G,H] with G < H is a gap if no X satisfiesG < X < H.The result of Welzl tell us that [K1,K2] is the onlygap in G.Theorem 8 (Nešet ril and Tardif, 2000)• If cores (F,H) form a duality pair, then

[F ×H,F ] is a gap.

• If cores [A,B] form a gap and B is connected,then (B,AB) is a duality pair.

CA Workshop, 2006 – p.63/66

Page 158: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Gaps

A pair [G,H] with G < H is a gap if no X satisfiesG < X < H.The result of Welzl tell us that [K1,K2] is the onlygap in G.Theorem 8 (Nešet ril and Tardif, 2000)• If cores (F,H) form a duality pair, then

[F ×H,F ] is a gap.

• If cores [A,B] form a gap and B is connected,then (B,AB) is a duality pair.

Finite duality implies H-colouring is polynomial.CA Workshop, 2006 – p.63/66

Page 159: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Representation

Frucht, 1938 Every group is isomorphic to theautomorphism group of a graph.

CA Workshop, 2006 – p.64/66

Page 160: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Representation

Frucht, 1938 Every group is isomorphic to theautomorphism group of a graph.

Hedrlın and Pultr, 1965 Every monoid is isomorphicto the endomorphism monoid of a suitabledigraph G.

CA Workshop, 2006 – p.64/66

Page 161: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Representation

Frucht, 1938 Every group is isomorphic to theautomorphism group of a graph.

Hedrlın and Pultr, 1965 Every monoid is isomorphicto the endomorphism monoid of a suitabledigraph G.

Pultr and Trnkov a, 1980 Any countable partial orderis isomorphic to a suborder of the digraphposet.

CA Workshop, 2006 – p.64/66

Page 162: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Representation

Frucht, 1938 Every group is isomorphic to theautomorphism group of a graph.

Hedrlın and Pultr, 1965 Every monoid is isomorphicto the endomorphism monoid of a suitabledigraph G.

Pultr and Trnkov a, 1980 Any countable partial orderis isomorphic to a suborder of the digraphposet.

Pultr and Trnkov a, 1980 Every concrete categorycan be represented in the category of finitegraphs.

CA Workshop, 2006 – p.64/66

Page 163: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

Complexity Issues

BFHHM (and others) examine retractioncomplexity and no-certificates.

CA Workshop, 2006 – p.65/66

Page 164: Graph Homomorphism Tutoriallucia/CA06/TutorialBrewster.pdf · Graph Homomorphism Tutorial Field’s Institute Covering Arrays Workshop 2006 Rick Brewster Thompson Rivers University

List Homomorphisms

Definition 8 Let G and H be graphs. Let L(v) bea subset of V (H) for each vertex v ∈ V (G). A listhomomorphism f : G→ H is a homomorphismsuch that f(v) ∈ L(v) for all v.

CA Workshop, 2006 – p.66/66