Gradients MRI System Z Gradient Coil

8
1 TT Liu, BE280A, UCSD Fall 2007 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2007 MRI Lecture 2 TT Liu, BE280A, UCSD Fall 2007 Gradients Spins precess at the Larmor frequency, which is proportional to the local magnetic field. In a constant magnetic field B z =B 0 , all the spins precess at the same frequency (ignoring chemical shift). Gradient coils are used to add a spatial variation to B z such that B z (x,y,z) = B 0 +Δ B z (x,y,z) . Thus, spins at different physical locations will precess at different frequencies. TT Liu, BE280A, UCSD Fall 2007 Simplified Drawing of Basic Instrumentation. Body lies on table encompassed by coils for static field B o , gradient fields (two of three shown), and radiofrequency field B 1 . MRI System Image, caption: copyright Nishimura, Fig. 3.15 TT Liu, BE280A, UCSD Fall 2007 Z Gradient Coil B(mT) L Credit: Buxton 2002

Transcript of Gradients MRI System Z Gradient Coil

Page 1: Gradients MRI System Z Gradient Coil

1

TT Liu, BE280A, UCSD Fall 2007

Bioengineering 280APrinciples of Biomedical Imaging

Fall Quarter 2007MRI Lecture 2

TT Liu, BE280A, UCSD Fall 2007

GradientsSpins precess at the Larmor frequency, which isproportional to the local magnetic field. In a constantmagnetic field Bz=B0, all the spins precess at the samefrequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to Bzsuch that Bz(x,y,z) = B0+Δ Bz(x,y,z) . Thus, spins atdifferent physical locations will precess at differentfrequencies.

TT Liu, BE280A, UCSD Fall 2007

Simplified Drawing of Basic Instrumentation.Body lies on table encompassed by

coils for static field Bo, gradient fields (two of three shown),

and radiofrequency field B1.

MRI System

Image, caption: copyright Nishimura, Fig. 3.15TT Liu, BE280A, UCSD Fall 2007

Z Gradient Coil

B(mT)

L

Credit: Buxton 2002

Page 2: Gradients MRI System Z Gradient Coil

2

TT Liu, BE280A, UCSD Fall 2007

Gradient Fields

!

Bz(x,y,z) = B0

+"Bz

"xx +

"Bz

"yy +

"Bz

"zz

= B0

+Gxx +Gyy +Gzzz

!

Gz

="B

z

"z> 0

!

Gy ="Bz

"y> 0

y

TT Liu, BE280A, UCSD Fall 2007

Interpretation

∆Bz(x)=Gxx

Spins Precess atat γB0+ γGxx(faster)

Spins Precess at γB0- γGxx(slower)

x

Spins Precess at γB0

TT Liu, BE280A, UCSD Fall 2007

Rotating Frame of ReferenceReference everything to the magnetic field at isocenter.

TT Liu, BE280A, UCSD Fall 2007

Interpretation

∆x 2∆x-∆x-2∆x 0

∆Bz(x)=Gxx

!

exp " j2#1

8$x

%

& '

(

) * x

%

& '

(

) *

!

exp " j2#2

8$x

%

& '

(

) * x

%

& '

(

) *

!

exp " j2#0

8$x

%

& '

(

) * x

%

& '

(

) *

FasterSlower

Page 3: Gradients MRI System Z Gradient Coil

3

TT Liu, BE280A, UCSD Fall 2007Fig 3.12 from Nishimura

kx=0; ky=0 kx=0; ky≠0

TT Liu, BE280A, UCSD Fall 2007

Phase with time-varying gradient

TT Liu, BE280A, UCSD Fall 2007

K-space trajectoryGx(t)

tt1 t2

ky

!

kx(t1)

!

kx(t2)

Gy(t)

t3 t4kx

!

ky (t4 )

!

ky (t3)

TT Liu, BE280A, UCSD Fall 2007 Nishimura 1996

Page 4: Gradients MRI System Z Gradient Coil

4

TT Liu, BE280A, UCSD Fall 2007

K-space trajectoryGx(t)

tt1 t2

ky

Gy(t)

kx

TT Liu, BE280A, UCSD Fall 2007

Spin-WarpGx(t)

t1

ky

Gy(t)

kx

TT Liu, BE280A, UCSD Fall 2007

Spin-WarpGx(t)

t1 ky

Gy(t)

kx

TT Liu, BE280A, UCSD Fall 2007

Spin-Warp Pulse Sequence

Gx(t)

ky

kx

Gy(t)

RF

Page 5: Gradients MRI System Z Gradient Coil

5

TT Liu, BE280A, UCSD Fall 2007

Gradient Fields

!

Gx x + Gy y + Gzz =r G "

r r

!

r G "Gx

ˆ i + Gyˆ j + Gz

ˆ k

!

Bz(r r ,t) = B

0+

r G (t) "

r r

Define

!

r r " xˆ i + yˆ j + z ˆ k

So that

Also, let the gradient fields be a function of time. Thenthe z-directed magnetic field at each point in thevolume is given by :

TT Liu, BE280A, UCSD Fall 2007

Static Gradient Fields

!

M(t) = M(0)e" j#0te

" t /T2

In a uniform magnetic field, the transverse magnetizationis given by:

In the presence of non time-varying gradients we have

!

M (r r ) = M (

r r ,0)e

" j#Bz (r r )t

e" t /T2 (

r r )

= M (r r ,0)e

" j# (B0+r

G $r r )t

e" t /T2 (

r r )

= M (r r ,0)e

" j%0te" j#

r G $

r r te" t /T2 (

r r )

TT Liu, BE280A, UCSD Fall 2007

Time-Varying Gradient FieldsIn the presence of time-varying gradients the frequencyas a function of space and time is:

!

"r r ,t( ) = #B

z(r r ,t)

= #B0

+ #r G (t) $

r r

="0

+ %"(r r ,t)

TT Liu, BE280A, UCSD Fall 2007

PhasePhase = angle of the magnetization phasorFrequency = rate of change of angle (e.g. radians/sec)Phase = time integral of frequency

!

"#r r ,t( ) = $ "%(

r r ,& )

0

t

' d&

= $ (v

G (r r ,& ) )

r r

0

t

' d&

!

"r r ,t( ) = # $(

r r ,% )

0

t

& d%

= #$0t + '"

r r ,t( )

Where the incremental phase due to the gradients is

Page 6: Gradients MRI System Z Gradient Coil

6

TT Liu, BE280A, UCSD Fall 2007

Phase with constant gradient

!

"#r r ,t

3( ) = $ "%(r r ,& )

0

t3

' d&

!

"#r r ,t2( ) = $ "%(

r r ,& )

0

t2

' d&

= $"%(r r )t2

if "% is non - time varying.

!

"#r r ,t

1( ) = $ "%(r r ,& )

0

t1

' d&

TT Liu, BE280A, UCSD Fall 2007

Time-Varying Gradient FieldsThe transverse magnetization is then given by

!

M(r r ,t) = M(

r r ,0)e

" t /T2 (r r )

e# (

r r ,t )

= M(r r ,0)e

" t /T2 (r r )

e" j$0t exp " j %$

r r ,t( )d&

o

t

'( )= M(

r r ,0)e

" t /T2 (r r )

e" j$0t exp " j(

r G (&) )

r r d&

o

t

'( )

TT Liu, BE280A, UCSD Fall 2007

Signal EquationSignal from a volume

!

sr(t) = M(r r ,t)

V" dV

= M(x,y,z,0)e# t /T2 (

r r )

e# j$0t exp # j%

r G (&) '

r r d&

o

t

"( )z"

y"

x" dxdydz

For now, consider signal from a slice along z and dropthe T2 term. Define

!

m(x,y) " M(r r ,t)

z0#$z / 2

z0 +$z / 2

% dz

!

sr(t) = m(x,y)e" j#0t exp " j$

r G (%) &

r r d%

o

t

'( )y'

x' dxdy

To obtain

TT Liu, BE280A, UCSD Fall 2007

Signal EquationDemodulate the signal to obtain

!

s(t) = ej" 0t sr(t)

= m(x,y)exp # j$r G (% ) &

r r d%

o

t

'( )y'

x' dxdy

= m(x,y)exp # j$ Gx (%)x + Gy (%)y[ ]d%o

t

'( )y'

x' dxdy

= m(x,y)exp # j2( kx (t)x + ky (t)y( )( )y'

x' dxdy

!

kx (t) ="

2#Gx ($ )d$0

t

%

ky (t) ="

2#Gy ($ )d$0

t

%

Where

Page 7: Gradients MRI System Z Gradient Coil

7

TT Liu, BE280A, UCSD Fall 2007

MR signal is Fourier Transform

!

s(t) = m(x,y)exp " j2# kx (t)x + ky (t)y( )( )y$

x$ dxdy

= M kx (t),ky (t)( )= F m(x,y)[ ]

kx (t ),ky (t )

TT Liu, BE280A, UCSD Fall 2007

Recap• Frequency = rate of change of phase.• Higher magnetic field -> higher Larmor frequency ->

phase changes more rapidly with time.• With a constant gradient Gx, spins at different x locations

precess at different frequencies -> spins at greater x-valueschange phase more rapidly.

• With a constant gradient, distribution of phases across xlocations changes with time. (phase modulation)

• More rapid change of phase with x -> higher spatialfrequency kx

TT Liu, BE280A, UCSD Fall 2007

K-space

!

s(t) = M kx (t),ky (t)( ) = F m(x,y)[ ]kx ( t ),ky ( t )

!

kx (t) ="

2#Gx ($ )d$0

t

%

ky (t) ="

2#Gy ($ )d$0

t

%

At each point in time, the received signal is the Fouriertransform of the object

evaluated at the spatial frequencies:

Thus, the gradients control our position in k-space. Thedesign of an MRI pulse sequence requires us toefficiently cover enough of k-space to form our image.

TT Liu, BE280A, UCSD Fall 2007

K-space trajectoryGx(t)

t

!

kx(t) =

"

2#G

x($ )d$

0

t

%

t1 t2

kx

ky

!

kx(t1)

!

kx(t2)

Page 8: Gradients MRI System Z Gradient Coil

8

TT Liu, BE280A, UCSD Fall 2007

UnitsSpatial frequencies (kx, ky) have units of 1/distance.Most commonly, 1/cm

Gradient strengths have units of (magneticfield)/distance. Most commonly G/cm or mT/m

γ/(2π) has units of Hz/G or Hz/Tesla.

!

kx(t) =

"

2#G

x($ )d$

0

t

%

= [Hz /Gauss][Gauss /cm][sec]= [1/cm]

TT Liu, BE280A, UCSD Fall 2007

ExampleGx(t) = 1 Gauss/cm

t

!

kx(t

2) =

"

2#G

x($ )d$

0

t

%= 4257Hz /G &1G /cm &0.235'10

(3s

=1 cm(1

kx

ky

!

kx(t1)

!

kx(t2)

t2 = 0.235ms

1 cm