Goldy ABRCMS Poster Final

1
Analysis of the Genetic Structure of Eastern Mud Snail Populations from Fort Wadsworth and Plumb Beach in New York Goldy Landau, Gary Sarinsky, Craig Hinkley. Kingsborough Community College, Brooklyn, NY Introduction Ilyanassa obsoleta, the eastern mud snail, is a two to three centimeter long black snail with six whorls and a conical spire on its shell (Figure 1). The mud snail feeds on almost anything including algae, detritus, and the larvae of smaller marine life. They overpopulate many beaches (see Figure 2) due to their quick production of large numbers of embryos. While they are native to the Atlantic coast, the eastern mud snail is an invasive species on the Pacific coast where it has taken over the habitats of the native hornsnail, Cerithidea californica, on the mudflats of San Francisco Bay. Ilyanassa also preys on the hornsnails’ eggs, which further disrupts the bay’s ecosystem by impacting the food chain of other native species and disturbing the beaches (1-4). If we do not want to lose our beaches to eastern mud snails, we must come up with management strategies to control their reproduction and growth. Our goal is to manage the populations of eastern mud snails in the Pacific coast, by developing a strategy based on our findings when studying a local sample. Since Ilyanassa obsoleta populations are abundant in many NY bays, including Fort Wadsworth (FW) and Plumb Beach (PB), we examined the genetic structure of mud snails from these locations to determine if they are from the same or different populations. This information is necessary because we need to know, if we treat one beach, will the mud snails from the other beach come in and repopulate? Studying their genetic structures will help determine whether we need to manage local populations separately or can treat them as one large population. Our hypothesis was that mud snails from FW and PB are from the same population. Materials and Methods DNA was extracted from 25 mg of tissues of twelve mud snails from Fort Wadsworth beach on Staten Island and Plumb Beach in Jamaica Bay using a DNeasy Blood & Tissue Kit. A 700 bp region of the cytochrome c oxidase I (COI) gene was amplified using the polymerase chain reaction and the Folmer primers (5); LCO1490:TGTCCACTAATCATCTTGATATTGG and HCO2198:TGTCCACTAATCATCTTGATATTGG. To confirm that the correct size of DNA was amplified, DNA was separated by agarose gel electrophoresis using a 2% agarose gel. The amplified DNA samples were then sequenced by Elim Biopharmaceuticals. A BLAST search using the DNA sequences confirmed they were COI gene sequences of Ilyanassa obsoleta. Alignment of the COI gene DNA sequences was constructed using ClustalX version 2.0.12 (6). A maximum likelihood phylogenetic tree was generated with MEGA 5.05 (7) using the Jukes-Cantor method. The confidence probability (X100) that interior branch lengths are greater than 0 was estimated using the bootstrap test with 1000 replicates. References 1. Carlton, J.T. 1979. History, Biogeography, and Ecology of the Introduced Marine and Estuarine Invertebrates of the Pacific Coast of North America. Ph.D. thesis, University of California, Davis, CA (pp. 404-412). 2. Cohen, A.N. and J.T. Carlton. 1995. Nonindigenous Aquatic Species in a United States Estuary: A Case Study of the Biological Invasions of the San Francisco Bay and Delta. U.S. Fish and Wildlife Service, Washington, DC (pp. 52-53). 3. Morris, R.H., D.P. Abbott and E.C. Haderlie. 1980. Intertidal Invertebrates of California. Stanford University Press, Stanford, CA (p. 289). 4. Race, M.S. 1982. Competitive displacement and predation between introduced and native mud snails. Oecologia 54: 337 -347. 5. Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3:294-297. 6. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. 7. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis Using Likelihood, Distance, and Parsimony Methods. Mol Biol Evol 28:2731-2739. Acknowledgements Goldy Landau is a participant in the Kingsborough Community College Collegiate Science and Technology Program. This work was supported by grant 0537121091 of the CSTEP Program of NYS Department of Education. Abstract The eastern mud snail, Ilyanassa obsoleta, is native to estuaries and mud flats along the eastern coast of North America. Although it is native to the east coast, it is an invasive species on the west coast where it has taken over the habitats of other shellfish such as the native hornsnail Cerithidea californica. In order to develop a management strategy to control the distribution of mud snails, we need to understand the genetic structure of mud snail populations. This will help us determine whether we need to manage local populations separately or can treat them as one large population. Ilyanassa obsoleta populations are abundant at many locations in the lower bays of New York, including Fort Wadsworth (FW) and Plumb Beach (PB). We therefore decided to examine the genetic structure of mud snails from these locations to determine if they are from the same or different populations. Our hypothesis was that mud snails from FW and PB are from the same population. To test our hypothesis, we first PCR-amplified a 700 base pair region of the cytochrome c oxidase I gene using DNA isolated from mud snails collected from FW and PB. We verified the correct length of the PCR-amplified DNA by agarose gel electrophoresis and the DNA was sequenced by Elim Biopharmaceuticals. We conducted a BLAST nucleotide search to ensure that our DNA is indeed from Ilyanassa obsoleta. Estimates of average evolutionary divergence over sequence pairs within groups (d) were calculated using the program MEGA5 and the Jukes-Cantor model. The average divergence for mud snails from Fort Wadsworth was d = 0.01046 (S.E. = 0.00179) and from Plum Beach was d = 0.01023 (S.E. = 0.00112). Using a two-tailed t-test with alpha = 0.05, we were unable to reject the null hypothesis that average diversity between the two groups was the same, p- value = 0.9407. Phylogenetic tree analysis using the neighbor-joining method with the Jukes-Cantor model showed that the DNA sequences from Fort Wadsworth and Plum Beach were not grouped into separate clades. In conclusion, these data suggest that the mud snails from Fort Wadsworth and Plum Beach do not represent two populations and we therefore accept our hypothesis that they are from the same population. This work was supported by grant 0537121091 of the CSTEP Program of NYS Department of Education. mud snails were collected. This can also be seen graphically in the phylogenetic tree shown in Figure 6. Taken together, these results suggest that the mud snails from Fort Wadsworth and Plumb Beach are part of the same population and we therefore accept our hypothesis. In the future, we would like to compare more mud snails from within the New York bays. We would also like to compare mud snails from New York to those from San Francisco Bay to help determine their point of origin. Hypothesis: Mud snails from Fort Wadsworth and Plumb Beach are from the same population. Figure 6. Phylogenetic analysis of the cytochrome c oxidase I gene from eastern mud snails. The phylogenetic tree was generated using the maximum likelihood method. Evolutionary distances were computed using the Jukes-Cantor method. The confidence probability (X100) that interior branch lengths are greater than 0 was estimated using the bootstrap test with 1000 replicates. FW-3 PB-3 PB-4 FW-6 FW-8 FW-10 PB-12 FW-7 PB-9 FW-2 FW-9 PB-2 PB-7 FW-12 PB-10 FW-1 FW-5 PB-1 PB-5 FW-11 PB-11 PB-6 FW-4 98 96 85 87 86 38 44 59 37 46 80 35 56 56 82 0.002 Results and Discussion To compare eastern mud snails from Fort Wadsworth and Plumb Beach, we amplified a region of the COI gene using PCR. The correct size of the amplified COI DNA (approximately 700 bp) was verified by agarose gel electrophoresis (Figure 3). The amplified DNA was then sequenced by Elim Biopharmaceuticals. BLAST searches performed using the sequences of the amplified DNAs confirmed they were from the COI gene of Ilyanassa obsoleta. The result of a typical BLAST search is shown in Figure 4. An alignment of the COI sequences of the mud snails from Fort Wadsworth and Plumb Beach is shown in Figure 5. There are thirty-one nucleotide differences within the twenty-four mud snail sequences. The average evolutionary divergence over sequence pairs within groups (d) was d = 0.01046 (S.E. = 0.00179) for snails from FW and d = 0.01023 (S.E. = 0.00112) for snails from PB. We used a two-tailed t-test with alpha = 0.05, to determine whether the average evolutionary divergence between the FW and PB snails was the same and were unable to reject this null hypothesis, p-value = 0.9407. If these two groups were separate populations, we would expect that a large number of the mutations would be exclusive to snails from one location. Comparison of the sequences in Figure 5 shows that the mutations are not grouped by the geographic location of where the Figure 3. Agarose gel with PCR-amplified DNA from a 700 bp region of the cytochrome c oxidase I. DNA used for PCR amplification was isolated from tissues of 12 mud snails (1-12) collected Plumb Beach (A) and Fort Wadsworth (B). DNA size standards with increments of 100 bp are present in the lane marked M. Figure 4. Result of a typical BLAST search using a DNA sequences obtained from the eastern mud snails. The expected value (E value) indicates that the sequence matches the cytochrome oxidase I gene sequence of eastern mud snails (Ilyanassa obsoleta). Figure 5. Base pair alignment of the cytochrome c oxidase I gene sequences obtained from twelve mud snails from Fort Wadsworth and twelve from Plumb Beach, along with a number identifying them from other sequences from the same location. Nucleotide differences between the sequences are highlighted in color. For each nucleotide difference, green represents the nucleotide found in the majority of the sequences, and purple represents the nucleotides different from the majority. FW-1 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG FW-2 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG FW-3 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGGTTAGTTCCTTTAATACTAGGAGCTCCTG FW-4 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGGGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG FW-5 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG FW-6 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG FW-7 CAGCTTTAAGGCTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATCGTGACAGCTCACGCTTTTGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG FW-8 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG FW-9 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG FW-10 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG FW-11 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG FW-12 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG PB-1 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG PB-2 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG PB-3 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGGTTAGTTCCTTTAATACTAGGAGCTCCTG PB-4 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGGTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG PB-5 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG PB-6 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGGGCTCCTG PB-7 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG PB-9 CAGCTTTAAGGCTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATCGTGACAGCTCACGCTTTTGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG PB-10 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG PB-11 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG PB-12 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG FW-1 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTGC FW-2 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGGACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC FW-3 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC FW-4 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTATCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGATGAACTGTTTATCCGCCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCCCTGC FW-5 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTGC FW-6 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC FW-7 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC FW-8 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCGCCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC FW-9 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGGACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC FW-10 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCGCCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC FW-11 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTGC FW-12 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTATCTTCAGCCGCAGTTGAAAGGGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC PB-1 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTGC PB-2 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGGACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC PB-3 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC PB-4 ATATGGCTTTTCCTCGATTAAATAATATAAAATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTANCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC PB-5 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTGC PB-6 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTAC PB-7 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGGACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC PB-9 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC PB-10 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTATCTTCAGCCGCAGTTGAAAGGGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC PB-11 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTGC PB-12 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCGCCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC FW-1 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGAGCTATTACAATGCTTCTAA FW-2 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA FW-3 ATCTTGCAGGTGTGTCTTCAATTCTAGGGGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA FW-4 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCGATTTTATTACTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTTTGA FW-5 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGAGCTATTACAATGCTTCTAA FW-6 ATCTTGCAGGTGTGTCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA FW-7 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA FW-8 ATCTTGCAGGTGTGTCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA FW-9 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA FW-10 ATCTTGCAGGTGTGTCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA FW-11 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTACTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA FW-12 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAGATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA PB-1 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGAGCTATTACAATGCTTCTAA PB-2 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA PB-3 ATCTTGCAGGTGTGTCTTCAATTCTAGGGGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA PB-4 ATCTTGCAGGTGTGTCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA PB-5 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGAGCTATTACAATGCTTCTAA PB-6 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATCAATATGCGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTACTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA PB-7 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA PB-9 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA PB-10 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAGATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA PB-11 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTACTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA PB-12 ATCTTGCAGGTGTGTCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA FW-1 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT FW-2 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCGGCAGGAGGTGGAGATCCTATTCTCT FW-3 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT FW-4 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT FW-5 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT FW-6 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT FW-7 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT FW-8 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTTT FW-9 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCGGCAGGAGGTGGAGATCCTATTCTCT FW-10 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTTT FW-11 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT FW-12 CAGATCGAAATTTTAATACTGCTTTTTTCGATCCAGCAGGAGGTGGAGATCCTATTCTCT PB-1 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT PB-2 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCGGCAGGAGGTGGAGATCCTATTCTCT PB-3 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT PB-4 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT PB-5 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT PB-6 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT PB-7 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCGGCAGGAGGTGGAGATCCTATTCTCT PB-9 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT PB-10 CAGATCGAAATTTTAATACTGCTTTTTTCGATCCAGCAGGAGGTGGAGATCCTATTCTCT PB-11 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT PB-12 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTTT Figure 2. Mud snails at low tide. http://gce-lter.marsci.uga.edu/public/ taxonomy/Ilyanassa_obsoleta_20130130T85716.jpg, viewed 10/4/13. Figure 1. Ilyanassa obsoleta, eastern mud snail. http://www.dkimages.com/ discover/Home/Animals/Invertebrates/Molluscs/Gastropods/Marine-Snails/ Nassariidae/Eastern-Mud-Snail/Eastern-Mud-Snail-1.html, viewed 10/4/13.

Transcript of Goldy ABRCMS Poster Final

Page 1: Goldy ABRCMS Poster Final

Analysis of the Genetic Structure of Eastern Mud Snail Populations from

Fort Wadsworth and Plumb Beach in New York

Goldy Landau, Gary Sarinsky, Craig Hinkley. Kingsborough Community College, Brooklyn, NY

Introduction

Ilyanassa obsoleta, the eastern mud snail, is a two to three centimeter

long black snail with six whorls and a conical spire on its shell (Figure

1). The mud snail feeds on almost anything including algae, detritus,

and the larvae of smaller marine life. They overpopulate many beaches

(see Figure 2) due to their quick production of large numbers of

embryos. While they are native to the Atlantic coast, the eastern mud

snail is an invasive species on the Pacific coast where it has taken over

the habitats of the native hornsnail, Cerithidea californica, on the

mudflats of San Francisco Bay. Ilyanassa also preys on the hornsnails’

eggs, which further disrupts the bay’s ecosystem by impacting the food chain of other native species and

disturbing the beaches (1-4).

If we do not want to lose our beaches to eastern mud snails, we must

come up with management strategies to control their reproduction and

growth. Our goal is to manage the populations of eastern mud snails in the

Pacific coast, by developing a strategy based on our findings when

studying a local sample. Since Ilyanassa obsoleta populations are

abundant in many NY bays, including Fort Wadsworth (FW) and Plumb

Beach (PB), we examined the genetic structure of mud snails from these

locations to determine if they are from the same or different populations.

This information is necessary because we need to know, if we treat one

beach, will the mud snails from the other beach come in and repopulate?

Studying their genetic structures will help determine whether we need to

manage local populations separately or can treat them as one large

population. Our hypothesis was that mud snails from FW and PB are from

the same population.

Materials and Methods

DNA was extracted from 25 mg of tissues of twelve mud snails from Fort Wadsworth beach on Staten Island

and Plumb Beach in Jamaica Bay using a DNeasy Blood & Tissue Kit. A 700 bp region of the cytochrome c

oxidase I (COI) gene was amplified using the polymerase chain reaction and the Folmer primers (5);

LCO1490:TGTCCACTAATCATCTTGATATTGG and HCO2198:TGTCCACTAATCATCTTGATATTGG. To

confirm that the correct size of DNA was amplified, DNA was separated by agarose gel electrophoresis using

a 2% agarose gel. The amplified DNA samples were then sequenced by Elim Biopharmaceuticals. A BLAST

search using the DNA sequences confirmed they were COI gene sequences of Ilyanassa obsoleta. Alignment

of the COI gene DNA sequences was constructed using ClustalX version 2.0.12 (6). A maximum likelihood

phylogenetic tree was generated with MEGA 5.05 (7) using the Jukes-Cantor method. The confidence

probability (X100) that interior branch lengths are greater than 0 was estimated using the bootstrap test with

1000 replicates.

References

1. Carlton, J.T. 1979. History, Biogeography, and Ecology of the Introduced Marine and Estuarine Invertebrates of the

Pacific Coast of North America. Ph.D. thesis, University of California, Davis, CA (pp. 404-412).

2. Cohen, A.N. and J.T. Carlton. 1995. Nonindigenous Aquatic Species in a United States Estuary: A Case Study of the

Biological Invasions of the San Francisco Bay and Delta. U.S. Fish and Wildlife Service, Washington, DC (pp. 52-53).

3. Morris, R.H., D.P. Abbott and E.C. Haderlie. 1980. Intertidal Invertebrates of California. Stanford University Press,

Stanford, CA (p. 289).

4. Race, M.S. 1982. Competitive displacement and predation between introduced and native mud snails. Oecologia 54: 337

-347.

5. Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial

cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3:294-297.

6. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0.

Bioinformatics 23: 2947-2948.

7. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. 2011. MEGA5: Molecular Evolutionary Genetics

Analysis Using Likelihood, Distance, and Parsimony Methods. Mol Biol Evol 28:2731-2739.

Acknowledgements

Goldy Landau is a participant in the Kingsborough Community College Collegiate Science and Technology Program. This

work was supported by grant 0537121091 of the CSTEP Program of NYS Department of Education.

Abstract

The eastern mud snail, Ilyanassa obsoleta, is native to estuaries and mud flats along the eastern coast of North

America. Although it is native to the east coast, it is an invasive species on the west coast where it has taken

over the habitats of other shellfish such as the native hornsnail Cerithidea californica. In order to develop a

management strategy to control the distribution of mud snails, we need to understand the genetic structure of

mud snail populations. This will help us determine whether we need to manage local populations separately or

can treat them as one large population. Ilyanassa obsoleta populations are abundant at many locations in the

lower bays of New York, including Fort Wadsworth (FW) and Plumb Beach (PB). We therefore decided to

examine the genetic structure of mud snails from these locations to determine if they are from the same or

different populations. Our hypothesis was that mud snails from FW and PB are from the same population. To

test our hypothesis, we first PCR-amplified a 700 base pair region of the cytochrome c oxidase I gene using

DNA isolated from mud snails collected from FW and PB. We verified the correct length of the PCR-amplified

DNA by agarose gel electrophoresis and the DNA was sequenced by Elim Biopharmaceuticals. We conducted a

BLAST nucleotide search to ensure that our DNA is indeed from Ilyanassa obsoleta. Estimates of average

evolutionary divergence over sequence pairs within groups (d) were calculated using the program MEGA5 and

the Jukes-Cantor model. The average divergence for mud snails from Fort Wadsworth was d = 0.01046 (S.E. =

0.00179) and from Plum Beach was d = 0.01023 (S.E. = 0.00112). Using a two-tailed t-test with alpha = 0.05,

we were unable to reject the null hypothesis that average diversity between the two groups was the same, p-

value = 0.9407. Phylogenetic tree analysis using the neighbor-joining method with the Jukes-Cantor model

showed that the DNA sequences from Fort Wadsworth and Plum Beach were not grouped into separate clades.

In conclusion, these data suggest that the mud snails from Fort Wadsworth and Plum Beach do not represent

two populations and we therefore accept our hypothesis that they are from the same population. This work was

supported by grant 0537121091 of the CSTEP Program of NYS Department of Education.

mud snails were collected. This can also be seen graphically in the phylogenetic tree shown in Figure 6. Taken

together, these results suggest that the mud snails from Fort Wadsworth and Plumb Beach are part of the same

population and we therefore accept our hypothesis. In the future, we would like to compare more mud snails

from within the New York bays. We would also like to compare mud snails from New York to those from San

Francisco Bay to help determine their point of origin.

Hypothesis: Mud snails from Fort Wadsworth and Plumb Beach are from the

same population.

Figure 6. Phylogenetic analysis of the cytochrome c oxidase I gene from eastern mud snails. The phylogenetic tree was generated using the maximum likelihood method. Evolutionary distances were computed

using the Jukes-Cantor method. The confidence probability (X100) that interior branch lengths are greater than 0 was estimated using the bootstrap test with 1000 replicates.

FW-3 PB-3 PB-4

FW-6 FW-8 FW-10 PB-12

FW-7 PB-9

FW-2 FW-9 PB-2 PB-7

FW-12 PB-10

FW-1 FW-5 PB-1 PB-5

FW-11 PB-11

PB-6 FW-4

98

96

85

87

86

3844

59

37

46

80

3556

56

82

0.002

Results and Discussion

To compare eastern mud snails from Fort Wadsworth and Plumb Beach, we amplified a region of the COI

gene using PCR. The correct size of the amplified COI DNA (approximately 700 bp) was verified by agarose

gel electrophoresis (Figure 3). The amplified DNA was then sequenced by Elim Biopharmaceuticals. BLAST

searches performed using the sequences of the amplified DNAs confirmed they were from the COI gene of

Ilyanassa obsoleta. The result of a typical BLAST search is shown in Figure 4.

An alignment of the COI sequences of the mud snails from Fort Wadsworth and Plumb Beach is shown in

Figure 5. There are thirty-one nucleotide differences within the twenty-four mud snail sequences. The average

evolutionary divergence over sequence pairs within groups (d) was d = 0.01046 (S.E. = 0.00179) for snails

from FW and d = 0.01023 (S.E. = 0.00112) for snails from PB. We used a two-tailed t-test with alpha = 0.05,

to determine whether the average evolutionary divergence between the FW and PB snails was the same and

were unable to reject this null hypothesis, p-value = 0.9407. If these two groups were separate populations, we

would expect that a large number of the mutations would be exclusive to snails from one location. Comparison

of the sequences in Figure 5 shows that the mutations are not grouped by the geographic location of where the

Figure 3. Agarose gel with PCR-amplified DNA from a 700 bp region of the cytochrome c oxidase I. DNA used for PCR amplification was isolated from tissues of 12 mud snails (1-12) collected Plumb Beach (A)

and Fort Wadsworth (B). DNA size standards with increments of 100 bp are present in the lane marked M.

Figure 4. Result of a typical BLAST search using a DNA sequences obtained from the eastern mud snails. The expected value (E value) indicates that the sequence matches the cytochrome oxidase I gene sequence

of eastern mud snails (Ilyanassa obsoleta).

Figure 5. Base pair alignment of the cytochrome c oxidase I gene sequences obtained from twelve mud snails from Fort Wadsworth and twelve from Plumb Beach, along with a number identifying them from other

sequences from the same location. Nucleotide differences between the sequences are highlighted in color. For each nucleotide difference, green represents the nucleotide found in the majority of the sequences, and

purple represents the nucleotides different from the majority.

FW-1 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

FW-2 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

FW-3 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGGTTAGTTCCTTTAATACTAGGAGCTCCTG

FW-4 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGGGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

FW-5 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

FW-6 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

FW-7 CAGCTTTAAGGCTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATCGTGACAGCTCACGCTTTTGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

FW-8 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

FW-9 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

FW-10 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

FW-11 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

FW-12 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

PB-1 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

PB-2 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

PB-3 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGGTTAGTTCCTTTAATACTAGGAGCTCCTG

PB-4 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGGTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

PB-5 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

PB-6 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGGGCTCCTG

PB-7 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

PB-9 CAGCTTTAAGGCTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATCGTGACAGCTCACGCTTTTGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

PB-10 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

PB-11 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

PB-12 CAGCTTTAAGACTTCTTATTCGTGCTGAACTTGGACAACCTGGAGCACTTCTTGGTGACGACCAACTTTATAACGTGATTGTGACAGCTCACGCTTTCGTAATAATTTTTTTCTTAGTAATACCAATAATGATTGGAGGGTTTGGTAATTGATTAGTTCCTTTAATACTAGGAGCTCCTG

FW-1 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTGC

FW-2 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGGACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

FW-3 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

FW-4 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTATCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGATGAACTGTTTATCCGCCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCCCTGC

FW-5 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTGC

FW-6 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

FW-7 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

FW-8 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCGCCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

FW-9 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGGACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

FW-10 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCGCCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

FW-11 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTGC

FW-12 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTATCTTCAGCCGCAGTTGAAAGGGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

PB-1 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTGC

PB-2 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGGACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

PB-3 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

PB-4 ATATGGCTTTTCCTCGATTAAATAATATAAAATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTANCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

PB-5 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTGC

PB-6 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTAC

PB-7 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGGACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

PB-9 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

PB-10 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTATCTTCAGCCGCAGTTGAAAGGGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

PB-11 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCACCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTCTGC

PB-12 ATATGGCTTTTCCTCGATTAAATAATATAAGATTCTGATTGCTTCCTCCTGCTTTACTTCTTTTATTGTCTTCAGCCGCAGTTGAAAGAGGAGTTGGAACTGGGTGAACTGTTTATCCGCCTTTATCTGGTAATTTAGCTCATGCTGGTGGTTCAGTTGACTTAGCTATTTTTTCTTTGC

FW-1 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGAGCTATTACAATGCTTCTAA

FW-2 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

FW-3 ATCTTGCAGGTGTGTCTTCAATTCTAGGGGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

FW-4 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCGATTTTATTACTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTTTGA

FW-5 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGAGCTATTACAATGCTTCTAA

FW-6 ATCTTGCAGGTGTGTCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

FW-7 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

FW-8 ATCTTGCAGGTGTGTCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

FW-9 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

FW-10 ATCTTGCAGGTGTGTCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

FW-11 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTACTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

FW-12 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAGATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

PB-1 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGAGCTATTACAATGCTTCTAA

PB-2 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

PB-3 ATCTTGCAGGTGTGTCTTCAATTCTAGGGGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

PB-4 ATCTTGCAGGTGTGTCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

PB-5 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGAGCTATTACAATGCTTCTAA

PB-6 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATCAATATGCGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTACTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

PB-7 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

PB-9 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

PB-10 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAGATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

PB-11 ATCTTGCAGGTGTATCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGGATGCAATTTGAGCGTCTTCCTCTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTACTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

PB-12 ATCTTGCAGGTGTGTCTTCAATTCTAGGAGCTGTAAATTTTATTACAACTATTATTAATATACGATGACGAGGAATGCAATTTGAGCGTCTTCCTTTATTTGTATGATCTGTAAAAATTACTGCAATTTTATTGCTTTTATCTTTGCCTGTATTAGCTGGGGCTATTACAATGCTTCTAA

FW-1 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

FW-2 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCGGCAGGAGGTGGAGATCCTATTCTCT

FW-3 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

FW-4 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

FW-5 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

FW-6 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

FW-7 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

FW-8 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTTT

FW-9 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCGGCAGGAGGTGGAGATCCTATTCTCT

FW-10 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTTT

FW-11 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

FW-12 CAGATCGAAATTTTAATACTGCTTTTTTCGATCCAGCAGGAGGTGGAGATCCTATTCTCT

PB-1 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

PB-2 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCGGCAGGAGGTGGAGATCCTATTCTCT

PB-3 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

PB-4 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

PB-5 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

PB-6 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

PB-7 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCGGCAGGAGGTGGAGATCCTATTCTCT

PB-9 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

PB-10 CAGATCGAAATTTTAATACTGCTTTTTTCGATCCAGCAGGAGGTGGAGATCCTATTCTCT

PB-11 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTCT

PB-12 CAGATCGAAATTTTAATACTGCTTTTTTTGATCCAGCAGGAGGTGGAGATCCTATTCTTT

Figure 2. Mud snails at low tide. http://gce-lter.marsci.uga.edu/public/

taxonomy/Ilyanassa_obsoleta_20130130T85716.jpg, viewed 10/4/13.

Figure 1. Ilyanassa obsoleta, eastern mud snail. http://www.dkimages.com/

discover/Home/Animals/Invertebrates/Molluscs/Gastropods/Marine-Snails/

Nassariidae/Eastern-Mud-Snail/Eastern-Mud-Snail-1.html, viewed 10/4/13.