Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA...

11
Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of Rifampicin Mani Gajendiran, a Sheik Mohammed Jainuddin Yousuf, b Vellaichamy Elangovan, b Sengottuvelan Balasubramanian a, * a Department of Inorganic Chemistry, Guindy Campus, University of Madras, Chennai, India – 600025. b Department of Biochemistry, Guindy Campus, University of Madras, Chennai, India–600025. *Corresponding author: E-mail - [email protected] Supplementary Material Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is © The Royal Society of Chemistry 2013

Transcript of Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA...

Page 1: Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of Rifampicin

Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock

Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of

Rifampicin

Mani Gajendiran,a Sheik Mohammed Jainuddin Yousuf,b Vellaichamy Elangovan,b

Sengottuvelan Balasubramaniana, *

aDepartment of Inorganic Chemistry, Guindy Campus, University of Madras, Chennai, India –

600025.

bDepartment of Biochemistry, Guindy Campus, University of Madras, Chennai, India–600025.

*Corresponding author: E-mail - [email protected]

Supplementary Material

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry BThis journal is © The Royal Society of Chemistry 2013

Page 2: Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of Rifampicin

1. G

T

dendron

addition

spectral

surface

that AuN

stabilize

CPEG i

Fig. S1

Green synt

The reducti

n at pH 8.5

n of CPEG

analysis an

plasmon re

uNPs are un

ed AuNPs a

s given belo

1. (a) UV-vi

thesis of CP

on of Au (I

. It was ver

dendron at

nd the result

esonance (S

niformly arr

are about 17

ow.

isible spectr

PEG stabiliz

III) to Au (0

ry interestin

t 80 °C. Th

t is shown i

SPR) absorp

ranged on th

7 nm with s

rum and (b)

zed AuNPs

0) is facilita

ng to monit

he synthesiz

in the Fig.S

ption at 530

he CPEG p

spherical sh

) TEM imag

nm).

s

ated by citric

tor the rapi

zed AuNPs

1a. The AuN

0 nm. The T

polymer mat

hape. The sc

ges of CPEG

c acid units

id formation

were exam

NPs colloid

TEM image

trix and con

cheme of Au

G stabilized

present in t

n of AuNPs

mined by U

dal solution

es in Fig.S1

nfirm that t

uNPs synth

AuNPs (sca

the CPEG

s with the

UV-Visible

shows the

b indicate

the CPEG

hesis using

ale bar 20

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry BThis journal is © The Royal Society of Chemistry 2013

Page 3: Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of Rifampicin

O OO

O O

O O

OOHO

O O

OOH

OO

O

Au

Cl Cl

Cl Cl

+

1. pH 8.5

2. 80 °C

3. - Cl

O OO

O O

O O

OOHO

O O Au

Cl

Cl

Cl

O OHOO

OAu

Cl

Cl

Cl

Fast

OH

OH1. - H2O

2. - Cl

O OO

O O

O O

OOO

O O Au

Cl

Cl

Cl

O O

OO

OAu

Cl

Cl

Cl

[AuCl2] +- Cl

OO

OO

OO

OO

OO

- CO2

O OO

O O

O O

O

OO

O OO

OO

OO

O OO

O O

O O

O

OO

O OO

OO

OO

+ 3 [AuCl2]- [AuCl4]

- 2 Cl

O OO

O O

O O

O

OO

O OO

OO

OO

CPEG

CPEG - AuNPs

OO

AuNP

Auric chloride

PEG

Scheme S1. Scheme of synthesis of AuNPs using CPEG.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry BThis journal is © The Royal Society of Chemistry 2013

Page 4: Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of Rifampicin

2. Scheme of RIF loaded AuNPs conjugated multiblock copolymer nanoparticles by W/O/W double emulsion technique

Step-1

Formation of W/O single emulsion

multi-blockcopolymer + RIF

CPEG-Au

+

Probe sonication

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry BThis journal is © The Royal Society of Chemistry 2013

Page 5: Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of Rifampicin

Step – 2

S

2: Formatio

(RIF

Scheme S2.

Ds

on of W/O/

F loaded Au

. Mechannanopar

Drug boundspace of Au

1. Aq2. Pro

/W double e

u-polymer n

nism of preprticles by W

d in the inteuNPs and po

q. PVA obe sonicati

emulsion

nanoparticl

aration of RW/O/W doubl

Don

erstitial olymer mat

 

ion

1. M2. R3. W4. V

le)

RIF and AuNle emulsion

Drug looselyn surface oDrug boun the polym

trix

Magnetic stiRemoval of Washing Vacuum dry

NPs loaded n technique.

y bound of polymer Nnd inside

mer matrix

irring organic solv

y

polymer

NPs

vent

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry BThis journal is © The Royal Society of Chemistry 2013

Page 6: Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of Rifampicin

During the W/O single emulsion,

The polymer-drug-AuNPs nanoconjugates and polymer-drug conjugates are formed on the small W/O emulsion droplets.

In this step,

During the probe sonication, the PEG surrounded AuNPs are detached from the CPEG-Au dendron and capped by the polymer matrix. The capping of AuNPs is favored due to the presence of PEG on AuNPs and the PEG directs the AuNPs to be capped by the multiblock copolymer.

When the multiblock copolymer is used, the capping ability of RIF and AuNPs is favored. When the pure PLGA is used, The PLGA precipitates in faster rate due to its hydrophobic nature and hence, the probability of capping the RIF and AuNPs is minimum resulting in lower drug loading efficiency.

During the W/O/W double emulsification, the small W/O single emulsion droplets form the secondary emulsion with PVA aqueous solution. In this stage, the PVA stabilizes the polymer-drug-Au nanoconjugates and polymer-drug nanoconjugates within a sphere. Hence, after the washing and vacuum dry, a spherical shape polymer NPs are obtained. The drug is present in three different environments in the Au conjugated polymer nanoparticle. In the structure of drug loaded Au-polymer NPs, three different colors have been used to indicate that the drug is present in three different environments.

Where,

Green particles denotes the drug on the surface of polymer NPs, blue particles denotes the drug inside the polymer matrix and red particles denotes the drug in the interstitial space of AuNPs and polymer matrix.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry BThis journal is © The Royal Society of Chemistry 2013

Page 7: Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of Rifampicin

3. X

XPS traces

Fi

s of RIF loa

ig. S2. XPS

aded PLGA

traces of R

A-AuNPs na

RIF loaded P

anoconjuga

PLGA-Au N

ates

NPs (PSP0AuuR).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry BThis journal is © The Royal Society of Chemistry 2013

Page 8: Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of Rifampicin

4. P

The pha

obtained

the curv

ng.h/mL

respecti

quantifi

bioavail

Pharmacok

armacokinet

d for PSPAu

ve (AUC0–∞

L and ng/m

vely. Since,

cation of t

lability of R

Fig.

kinetics res

tics values o

uR series N

∞) and maxi

mL respecti

, the Cmax v

the metabol

RIF is increa

S3. Histogr

ults of RIF

of DRIF, rif

NPs are given

imum conc

vely while

values obtain

lites may n

ased with low

ram of DRI

F metabolite

fampicin qu

n in the Tab

centration (C

those of R

ned for the m

not be accu

wer concent

F plasma co

es

uinone (RQ)

bles S1–S3

Cmax) values

RIF are ob

metabolites

urate. Howe

tration of th

oncentration

) and rifamp

and Figs. S

s of metabo

btained in µ

of RIF are

ever, it is t

he metabolit

n Vs Time p

picin N-oxi

3–S5. The a

olites are ob

µg.h/mL an

below 25 n

to be noted

tes.

profile.

ide (RNO)

area under

btained in

nd µg/mL

ng/mL, the

d that the

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry BThis journal is © The Royal Society of Chemistry 2013

Page 9: Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of Rifampicin

Figg. S4. Histoggram of RQ

Q plasma con

ncentration Vs Time pr

rofile.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry BThis journal is © The Royal Society of Chemistry 2013

Page 10: Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of Rifampicin

Fig.. S5. Histoggram of RNO

O plasma co

oncentrationn Vs Time p

profile.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry BThis journal is © The Royal Society of Chemistry 2013

Page 11: Gold Nanoparticle Conjugated PLGA-PEG-SA-PEG … Nanoparticle Conjugated PLGA-PEG-SA-PEG-PLGA Multiblock Copolymer Nanoparticles: Synthesis, Characterization, In-vivo Release of Rifampicin

Table S1. Pharmacokinetics results of DRIF

samples AUC0-∞

(ng.h/mL) Cmax(ng/mL) Tmax(h) Relative bio

availability AUC0-∞DRIF/

AUC0-∞RIF Free RIF 342 11.5 10 1 0.0182 PSPAu0 2122 10.6 120 6.2 0.0038

PSPAu1 2113 8.6 120 6.1 0.0008

PSPAu2 518.1 8.7 48 1.51 0.0001

PSPAu3 525 9.1 48 1.53 0.0002

PSPAu4 1528 8.8 48 4.4 0.0007

AUC0–∞ - Area under the curve

Cmax - maximum concentration

Tmax - Time of maximum concentration

Table S2. Pharmacokinetics results of RQ

samples AUC0-∞

(ng.h/mL) Cmax

(ng/mL) Tmax(h) Relative bio

availability AUC0-∞RQ/

AUC0-∞RIF Free RIF 2774 19.45 48 1.0 0.148 PSPAu0 2895 19.72 48 1.04 0.0052

PSPAu1 3921 17.43 24 1.41 0.0015

PSPAu2 5210 23.57 5 1.87 0.0014

PSPAu3 4092 19.00 72 1.47 0.0015

PSPAu4 3991 17.9 10 1.43 0.0019

Table S3. Pharmacokinetics results of RNO

samples AUC0-∞

(ng.h/mL) Cmax(ng/mL) Tmax(h) Relative

bio availability

AUC0-∞RNO/

AUC0-∞RIF

Free RIF 0 - - - - PSPAu0 0 - - - -

PSPAu1 399 8.9 5 - 0.0001

PSPAu2 396 5.3 10 - 0.0001

PSPAu3 481 9.1 10 - 0.0001

PSPAu4 392 2.7 10 - 0.0001

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry BThis journal is © The Royal Society of Chemistry 2013