GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording...

44
1 GMR Read head GMR Read head Eric Fullerton ECE, CMRR Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR Challenges

Transcript of GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording...

Page 1: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

1

UCT)

ATE

GMR Read headGMR Read headEric Fullerton

ECE, CMRR

Introduction to recordingBasic GMR sensorNext generation heads TMR, CPP-GMRChallenges

Page 2: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

2

Product scalingProduct scaling

2 kbits/in2

70 kbits/s50x 24 in dia disks$10,000/Mbyte

Microdrive78 Gbits/in2

1 x 1” dia disk

8 Gbyte

5 Mbyte 100 Gbytemobile drive

RAMAC 1956

130 Gbits/in2

630 Mb/s2 x 2.5”glass disks<$0.01/Mbyte

UCT)

ATE

Page 3: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

3

ArealAreal density trendsdensity trends

0.01

0.1

1

10

100

1000

10000

1980 1990 2000 2010

Are

al D

ensi

ty (G

b/sq

.in.)

100% / yr

30% / yr

60% / yr

Standard FFMR headPRML channel Thin film disk

GMR head

Demos Perpendicular

40% / yr230 Gb/in2 demo

Products

}20%-40%

• IBM / Hitachi, highest AD productsCompetitors, mobile

Page 4: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

4

19751975

Page 5: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

5

Recording basicsRecording basics

Suspension

DiskActuator

Spindle / Motor

Slider

Data trackTrackwidth

Page 6: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

6

Magnetic recording componentsMagnetic recording components

Direction of Disk Motion

Inductive Write Element

GMR Read Sensor

Track of Recording Media

Grain Structure andMagnetic Transitiont

W

B

B = 25 nm (σ<3 nm), W=140 nm, t = 14 nm~ GHz data rates / 10 year retention

~8 nm

Head-media 10 nm

Page 7: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

7

Magnetic recording componentsMagnetic recording components

Copper Write Coils

Pole WidthInductive Write HeadP2 Layer

Throat Height

Write Gap

Width

Inductive Write HeadP1 Layer &Top Shield

GMR Contacts& Hard Bias GMR Read Sensor

Bottom Shield

Page 8: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

8

Magnetic recording componentsMagnetic recording components

B = 25 nm (σ<3 nm), W=150 nm, t = 14 nmdata rate ~ GHz

Direction of Disk Motion

Inductive Write Element

GMR Read Sensor

t

W

B

“Compass” that responds to local magnetic field and varies the resistance

Page 9: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

9

“0” “1” “0”

3 0 0 0 0 3 0 1 0 0 3 0 2 0 0 3 0 3 0 0 3 0 4 0 0 3 0 5 0 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

sign

al

t i m e [ n s ]

“1”

Recording basicsRecording basics

Page 10: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

103 0 0 0 0 3 0 1 0 0 3 0 2 0 0 3 0 3 0 0 3 0 4 0 0 3 0 5 0 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

sign

al

t i m e [ n s ]

“0” “0” “0” “1”

Recording basicsRecording basics

Page 11: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

110 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

t i m e [ n s ]

sign

al

3 0 0 0 0 3 0 1 0 0 3 0 2 0 0 3 0 3 0 0 3 0 4 0 0 3 0 5 0 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

sign

al

t i m e [ n s ]

PW50

PW50/T = 3

Magnetic resolutionMagnetic resolution

Page 12: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

12

Anisotropic MagnetoAnisotropic Magneto--resistance (AMR)resistance (AMR)

M I

M I

high resistance

low resistance

Bulk property of magnetic materials

0 90 180 270 360

resi

stan

ce

1-2 % effects

angle between I and M

Page 13: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

13

AMR SensorAMR Sensor

Page 14: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

14

Giant MagnetoGiant Magneto--resistance (GMR)resistance (GMR)

M I

high resistance

low resistanceInterface property of magnetic materials

0 90 180 270 360

resi

stan

ceangle between M1 and M2

M I

10-20 % effects

Baibich et al. Phys. Rev. Lett. 61 2472 (1988)Binasch et al. Phys. Rev. B 39, 4828 (1989); P. Grunberg, U.S. patent # 4,949,039

Page 15: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

15

GMR sensorGMR sensor

Page 16: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

16

GMR sensors and scalingGMR sensors and scalingMR and GMR/Spin Valve Head

Characteristics

Spin dependent scattering in a single alloyGrochowski/Gurney

Page 17: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

17

GMR sensorsGMR sensors

Pinned layer

Spacer layer

Free layer

Track of data

Page 18: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

18

GMR sensorsGMR sensors

Trackwidth

Fringe field frombits rotates free layermagnetization

Page 19: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

19

GMR sensorsGMR sensorsThe reference ferromagnetic layer magnetization is pinned by an

antiferromagnetic layer and does not rotate in small magnetic fields

Mom

ent

ΔR

/R

Page 20: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

20

GMR sensorsGMR sensorsPinned layer is AP pinned to obtain flux closure to minimize magneto-static coupling to free layer

Utilize AP coupling property of Ru, Ir…

5 10 15

J (a

rb. u

nits

)

thickness (Ru)

F coupling

AF coupling

Page 21: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

21

GMR sensorsGMR sensors

X XHapplied

External hardmagnet bias

reference

free

Page 22: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

22

GMR sensorsGMR sensors1) Produce undercut resist structure

(193nm photolithography)

2) Ion Mill, then IBD HB/leads

3) Lift-off Resist

Page 23: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

23

GMR sensors and scalingGMR sensors and scaling

Total gap

shield

shieldCurrent-in-plane

(CIP)

downtrack direction

Total gap

shield

shieldCurrent-in-plane

(CIP)

downtrack direction

Page 24: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

24

GMR sensorsGMR sensors

70 nm Critical lithography feature

NiFeCoFeCuCoFeRuCoFe

IrMn

State-of-the-art magnetic hard disk drivesI. R. McFadyen, E. E. Fullerton and M. J. Carey, MRS Bulletin 31, 379 (2006).

Page 25: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

25

GMR sensorsGMR sensorsThe height of the sensor is controlled by lapping (polishing) not by lithography.

The smallest feature in a thin film head is determined mechanically

sensor

lapped air bearing surface

DiskSide

Shield 1

Shield 2

Sensor width = 160 nm

Sensor height = 100 nm100 nm

Page 26: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

26

GMR read headGMR read headWorks great, what’s the problem

ΔR not increasingR increasingShorting to the shieldsEdge damage for small features

11

10

9

8

7

GM

R R

atio

(%)

25020015010050Width (nm)

Model Data

J. A. Katine, et al., Appl. Phys. Lett., 83, 401 (2003).

Page 27: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

27

New sensor geometryNew sensor geometry

I

CPP-Tunnel Magnetoresistance (high R)(Current-perpendicular-to-plane)I

CIP-GMR(Current-in-plane)

CPP-GMR (low R)(Current-perpendicular-to-plane)

I

GMR spin-valve

Magnetic tunnel-valve

GMR spin-valve

Tunnel-valve head

Page 28: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

28

CPP sensorCPP sensor

xbottom lead and shield

Insulator/hard bias deposition/Insulator deposition

Sensor deposition

Photo/Ion mill

Top lead and shield

x

current

Page 29: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

29

TMR sensorTMR sensor

Page 30: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

30

TMR sensorTMR sensor

Underlayer(s)

Magnetic electrode 1Barrier material

oxidation

Tunnel barrier

Magnetic electrode 2

Overlayer(s)

Shield S1

2) Thickness of given barrier materialDetermines RA= Resistance x Area

3) TMR is independent of specific materials in sensor stack

Sensor design is highly flexible

1) Barrier + magnetic electrode interfaces determine maximum TMRAlOx 70%TMR and MgO >500% TMR

Key goals: - Smooth substrate+underlayers- continuous ultrathin barrier growth- Stable chemistry @ barrier interfaces- No shunting of barrier during lithography

Page 31: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

31

TMR sensorTMR sensorThe resistance of the device depends on RA product

R (per unit area) depends exponentially on the barrier thickness

A is set by size of the bits (decreases with time).

To keep the resistance of the device constant you need to thin the barrier over time (or find lower R barrier materials).

Page 32: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

32

TMR sensorTMR sensor

1

10

100

0.001 0.01 0.1 1 10 100 1000

26.5 dB head S/ N15% ut i l izat ion

Vop = 180 mV

CPPtunnel-valves

CPPspin-valvesCPPSpin-valves

CPPTunnel valves

35 Gb/in2

31 MB/s

300 Gb/in265 MB/s

150 Gb/in2

50 MB/s 70 Gb/in2

40 MB/s

ΔR/R

(%)

RA (Ω-μm2)Low RA (high current):+Amplifier noise+Ampere curling field+ Thermal/electromigration[+spin-torque]

High RA (low current):+Shot noise+Voltage bias limit+RC time constant

Johnson noise

Page 33: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

33

TMR sensorTMR sensor

Y. Nagamine et al. (Anelva corp.)Intermag ‘06

CoFeB/MgO/CoFeB

0 1 2 3 4 5 6

TMR

(%)

RA (Ω-μm2)

Typical behavior

"knee"

Page 34: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

34

CPP GMR SensorCPP GMR SensorIn absence of low RA tunnel barrier move to metal devices.

CIP-GMR Shunting effect limits maximum signal

Spin-diffusion length lsf

(100-300A)

Pinned layer

Free layer

Underlayer

Cap

SpacerGMR

Parasitic resistance

Parasitic resistance

CPP-GMRShield 2

Shield 1

Pinned layer

Free layer

Underlayer

Cap

Spacer

Shunting

GMR

Shunting

Shunting

Electron mean-free path λ(10-100A)

Gap 1

Gap 2Parasitic resistance

Lead

Page 35: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

35

CPP GMR SensorCPP GMR Sensor

Spacer

Cap layer

S2

Ru

AFM

Underlayer

S1

Free layer(M=30-50A NiFe)

CoFe/Cu interfaces

Spin mixing layersAP-pinned layers(ΔM = 0)

Antiferromagnet(Jex > 0.3 erg.cm2)

Total gap < 500AJ.Y. Gu et al., JAP 87, 4831 (2000)

Page 36: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

36

CPP GMR SensorCPP GMR SensorWant high resistance high spin polarized materials

0 20 400.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CoFeAl in FL CoFeAl in FL and AP2

75 nm Hex

40.9 at.% Al

36.4 at.% Al

30.7 at.% Al

24.9 at.% Al17.8 at.% Al

ΔR/R

(%)

x (at.%)

0 at.% Al

(Co45.5Fe54.5)(1-x)Alx

Maat et al., JAPHirohata et al.,Current Opinion in Solid State and Mat. Sci. 10, 93 (2006).

Heusler alloys

e.g. NiMnSb, CrFeAl, …

Page 37: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

37

CPP GMR SensorCPP GMR SensorCompared to TMR, CPP GMR has lower R, ΔR & ΔR/R

So how to get a signal?

Current: > 108 A/cm2

HeatingElectromigrationSpin – transfer torques

Page 38: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

38

R ~ R0 + ΔR (1-cos(θ))GMR metallicTMR insulator

Spin transportSpin transport

Page 39: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

39

• Current polarized by F1• Transfer of spin angular

momentum to M• J ∼107 A/cm2

J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)L. Berger, Phys. Rev. B 54, 9353 (1996)

Spin transfer effectSpin transfer effect

Page 40: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

40

Magnetization dynamicsMagnetization dynamics

mHm×= 0γdt

d

Field torque (precession)

Damping torque (dissipation)

⎟⎠⎞

⎜⎝⎛ ×+

dtdmmα

Spin torque (negative friction )

( )( )pmm xμ

−teM

gIP

s

Bi

m

H

××

x

Page 41: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

41

Magnetization dynamicsMagnetization dynamics

J.A. Katine et al., Phys. Rev. Lett. 84, 3149 (2000)

nano-pillar

F2

F1e- GMR

Nanocontact

F2

F1e-

H

M. Tsoi et al., Phys. Rev. Lett. 80, 4281-4284 (1998)W. H. Rippard et al., Phys. Rev. Lett. 92, 027201 (2004)

( )SKdipSAPP

C MHHHpgVMA

I πα

2)0( // +++≈−

Page 42: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

42

GMR sensorGMR sensor

Thermal fluctuationsfluctuation-dissipation theorem

S kBT / M Vfree

Smith and Arnett, APL 78, 1448 (2001).

Page 43: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

43

SensorsSensors

Sensors need a lot of properties not just ΔR/R

Opportunities for new materials and new phenomena

Page 44: GMR Read head - UCSDx-ray.ucsd.edu/mediawiki/images/9/9d/GMRreadheads-Fullerton.pdf · Recording basics. 0 100 200 300 400 500 600 700 800 900 100011-8 0-6 0-4 0-2 0 0 20 40 60 80

44

NonNon--magnetic magnetic sensorsmagnetic magnetic sensors

Solin, APL 80, 4012 (2001)Metal dot embedded in high mobilitylow carrier density semiconductor (i.e. InSb).

At low field E is _|_ to metal/SC boundary and j follows E low R.

At high fields because of the Lorentz force theangle between j and E can approach 90 degreeswith little current flowing through metal high R.

• Attractive because immune from magnoise, spin-torque• However geometry is challenging for a slider-type sensor

High-mobility SC

Metal shunt