Global Positioning System

34
Global Positioning Global Positioning System System Pratyush Rajput Rajat Gupta Rishabh Shukla

Transcript of Global Positioning System

Page 1: Global Positioning System

Global Positioning Global Positioning SystemSystem

Pratyush Rajput

Rajat Gupta

Rishabh Shukla

Page 2: Global Positioning System

Global Positioning Global Positioning SystemSystem

• What is GPS?• Working of GPS• GPS Functionality• GPS Signals & Frequencies• Accuracy – Issues & Methods for Improvement• Applications

Page 3: Global Positioning System

Overview

• Official name of GPS is NAVigational Satellite Timing And Ranging Global Positioning System (NAVSTAR GPS).

• First developed by the United States Department of Defense.• Consists of 30+ GPS satellites in medium Earth orbit (2000km - 35,000

km).• Made up of two dozen satellites working in unison are known as a satellite

constellation.• This constellation is currently controlled by the United States Air Force.• It costs about $750 million to manage and maintain the system per year.• Mainly used for navigation, map-making and surveying, etc.

Page 4: Global Positioning System

Working Of GPS

A GPS receiver can tell its own position by using the position data of itself, and compares that data with 3 or more GPS satellites.

To get the distance to each satellite, the GPS transmits a signal to each satellite. The signal travels at a known speed. The system measures the time delay between the signal transmission

and signal reception of the GPS signal. The signals carry information about the satellite’s location. Determines the position of, and distance to, at least three satellites. The receiver computes position using TRILATERATION.

Page 5: Global Positioning System

Trilateration

Page 6: Global Positioning System

GPS Functionality

• GPS systems are made up of 3 segments– Space Segment (SS)– Control Segment (CS)– User Segment (US)

Page 7: Global Positioning System

Space Segment

• GPS satellites fly in circular orbits at an altitude of 20,200 km and with a period of 12 hours.

• Orbital planes are centered on the Earth.• Each satellite makes two complete orbits each sidereal day. • It passes over the same location on Earth once each day.• Orbits are designed so that at the very least, six satellites are always

within line of sight from any location on the planet.

Page 8: Global Positioning System

Control Segment

• The Control Segment consists of 3 entities:– Master Control Station– Monitor Stations– Ground Antennas– NGA Monitor Stations– Air Force Satellite Control Network (AFSCN) Remote

Tracking Stations

Page 9: Global Positioning System

Strategic Locations

Page 10: Global Positioning System

Master Control Station

• The master control station, located at Falcon Air Force Base in Colorado Springs, Colorado, is responsible for overall management of the remote monitoring and transmission sites.

• Performs the primary control segment functions, providing command and control of the GPS constellation.

• Generates and uploads navigation messages and ensures the health and accuracy of the satellite constellation.

• Monitors navigation messages and system integrity, can reposition satellites to maintain an optimal GPS constellation.

Page 11: Global Positioning System

Monitor Stations

• Six monitor stations are located at Falcon Air Force Base in Colorado, Cape Canaveral, Florida, Hawaii, Ascension Island in the Atlantic Ocean, Diego Garcia, and in the South Pacific Ocean.

• Checks the exact altitude, position, speed, and overall health of the orbiting satellites.

• The control segment uses measurements collected by the monitor stations to predict the behavior of each satellite's orbit and clock.

• The prediction data is up-linked, or transmitted, to the satellites for transmission back to the users.

• The control segment also ensures that the GPS satellite orbits and clocks remain within acceptable limits.

• A station can track up to 11 satellites at a time.• This "check-up" is performed twice a day, by each station.

Page 12: Global Positioning System

Ground Antennas

• Ground antennas monitor and track the satellites from horizon to horizon. • They also transmit correction information to individual satellites.• Communicate with the GPS satellites for command and control purposes.• Four dedicated GPS ground antenna sites co-located with the monitor

stations at Kwajalein Atoll, Ascension Island, Diego Garcia, and Cape Canaveral.

Page 13: Global Positioning System

AFSCN Remote Tracking Stations

• Air Force Satellite Control Network (AFSCN) provides support for the operation, control, and maintenance of a variety of United States Department of Defense satellites.

• This involves continual Tracking, Telemetry, and Command (TT&C).• It also provides prelaunch simulation, launch support, and early orbit

support while satellites are in initial or transfer orbits and require maneuvering to their final orbit.

Page 14: Global Positioning System

NGA Monitor Stations

• The NGA Monitor collects, processes, and distributes GPS observations, environmental data, and station health information.

• It also provides 24/7 data integrity monitoring.

Page 15: Global Positioning System

User Segment

• The user's GPS receiver is the User Segment of the GPS system.• GPS receivers are generally composed of an antenna, tuned to the

frequencies transmitted by the satellites, receiver-processors, and a highly-stable clock (commonly a crystal oscillator).

• They include a display for showing location and speed information to the user.

• A receiver is often described by its number of channels this signifies how many satellites it can monitor simultaneously.

Page 16: Global Positioning System

GPS Signals

• Coarse/Acquisition code• Precision code• Navigation message• Almanac• Data updates

Page 17: Global Positioning System

GPS Frequencies

• L1 (1575.42 MHz)• L2 (1227.60 MHz) • L3 (1381.05 MHz)• L4 (1379.913 MHz)• L5 (1176.45 MHz)

Page 18: Global Positioning System

Frequency Information

• The C/A code is transmitted on the L1 frequency as a 1.023 MHz signal.• The P(Y)-code is transmitted on both the L1 and L2 frequencies as a

10.23 MHz signal.• L3 is used by the Defense Support Program to signal detection of missile

launches, nuclear detonations, and other applications.• L4 is used for additional correction to the part of the atmosphere that is

ionized by solar radiation.• L5 is used as a civilian safety-of-life (SoL) signal.

Page 19: Global Positioning System

Frequency L2C

• Launched in 2005, L2C is civilian GPS signal, designed specifically to meet commercial needs.

• L2C enables ionospheric correction, a technique that boosts accuracy.• Delivers faster signal acquisition, enhanced reliability, and greater

operating range.• L2C broadcasts at a higher effective power making it easier to receive

under trees and even indoors.• It is estimated L2C could generate $5.8 billion in economic productivity

benefits through the year 2030.

Page 20: Global Positioning System

Accuracy

• The position calculated by a GPS receiver relies on three accurate measurements: – Current time – Position of the satellite– Time delay for the signal

• The GPS signal in space will provide a "worst case" accuracy of 7.8 meters at a 95% confidence level.

• GPS time is accurate to about 14 nanoseconds.• Higher accuracy is available today by using GPS in combination with

augmentation systems. These enable real-time positioning to within a few centimeters.

Page 21: Global Positioning System

Issues That Affect Accuracy

• Changing Atmospheric Issues:– Radio signals travel at different velocities through the atmosphere.– It changes the speed of the GPS signals unpredictably as they pass

through the ionosphere.– The amount of humidity in the air also has a delaying effect on the

signal.

Page 22: Global Positioning System

Issues That Affect Accuracy (cont’d)

• Clock Errors :– Can occur when a GPS satellite is boosted back into a proper orbit.– The satellite's atomic clocks experience noise and clock drift errors.

• GPS Jamming :– It limits the effectiveness of the GPS signal.– GPS jammer is a low cost device to temporarily disable the reception

of the civilian coarse acquisition (C/A) code.

Page 23: Global Positioning System

Issues That Affect Accuracy (cont’d)

• Multi-path Issues :– The multipath effect is caused by reflection of satellite signals

(radio waves) on objects.– The reflected signal takes more time to reach the receiver than the

direct signal.

Page 24: Global Positioning System

Methods of Improving Accuracy

• Precision monitoring– Dual Frequency Monitoring– Carrier-Phase Enhancement (CPGPS)– Relative Kinematic Positioning (RKP)

• Augmentation

Page 25: Global Positioning System

A. Dual Frequency Monitoring• Refers to systems that can compare two or more

signals.• These two frequencies are affected in two different

ways.• After monitoring these signals, it’s possible to calculate

what the error is and eliminate it.• Receivers that have the correct decryption key can

decode the P(Y)-code transmitted on signals to measure the error.

Page 26: Global Positioning System

B. Carrier-Phase Enhancement (CPGPS)• CPGPS uses the L1 carrier wave, which has a period

1000 times smaller than that of the C/A bit period, to act as an additional clock signal and resolve uncertainty.

• The phase difference error in the normal GPS amounts to between 2 and 3 meters (6 to 10 ft) of ambiguity.

• CPGPS works to within 1% of perfect transition to reduce the error to 3 centimeters (1 inch) of ambiguity.

• By eliminating this source of error, CPGPS coupled with DGPS normally realizes between 20 and 30 centimeters (8 to 12 inches) of absolute accuracy.

Page 27: Global Positioning System

C. Relative Kinematic Positioning (RKP)• Determination of range signal can be resolved to an

accuracy of less than 10 centimeters (4 in). • Resolves the number of cycles in which the signal is

transmitted and received by the receiver. • Accomplished by using a combination of DGPS

correction data, transmitting GPS signal phase information and ambiguity resolution techniques via statistical tests — possibly with processing in real-time.

Page 28: Global Positioning System

• Augmentation– Relies on external information being integrated into the calculation

process. – Some augmentation systems transmit additional information about

sources of error.– Some provide direct measurements of how much the signal was off in

the past– Another group could provide additional navigational or vehicle

information to be integrated in the calculation process.

Page 29: Global Positioning System

Augmentation Systems

• Nationwide Differential GPS System (NDGPS)– Ground-based augmentation system that provides increased accuracy

and integrity of GPS information to users on U.S. land and waterways.– The system consists of the Maritime Differential GPS System operated

by the U.S. Coast Guard and an inland component funded by the Department of Transportation.

Page 30: Global Positioning System

Augmentation Systems (cont’d)

• Wide Area Augmentation System (WAAS)– Satellite-based augmentation system operated by the Federal Aviation

Administration (FAA), supports aircraft navigation across North America.

• Global Differential GPS (GDGPS)– High accuracy GPS augmentation system, developed by the NASA Jet

Propulsion Laboratory (JPL) to support the real-time positioning, timing, and determination requirements of NASA science missions.

– Future NASA plans include using the Tracking and Data Relay Satellite System (TDRSS) to transmit via satellite a real-time differential correction message.

Page 31: Global Positioning System

Applications

• Civilian– Geotagging : Applying location coordinates to digital objects such as

photographs and other documents.– Disaster Relief/Emergency Services– Vehicle Tracking Systems– Person Tracking Systems– GPS Aircraft Tracking– Telematics: GPS technology integrated with computers and mobile

communications technology in automotive navigation systems.

Page 32: Global Positioning System

Applications (cont’d)

• Military– Target Tracking: Tracking potential ground and air targets before

flagging them as hostile.– Navigation– Missile and Projectile Guidance: Allows accurate targeting of various

military weapons including cruise missiles and precision-guided munitions

– Reconnaissance– Search and Rescue: Downed pilots can be located faster if their

position is known.

Page 33: Global Positioning System

Applications (cont’d)

• Other Applications – Railroad Systems– Recreational Activities– Weather Prediction– Skydiving– And many more!

Page 34: Global Positioning System