GIPAW-NMR method

69
GIPAW-NMR method apsi <[email protected]>

Transcript of GIPAW-NMR method

Page 1: GIPAW-NMR method

GIPAW-NMR method

apsi<[email protected]>

Page 2: GIPAW-NMR method

2

Outline

● PART I: Introduction to NMR● Introduction to NMR● ChemicalShielding & ElectricFieldGradients

● PART II: GIPAW method● GIPAW for CS; extensions● (GI)PAW for EFG

● PART III: Applications of GIPAW method● Examples

● PART IV: Using the GIPAW module● Implementation● Input/output of GIPAW module

Page 3: GIPAW-NMR method

PART I: Introduction to NMR

Page 4: GIPAW-NMR method

4

NMR spectroscopy

● Microscopic: Gives information about the

individual atoms (~ Å)

● Sensitive to the local environment of the atoms

● … but requires modelling/theoretical input

● Solids, amorphous, liquid, gaseous samples

● Time scale: ~ ms

Nuclear Magnetic Resonance

Page 5: GIPAW-NMR method

5

Principles of MR spectroscopy

B

Induced orbital currents:● structure and chemical bonds● local electronic structure

Page 6: GIPAW-NMR method

6

NMR technology

Two fields applied:● Static, homogeneous field: Align magnetic moments● Oscillating field: Excite between two (or two) magnetic energy

levels

Page 7: GIPAW-NMR method

7

Response to magnetic field

The interaction depends on the local environment

Page 8: GIPAW-NMR method

8

Spin-polarised nuclei

Isotopic enriching

Page 9: GIPAW-NMR method

9

Spin-polarised nuclei

Isotopic enriching

Page 10: GIPAW-NMR method

10

NMR Hamiltonian

Page 11: GIPAW-NMR method

11

NMR Hamiltonian: Chemical shift

Page 12: GIPAW-NMR method

12

Chemical shift

From the NMR Hamiltonian the shielding tensor is defined as:

It can be calculated via the response:

The chemical shift is then defined by

is a reference value in a well-characterised material

Page 13: GIPAW-NMR method

13

Chemical shift: Linear response

The electronic structure does not depend explicitly on the magnetic field but implicitly through the wave functions. Their contribution can be calculated in perturbation theory:

GS wfcs perturbed wfcs

induced current

induced field

DFPT to magn. field

Biot-Savart

Page 14: GIPAW-NMR method

14

Converse approach to chemical shielding

● Modern Theory of the Orbital Magnetisation

● Instead of direct approach

Page 15: GIPAW-NMR method

15

Macroscopic shape

● The ring currents at the surface can lead to a notiseable signal● In anisotropic samples the effect can lead to a dependence on the

shape of the sample

Example: Haldane model:

From: T Thonhauser, Davide Ceresoli, David Vanderbilt & R Resta, Phys Rev Lett 95 (2005) 137205

Page 16: GIPAW-NMR method

16

NMR Hamiltonian: Electric field gradient

Page 17: GIPAW-NMR method

17

EFG: Electric Field Gradient

In quadrupolar nuclei; non-zero only when no cubic symmetry

Principal axis system: Eigenvectors and -values of

Convention:

Observables:● Quadrupolar coupling constant

● Asymmetry parameter

Page 18: GIPAW-NMR method

18

NMR Hamiltonian: J coupling

Page 19: GIPAW-NMR method

PART II: GIPAW method

Page 20: GIPAW-NMR method

20

Chemical shielding

● An external magnetic field leads to current leads to induced field:

● Task: Calculate the induced current via perturbation theory● Condensed phase – infinite systems● Reconstruct the wave functions and density close to the nucleus

due to the pseudo potential approach

Biot-Savart's law

Page 21: GIPAW-NMR method

21

Magnetic field – gauge problem

● The result depends on the atomic coordinate

● One has to cure the gauge problem

Page 22: GIPAW-NMR method

22

GIPAW method

Page 23: GIPAW-NMR method

23

GIPAW method

● Introduce the gauge correction into the PAW scheme:

● The observables:

Page 24: GIPAW-NMR method

24

GIPAW method

● First-order, perturbing potential:

● Perturbed orbitals:

Page 25: GIPAW-NMR method

25

GIPAW method

● All-electron current operator:

● In GIPAW:

Page 26: GIPAW-NMR method

26

GIPAW method● Expansion:

● Expectation value of first-order current:

● After regrouping:

Page 27: GIPAW-NMR method

27

GIPAW method

Page 28: GIPAW-NMR method

28

GIPAW method

● Trick: Replace

● In practise finite q: Too large, not accurate; too small, numerical problems

Page 29: GIPAW-NMR method

29

GIPAW method

Page 30: GIPAW-NMR method

30

● Collecting the terms, using on-site approximation:

Finally:

Biot-Savart:

GIPAW method

Page 31: GIPAW-NMR method

31

Macroscopic shape

● The macroscopic shape appears via the susceptibility

where

In GIPAW

Page 32: GIPAW-NMR method

32

Core relaxation

Core contribution has been shown to be to a large degree a constant, independent of the environment

Thomas Gregor, Francesco Mauri & Roberto Car, J Chem Phys 111 (1999) 1815

Page 33: GIPAW-NMR method

33

(GI)PAW method: EFG

Page 34: GIPAW-NMR method

34

(GI)PAW method: EFG

● This is evaluated using the PAW equations for the density

Page 35: GIPAW-NMR method

35

GIPAW: Extensions

● Vanderbilt ultra-soft pseudo potentials ; Jonathan R Yates, Chris

J Pickard & Francesco Mauri, Phys Rev B 76 (2007) 024401

● Metals; Knight shift ; Mayeul d'Avezac, Nicola Marzari &

Francesco Mauri, Phys Rev B 76 (2007) 165122

● J coupling ; Sian A Joyce, Jonathan R Yates, Chris J Pickard &

Francesco Mauri, J Chem Phys 127 (2007) 204107

● EPR ; C J Pickard & F Mauri, Phys Rev Lett 88 (2002) 086403 ;

Davide Ceresoli, Uwe Gerstmann, apsi & Francesco Mauri,

arXiv.org:0904.1988

● NMR ; T Thonhauser, Davide Ceresoli, Arash A Mostoli, Nicola

Marzari, R Resta & David Vanderbilt, arXiv.org:0709.4429

Page 36: GIPAW-NMR method

PART III: Applications of GIPAW

Page 37: GIPAW-NMR method

37

Applications using GIPAW: Molecules

Page 38: GIPAW-NMR method

38

Applications using GIPAW: Molecules

Page 39: GIPAW-NMR method

39

Applications using GIPAW: SiO2

Page 40: GIPAW-NMR method

40

Applications using GIPAW: SiO2

Page 41: GIPAW-NMR method

41

Applications using GIPAW: SiO2

Page 42: GIPAW-NMR method

42

Applications using GIPAW: MgSiO3

Page 43: GIPAW-NMR method

43

Applications using GIPAW: MgSiO3

Page 44: GIPAW-NMR method

44

Applications using GIPAW: MgSiO3

Page 45: GIPAW-NMR method

45

Applications using GIPAW: CNT

Page 46: GIPAW-NMR method

46

Applications using GIPAW: CNT

Page 47: GIPAW-NMR method

47

Applications using GIPAW: Metals

Page 48: GIPAW-NMR method

48

Applications using GIPAW: Metals

Page 49: GIPAW-NMR method

49

Applications using GIPAW: v-B2O3

Page 50: GIPAW-NMR method

50

Applications using GIPAW: v-B2O3

Fraction of borons in boroxol rings:

• Experiments:• MD simulations:(Raman, NMR, inelastic diffusion…)(empirical potentials)

f = 60­85 %f = 0­30 %

• molecular units:

OB

• boroxol rings:

first­principles MD?!

B B

B

Page 51: GIPAW-NMR method

51

Applications using GIPAW: v-B2O3

Page 52: GIPAW-NMR method

52

Applications using GIPAW: v-B2O3

Page 53: GIPAW-NMR method

53

Applications using GIPAW: v-B2O3

Explanation for the former controversy:Explanation for the former controversy:

The simulations started from low concentration of The simulations started from low concentration of boroxyl, the quench did not allow for proper boroxyl, the quench did not allow for proper equilibrationequilibration

Page 54: GIPAW-NMR method

PART IV: Implementation of GIPAW in Q-E

Page 55: GIPAW-NMR method

55

GIPAW implementations

● paratec

● CASTEP; commercial

● Quantum ESPRESSO

URL: http://www.gipaw.net/

Page 56: GIPAW-NMR method

   

The GIPAW module● General framework for computing magnetic resonance (MR)

spectra and more...

● Available for production in Espresso-4.1Credits: D. Ceresoli, A. P. Seitsonen, U. Gerstmann and F. Mauri

● Capabilities

Magnetic susceptibility NMR shielding tensors Electric Field Gradients (EFGs)

EPR g-tensor Hyperfine couplings

XAS (S. Fabris and Y. Yao) XANES (G. Gougoussis and M. Calandra)

● Simple input and nicely formatted output for calculated quantities

NMR

EPR

X-Ray

Page 57: GIPAW-NMR method

57

GIPAW@Q-E: Limitations

● Only norm-conserving pseudo potentials currently

● The symmetry operations have to map coordinate axis to each

other, otherwise operation should be excluded!

Page 58: GIPAW-NMR method

58

GIPAW pseudo potentials

● At the time of this school (July 2009), our GIPAW implementation works only with special norm-conserving PP's(eg. H.pbe-tm-gipaw.UPF)

● The PP's are generated according to existing (and well tested) NC-PP's

● They contain extra datasets, including:● core AE wfcs● valence AE and PS wfcs, 2 x angular momentum● AE and PS atomic potential

● They can be generated using the ld1.x code. A short guide is available at

http://www.impmc.upmc.fr/~software/gipaw/instructions.html

Page 59: GIPAW-NMR method

59

Oxygen GIPAW pseudo potential &input title = 'O' prefix = 'O' zed = 8.0 rel = 1 config = '1s2 2s2 2p4 3s-1 3p-1 3d-1' iswitch = 3 dft = 'PBE' / &inputp pseudotype = 1 tm = .true. lloc = 2 file_pseudopw = 'O.pbe-tm-gipaw.UPF' lgipaw_reconstruction = .true. /32S 1 0 2.00 0.00 1.40 1.402P 2 1 4.00 0.00 1.40 1.403D 3 2 -1.00 -0.30 1.40 1.40 &test /42S 1 0 2.00 0.00 1.40 1.402P 2 1 4.00 0.00 1.40 1.403S 2 0 0.00 0.00 1.40 1.403P 3 1 0.00 -0.10 1.40 1.40

config.: 1s2 2s2 2p4

empty: 3s, 3p, 3d

PSEUDO: 1 proj x ang. mom.

GIPAW: 2 proj x ang. mom.3p unbound -> scattering state at -0.1 Ry

NC-PP lmax = 2, lloc = 2

Page 60: GIPAW-NMR method

60

Oxygen GIPAW pseudo potential

Page 61: GIPAW-NMR method

61

Oxygen GIPAW pseudo potential

Page 62: GIPAW-NMR method

   

NMR on benzene (C6H6)

FILE: benzene-relax.in

&control prefix = 'benzene' outdir = './scratch/'.../

&system.../

...

ATOMIC_SPECIESC 12.000 C.pbe-tm-gipaw.UPFH 2.000 H.pbe-tm-gipaw.UPF

ATOMIC_POSITIONS angstrom...

K_POINTS automatic1 1 1 0 0 0

FILE: benzene-nmr.in

&inputgipaw job = 'nmr' Prefix = 'benzene' tmp_dir = './scratch/' q_gipaw = 0.01 use_nmr_macroscopic_shape = .true./

FILE: benzene-efg.in

&inputgipaw job = 'efg' prefix = 'benzene' tmp_dir = './scratch/'/

pw.x -in benzene-scf.in > benzene-scf.outgipaw.x -in benzene-nmr.in > benzene-nmr.outgipaw.x -in benzene-efg.in > benzene-efg.out

Page 63: GIPAW-NMR method

   

benzene-nmr.out

Program GIPAW v.4.1 starts ... Today is 21Jul2005 at 8:52:20

Parallel version (MPI)

Number of processors in use: 4 R & G space division: proc/pool = 4

Planes per process (thick) : nr3 = 96 npp = 24 ncplane = 9216

Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 24 1377 82821 24 1377 82821 345 10373 2 24 1377 82819 24 1377 82819 344 10372 3 24 1377 82819 24 1377 82819 346 10374 4 24 1378 82820 24 1378 82820 346 10374 tot 96 5509 331279 96 5509 331279 1381 41493

init_gipaw_1: projectors nearly linearly dependent: ntyp = 1, l/n1/n2 = 0 2 1 0.99854824 init_gipaw_1: projectors nearly linearly dependent: ntyp = 1, l/n1/n2 = 1 2 1 0.99933412 init_gipaw_1: projectors nearly linearly dependent: ntyp = 2, l/n1/n2 = 0 2 1 0.99706935

NMR: species C, contribution to shift due to core = 200.510NMR: species H, no information on the core

Page 64: GIPAW-NMR method

   

benzene-nmr.out

f-sum rule: -29.9594 0.0000 0.0000 0.0000 -29.9594 0.0000 0.0000 0.0000 -29.9725

f-sum rule (symmetrized): -29.9594 0.0000 0.0000 0.0000 -29.9594 0.0000 0.0000 0.0000 -29.9725

chi_bare pGv (HH) in 10^{-6} cm^3/mol: -35.1776 0.0000 0.0000 0.0000 -35.1776 0.0000 0.0000 0.0000 -91.7273

chi_bare vGv (VV) in 10^{-6} cm^3/mol: -31.2502 0.0000 0.0000 0.0000 -31.2502 0.0000 0.0000 0.0000 -94.3768

Page 65: GIPAW-NMR method

   

benzene-nmr.out

NMR chemical bare shifts in ppm:

Atom 1 C pos: ( 0.131936 0.000000 0.000000) sigma: -100.1731 -181.7889 0.0000 0.0000 0.0000 -109.8400 0.0000 0.0000 0.0000 -8.8903

Atom 2 C pos: ( 0.065968 0.114260 0.000000) sigma: -100.1731 -127.8272 -31.1548 0.0000 -31.1548 -163.8017 0.0000 0.0000 0.0000 -8.8903

NMR chemical diamagnetic shifts in ppm:

Atom 1 C pos: ( 0.131936 0.000000 0.000000) sigma: 4.0081 4.0056 0.0000 0.0000 0.0000 4.0056 0.0000 0.0000 0.0000 4.0130

NMR chemical paramagnetic shifts in ppm:

Atom 1 C pos: ( 0.131936 0.000000 0.000000) sigma: -57.5707 -85.7823 0.0000 0.0000 0.0000 -59.3537 0.0000 0.0000 0.0000 -27.5761

Page 66: GIPAW-NMR method

   

benzene-nmr.out

Total NMR chemical shifts in ppm:

Atom 1 C pos: ( 0.131936 0.000000 0.000000) sigma: 46.7743 -63.0556 0.0000 0.0000 0.0000 35.3219 0.0000 0.0000 0.0000 168.0566

Symmetric tensor -63.0556 0.0000 0.0000 0.0000 35.3219 0.0000 0.0000 0.0000 168.0566

eigenvalue: 168.0566 eigenvector: 0.0000 0.0000 1.0000

eigenvalue: 35.3219 eigenvector: 0.0000 -1.0000 0.0000

eigenvalue: -63.0556 eigenvector: 1.0000 0.0000 0.0000

Anti-symmetric tensor 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Page 67: GIPAW-NMR method

   

benzene-efg.out

Total EFG calculation:

C 1 efg -0.127585 0.000000 0.000000 C 1 efg 0.000000 -0.208497 0.000000 C 1 efg 0.000000 0.000000 0.336082

C 1 eig= 0.336082 -0.127585 -0.208497 C 1 Q= 1.00 10e-30 m^2 Cq= 0.7897 MHz eta= 0.24075

C 2 efg -0.188269 0.035036 0.000000 C 2 efg 0.035036 -0.147813 0.000000 C 2 efg 0.000000 0.000000 0.336082

C 2 eig= 0.336082 -0.127585 -0.208497 C 2 Q= 1.00 10e-30 m^2 Cq= 0.7897 MHz eta= 0.24075

Page 68: GIPAW-NMR method

   

benzene-efg.out

H 7 efg 0.276516 0.000000 0.000000 H 7 efg 0.000000 -0.129257 0.000000 H 7 efg 0.000000 0.000000 -0.147259

H 7 eig= 0.276516 -0.129257 -0.147259 H 7 Q= 1.00 10e-30 m^2 Cq= 0.6497 MHz eta= 0.06510

Page 69: GIPAW-NMR method

   

Acknowledgements

● Francesco Mauri

● Davide Ceresoli

Thibault Charpentier