GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf ·...

20
GHz Spectrum Acquisition in Realtime Haitham Hassanieh Lixin Shi, Omid Abari, Ezz Hamed and Dina Katabi

Transcript of GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf ·...

Page 1: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

GHz Spectrum Acquisition in Realtime

Haitham Hassanieh

Lixin Shi, Omid Abari, Ezz Hamed and Dina Katabi

Page 2: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Spectrum Crisis• The FCC: spectrum crunch started in 2013• But at any time, most of the spectrum is unused

Seattle January 7, 2013(Microsoft Spectrum observatory)

Frequency (GHz)1.5 2 2.5 3 65.554.543.51

Occup

ancy (%

)

0

20

40

60

80

100

Page 3: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Spectrum Crisis• The FCC predicts a spectrum crunch starting 2013• But at any time, most of the spectrum is unused

Seattle January 7, 2013(Microsoft Spectrum observatory)

Frequency (GHz)1.5 2 2.5 3 65.554.543.51

Occup

ancy (%

)

0

20

40

60

80

100

Dynamic Spectrum AccessSense to find unused bands; Use them!How do you capture GHz of spectrum? 

Page 4: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Realtime GHz Spectrum Sensing is Difficult

• Today,  sequential scanning of tens of MHz Can easily miss radar signals

• Key Challenge: high‐speed ADCs

Tens of MHz ADCLow‐power 

High resolutionCheap

A Few GHz ADC10x more powerPoor resolution

Expensive

Page 5: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Idea: Leverage Sparsity

Sparse recovery show that one can acquire sparse signals using sub‐Nyquist sampling

Compressive Sensing however is difficult• Random sampling  Can’t use low‐speed ADCs

• Compute million‐point FFT  High power

Seattle January 7, 2013(Microsoft Spectrum observatory)

1.5 2 2.5 3 65.554.543.51

Occup

ancy (%

)

0

20

40

60

80

100

Page 6: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Idea: Leverage Sparsity

Sparse FFTNo random sampling  Use a few low‐speed ADCsSub‐linear algorithm  Computes large FFT cheaply

Seattle January 7, 2013(Microsoft Spectrum observatory)

1.5 2 2.5 3 65.554.543.51

Occup

ancy (%

)

0

20

40

60

80

100

Page 7: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Divide spectrum into a few buckets

Estimate the large coefficients in each non‐empty bucket

How Does Sparse FFT Work?

7

1‐ Bucketize

2‐ Estimate

Can ignore empty bucket

Page 8: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

How Does Sparse FFT Work?Bucketize Estimate

Page 9: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Bucketize Estimate

How Does Sparse FFT Work?

Sub‐sampling time  Aliasing the frequencies

9

Subsample1 2 3 4 5 7 8 9 106

FFT

FFT

Time Frequency

1 2 3 4 5Alias

1 2 3 4 5

Page 10: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

How Does Sparse FFT Work?

Empty Bucket Isolated Freq. Estimate

Collision  Cannot Estimate

Bucketize Estimate

Page 11: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

How Does Sparse FFT Work?Bucketize Estimate

Bucketize multiple time using co‐prime sub‐sampling Same frequencies don’t collide in two bucketizations

Page 12: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

How Does Sparse FFT Work?Bucketize Estimate

Identify isolated freq. in one bucketization and subtract them from the other; and iterate …

Output Result:

Page 13: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

How Does Sparse FFT Work?Bucketize Estimate

Repeat bucketization after shifting the signal in time by a time shift

Freq‐Domain

Phase Rotation :

Time‐Domain

Page 14: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

BigBand: GHz Receiver for Sparse Signals

• Sub‐sample the data  Can use low‐speed ADCs• Very fast algorithm  Lower‐power consumption

• Used sparse FFT to build a GHz receiver from three tens of MHz ADCs

• Both senses and decodes the spectrum

Page 15: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Realtime GHz Spectrum SensingCambridge, MA January 15 2013

15

Page 16: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Realtime GHz Spectrum SensingCambridge, MA January 15 2013

16

3 ADCs with a combined digital Bandwidth of 150 MHz can acquire a GHz

Page 17: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Decoding Senders Randomly Hopping in a GHz

Number Transmitters

17

Page 18: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Decoding Senders Randomly Hopping in a GHz

Number Transmitters

18

SFFT enables realtime GHz sensing and decoding for low‐power portable devices

Page 19: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Differential BigBand

• Even if the spectrum is 100% occupied, changes in occupancy are sparse Apply sFFT to Changes/Diffs

• Can’t subtract signals; operate over power

• Realtime GHz sensing; but no decoding

But, what if the spectrum is not sparse?!

Page 20: GHz Spectrum Acquisition in Realtimehaitham.ece.illinois.edu/Papers/BIGBAND_INFOCOM_Slides.pdf · 2017. 1. 2. · BigBand: GHz Receiver for Sparse Signals • Sub‐sample the data

Conclusion• BigBand provides GHz‐wide realtime spectrum sensing and decoding using sFFT

• Differential‐BigBand provides GHz sensing using sFFT

• Imagine multi‐GHz of unlicensed open spectrum operating with carrier sense (a la WiFi)