GHANA BUILDING CODE - PART 05.pdf

132
1 PART 5 STRUCTURAL LOADS AND DESIGN TABLE OF CONTENTS SECTION 5.1 SCOPE 2 5.2 DEFINITIONS 2 5.3 DESIGN REQUIREMENTS ………………… 3 5.4 DESIGN LOADS AND EFFECTS …………… 6 5.5 LIMIT STATE DESIGN ………………………… 7 5.6 DEAD LOADS …………………………………….14 5.7 LIVE (IMPOSED) LOADS DUE TO USE AND OCCUPANCY .…14 5.8 DYNAMIC LOADING …………………………..19 5.9 EFFECTS OF WIND ………………………………..21 5.10 EFFECTS OF EARTHQUAKE …………………..58 APPENDIX A …………………………………………… …127

Transcript of GHANA BUILDING CODE - PART 05.pdf

  • 1

    PART5STRUCTURALLOADSANDDESIGN

    TABLEOFCONTENTS

    SECTION

    5.1SCOPE2

    5.2DEFINITIONS2

    5.3DESIGNREQUIREMENTS3

    5.4DESIGNLOADSANDEFFECTS6

    5.5LIMITSTATEDESIGN7

    5.6DEADLOADS.14

    5.7LIVE(IMPOSED)LOADSDUETOUSEANDOCCUPANCY.14

    5.8DYNAMICLOADING..19

    5.9EFFECTSOFWIND..21

    5.10EFFECTSOFEARTHQUAKE..58

    APPENDIXA127

  • 2

    PART5STRUCTURALLOADSANDPROCEDURES

    5.1SCOPE

    5.1.1 This section covers all dead loads and imposed loads which shall be

    sustainedandtransmittedbyabuildingandcertainstructureswithoutexceeding

    thestresslimitationsspecifiedelsewhereintheCode.Itappliesto:

    (1) newbuildingsandnewstructures;

    (2) alterationsandadditionstoexistingbuildingsandstructures;

    (3) existingconstructionsonchangeofuse.

    5.1.2Thispartofthecodedoesnotcover

    (1) loadsonroadsandrailbridges;

    (2) loadsonstructuressubjecttointernalpressurefromcontents,(e.g.bunkers

    silosandwatertanks)whichshouldbecalculatedindividually;

    (3) loadsduetomachineryvibration,exceptthoseduetosomegantrycranes;

    (4) loadsduetolifts;

    (5) loadsincidentaltoconstruction;

    (6) testloads.

    Theseloadsarecoveredbyspecialized(proprietory)documentsproducedbymanufacturers.

    5.2DEFINITIONS

    5.2.1 Unless otherwise specified the following definitions shall apply for the

    purposesofthispartoftheCode.

    DeadLoads:The forcedue tothestaticweightofallpermanentstructuraland

    nonstructural components of a building, such aswalls, partitions, floors,

    roofs,fixedserviceequipmentandallotherpermanentconstruction.

    Live (Imposed) Loads: The load assumed to be produced by the intended

    occupancyoruse includingdistributed,concentrated, impact, inertia forcesbut

    excludingwindandearthquakeloads.

    WindLoads:Allloadsduetotheeffectofwind,pressureorsuction.

  • 3

    EarthquakeLoads:Allloadsduetotheeffectofearthquake.

    5.3DESIGNREQUIREMENTS

    5.3.1 (1) Buildings and their structural members including formwork and

    falseworkshallbedesignedtohavesufficientstructuralcapacitytoresistsafely

    andeffectivelyallloadsandeffectsofloadsandinfluencesthatmayreasonably

    beexpected,havingregardtotheexpectedservicelifeofbuildings.

    5.3.1(2)Allpermanentand temporary structuralmembers, including formwork

    and falsework of a building, shall be protected against loads exceeding the

    design loadsduringtheconstructionperiodexceptwhen,asverifiedbyanalysis

    or test, temporary overloading of a structural member would result in no

    impairmentofthatmemberoranyothermember.Inaddition,precautionsshall

    be taken during all stages of construction to ensure that the building is not

    damagedordistortedduetoloadsappliedduringconstruction.

    5.3.2DesignBasis

    Buildingsandtheirstructuralmembersshallbedesignedbyoneofthefollowing

    methods:

    (1) analysisbasedonwellestablishedprinciplesofmechanics;

    (2) evaluationofagivenfullscalestructureoraprototype

    byaloadingtest;

    (3) Studiesofmodelanalogues(modeling).

    5.3.3Deflections

    (1) Structural members shall be designed so that their deflections under

    expectedserviceloadswillbeacceptablewithregardto:

    (a) theintendeduseofbuildingormember;

    (b) possibledamagetononstructuralmembersandmaterials;

    (c) possible damage to the structure itself and, where significant, the

    additionaleffectsofloadsactingonthedeformedstructure.

    (2) Deflectionslistedinclause5.3.3(1)shallbetakenintoaccountinallstructures

    and structural members made of material susceptible to deflections,

  • 4

    deformationsorchangesinloaddistributionduetocreep,shrinkageorother

    effectsinthematerialsofwhichtheyarecomposed.

    (3) Thelateraldeflectionofbuildingsduetodesignwindandgravityloadsshall

    becheckedtoensurethatnonstructuralelements,whosenatureisknown

    atthetimethestructuraldesigniscarriedout,willnotbedamaged.Except

    asprovidedinClause5.3.3(4)andunlessotherwiseapproved,thetotaldrift

    perstoreyunderdesignwindandgravityloadsshallnotexceed1/500ofthe

    storeyheight.

    (4) ThedeflectionlimitsrequiredinClause5.3.3(3)doesnotapplytoindustrial

    buildings or sheds if it is known by experience that greatermovement is

    acceptable.

    5.3.4VibrationsofFloors

    (1) Special considerations shall be given to floor systems susceptible to

    vibration to ensure that such vibration is acceptable for the intended

    occupancyofthebuilding.

    (2) Lateral Deflections of Tall Buildings: Unusually flexible buildings and

    buildingswhoseratioofheighttominimumeffectivewidthexceeds4to1

    shall be investigated for lateral vibrations under dynamic wind loading.

    Lateralaccelerationsof thebuilding shallbechecked toensure that such

    accelerationsareacceptabletotheintendedoccupancyofthebuilding.

    (3) Stability under Compressive stress: Provision shall be made to ensure

    adequatestabilityofastructureasawhole,andadequatelateral,torsional

    and local stability of all structural parts which may be subject to

    compressivestress.

    5.3.5DesigndrawingsandCalculations

    (1) Structuraldrawings submittedwith theapplication tobuild shallbear the

    signatureofthedesigner.

  • 5

    (2)Drawingssubmittedwiththeapplicationtobuildshallindicateinadditionto

    thoseitemsspecifiedelsewhereinothersectionsofPart5,applicabletoaspecific

    material:

    (a) the name and address of persons responsible for the structural

    design;

    (b)thecodeorstandardtowhichthedesignconforms;

    (c)thedimensions,locationandsizeofallstructuralmembersinsufficient

    detailtoenablethedesigntobechecked;

    (d)sufficientdetailtoenabletheloadsduetomaterialsof

    constructionincorporatedinthebuildingtobedetermined;

    (e)allintendedusesandoccupancies;

    (f) all effects and loads, other than dead loads used in the design of

    structuralmembers.

    (3)Thecalculationsandanalysismadeinthedesignofthestructuralmembers,includingpartsand

    componentsofabuildingshallbeavailableuponrequestforinspectionbytheauthorityhaving

    jurisdiction.

    (4) Structural integrity: Buildings and structural systems shall provide such structural integrity,

    strengthorotherdefenses that thehazardsassociatedwithprogressivecollapsedue to local

    failurecausedbysevereoverloadsorabnormaleventsnotspecificallycovered inthissection

    arereducedtoalevelcommensuratewithgoodengineeringpractice.

    5.3.6InspectionofConstruction

    (1) Inspectionof the constructionof anybuildingorpart thereof shallbe carriedoutby the

    designer,orbyanothersuitablyqualifiedpersonresponsibletothedesigner,toensurethat

    theconstructionconformswiththedesign.

    (2) The designer or another suitably qualified person familiar with the design concept and

    responsibletothedesigner,shallreviewallshopdrawingsandotherdrawingsrelevantto

    thedesigntoensureconformancetothedesign.

    (3) WorkmanshipandMaterials:Workmanshipandmaterialsshallbeinspectedandallreports

    ofmaterial tests shall be reviewed by the designer or another suitably qualified person

    responsibletothedesignerduringtheprocessofconstruction.

  • 6

    (4) Offsite inspections:Where abuildingor a componentof abuilding is assembledoff the

    buildingsite, inamannerthat itcannotbe inspectedonsite,approvedoffsite inspection

    shallbeprovidedwhenrequiredbytheauthorityhaving jurisdictiontoensurecompliance

    withthisCode.

    (5) InspectionReports:Copiesofallinspectionreportsshallbemadeavailablebythedesigner

    uponrequesttotheauthorityhavingjurisdiction.

    5.4DESIGNLOADSANDEFFECTS

    5.4.1(1)ExceptasprovidedforinClause5.4.2,thefollowingcharacteristicloads,forcesandeffects

    shall be considered in the design of a building and its structural members and

    connections:

    GK Dead load: Is the selfweightof thestructureand theweightof finishes,ceilings,services

    andpartitions (seeBS6399:Part1, Loadings forbuildings.Codeofpractice fordeadand

    imposedloads)andAppendixA.

    QK Live(orImposedorVariable)load:Dueto intendeduseandoccupancy(include loadsdue

    tomovable partitions and vertical loads due to cranes) and rain (see BS 6399:Part1 and

    Table5.6).

    WK Wind load:Dependson the location, shapeanddimensionof thebuildings (seeBS6399:

    Part2,Loadingsforbuildings:Codeofpracticeforwindloads)andSection5.9ofthisPart.

    EnNominalearthloads:Earthandhydrostaticpressure,surcharge,horizontalcomponentsof

    staticorinertiaforces(seeBS8004:CodeofpracticeforFoundations).

    EEarthquakeload(SeeSection5.10ofthisPart)

    T Contractionorexpansiondue to temperature changes, shrinkage,moisture

    changes, creep in component materials, movement due to differential

    settlementorcombinationthereof.

  • 7

    5.4.2(1)Whereabuildingorstructuralmembercanbeexpectedtobe

    subjectedtoloads,forcesorothereffectsnotlistedinClause5.4.1(1);

    sucheffectsshallbetakenintoaccountinthedesignbasedonthemost

    appropriateinformationavailable.

    (2)Ifitcanbeshownbyengineeringprinciplesorifitisknownfrom

    experience,thatneglectofsomeoralltheeffectsduetoTdonot

    affectthestructuralsafetyandserviceability,theyneednotbe

    consideredinthecalculations.

    5.4.3 Structuraldesign shallbe carriedout in accordancewith Section5.5 Limit

    StateDesign.

    5.5LIMITSTATEDESIGN

    5.5.1(1)InthissectionthetermLimitStatemeansthoseconditionsofabuildingstructure

    inwhichthebuildingceasestofulfillthefunctionortosatisfytheconditionsforwhich

    itwasdesigned.

    LimitStateDesignadmitsthatastructurecanbecomeunsatisfactoryinvariousways,

    allofwhichneedtobeconsideredagainstdefinedlimitsofacceptability.

    Byprovidingsufficientmarginsofsafetyagainstinherentvariabilityinloading(actions),

    materialproperties,environmentalconditions,designmethodsandconstruction

    practices,limitstatedesignaimsatgivinganacceptableprobabilitythatthestructure

    willperformsatisfactorilyduringitsintendedworkinglife.

    Thelimitstatescanbeplacedintwocategories:

    (a)Ultimatelimitstates,whicharethosecorrespondingtomaximumloadcarrying

    capacityandsafetyofpeopleandthestructuree.g.

    (i) Lossofequilibrium(overturning)ofpartorthewholeofthestructurewhenconsideredasarigidbody.

    (ii) Ruptureofcriticalsectionsofthestructure.

    (iii) Transformationofstructureintoamechanism.

    (iv) Failurethroughexcessivedeformation.

    (v) Deteriorationarisingoutoffatigueeffects.

    (b) Serviceability limit states, which are related to the criteria governing normal use or

  • 8

    durabilitye.g.

    (i) Excessivedeformationswithrespecttonormaluseofstructure.

    (ii) Prematureorexcessivecracking.

    (iii) Undesirabledamage(corrosion).

    (iv) Excessivedisplacementwithoutlossofequilibrium.

    (v) Excessivevibrations.

    (vi) Thecomfortofpeople.

    (vii)Theappearanceofthestructure.

    (2)Characteristicloads(GK,QK,WK,En,E,T)meansthoseloadsdefinedinClause5.4.1.

    (3)Partialsafetyfactorstothevalueofloads(f),usedindesigninsection5.5.2thattakesaccount

    ofthepossibilityofunfavourabledeviationsoftheactionvalues,uncertaintiesinmodelingthe

    effectsofactions,andthesignificanceoftheparticularlimitstate.

    (4)Partialsafetyfactorstothevaluesofmaterialproperties(m)usedindesign.Thismakes

    allowances forsubstandardmaterialsor for thedeteriorationofmaterialsduring the lifeof

    thestructure.

    (5) Actioncombinationfactor,,whichforimposed(variable)loads,areusedinmultiplying

    characteristicvalues toobtain representativevalues.Theuseof factors reduce thedesign

    valuesofmorethanonevariableloadwhentheyacttogether(seeTable5.3).

    (6) Forimposed(variable)loads,underEurocode(see5.3):

    representativevalues=characteristicvaluex

    (7) Inmostcases,thedesignvalueofanaction(loadcombination)canbeexpressedas:

    designvalue=representativevaluexf

    5.5.2MethodsofLimitStateDesign

    5.5.2.1Ghana,BritishSystemGS(BS8110:Part1)

    5.5.2.1.1RequiredStrengthforUltimateLimitState

    (1)TherequiredstrengthRprovidedtoresistdead loadGKand imposed loadQKshallbeat least

    equalto:

    R=1.4GK+1.6QK(51)

    (2)Inthedesignofastructureormember,ifresistancetothestructuraleffectsofaspecifiedwind

    loadWK,mustbe includedinthedesignthefollowingcombinationsofGK,QKandWKshallbe

    investigatedindeterminingthegreatestrequiredstrengthR.

  • 9

    R=1.2GK+1.2QK+1.2WK(52)

    wherethecasesofQKhavingitsfullvalueorbeingcompletelyabsentshallbothbecheckedto

    determinethemostsevereconditionusing

    R=0.9GK+1.4WK(53)

    Inanycase,thestrengthofthememberorstructureshallnotbelessthanrequiredbyEq.(51).

    (3) If resistance tospecifiedearthquake loadsor forcesEmustbe included in thedesign, refer to

    Section5.10ofthisPartonEffectsofEarthquake.

    (4) If lateralearthpressureHmustbe included indesign thestrengthRshallbeat leastequal to

    1.4GK + 1.6QK + 1.6H but where GK or QK reduce the effect of H (i.e. favourable), the

    corresponding coefficients shall be taken as 0.90 for GK and zero for QK i.e. the governing

    equationsare:

    R=1.4GK+1.6QK+1.6H

    R=0.9GK+1.6H

    R=1.4GK+1.6QK

    (6) ForlateralloadsFduetoliquids,theprovisionsforClause5.5.2.1.1(4)shallapply,except

    that1.4Fshallbesubstituted for1.6H.Theverticalpressureof liquidsshallbeconsideredas

    deadload,withdueregardtovariationinliquiddepth.

    (6)Wherethestructuraleffectsofdifferentialsettlement,creep,shrinkageortemperatureTmaybe

    significantthegoverningequationshallbe

    R=1.2GK+1.2QK+1.2T

    TheaboveactionsaresummarizedinTable5.1

  • 10

    Table5.1LoadcombinationsforUltimateLimitState

    Load

    Combination

    LoadType

    DeadLoad ImposedLoad Earthand

    Water

    pressure

    Wind

    Adverse Beneficial Adverse Beneficial

    1.DeadandImposed

    (andearthandwater

    pressure)

    1.4 1.0 1.6 0 1.4

    2.DeadandWind

    (andearthandwater

    pressure)

    1.4 1.0 1.4 1.4

    3. Dead, Wind and

    Imposed (and earth

    andwaterpressure)

    1.2 1.2 1.2 1.2 1.2 1.2

    5.5.2.1.2ValuesforaServiceabilityLimitState

    Abuilding and its structural components shallbe checked for serviceability limit

    statesasdefinedinClause5.5.1(b).Wheremorethanone loadcontributestothe

    stressinthememberthecombinationofloadsshallbeassumedtobe:

    GK+((QK+(EorWK)+T))

    Whereshallbeequalto:

    (a)1.0whenonlyoneoftheloadsQK,(EorWK)andTact;

    (b)0.70whentwooftheloadsQK,(EorWK)andTact;

    (c)0.60whenalloftheloadsQK,(EorWK)andTact.

    5.5.2.2EurocodeSystemGS(BSEN1990,1991,1992)

    OneofthemaindifferencesbetweentheEurocodesandtheBritish/Ghanaiansystem istheuseof

    differentpartialsafetyfactorsandtheoptiontorefine/reduceloadfactorswhendifferentloadcases

    arecombined.

    5.5.2.2.1RequiredstrengthforUltimateLimitState

    The design loads are obtained bymultiplying the characteristic loads by the appropriate partial

  • 11

    safetyfactor,f,fromTable5.2.

    Whenmorethanoneimposedload(variableaction)ispresent,thesecondaryimposedloadmaybe

    reducedbytheapplicationofacombinationfactor,0(seeTable5.4).

    Thebasicloadcombinationfortherequiredstrengthatultimatelimitstateforatypicalbuildingis:

    R=GGK+QQK1+Q0QKi

    where:

    QK1,QK2,QK3etc.aretheactionsduetovertical imposed loads,wind load,snowetc.,QK1beingthe

    leadingactionforthesituationconsidered.

    The unfavourable and favourable factors should be used so as to produce themost onerous

    condition.Generally,permanentactions fromasingle loadsourcemaybemultipliedbyeitherthe

    unfavourableorthefavourablefactor.

    Table5.2ActionCombinationsforUltimateLimitStates(BSEN1990:TableNA.A1.2(B))

    Option PermanentActions

    (DeadLoads)

    VariableActions

    (Imposed,WindLoads)

    Earthand

    Water*

    Unfavourable Favourable Leading Others(i>1)

    1 1.35GK 1.0GK 1.5QK,1 1.50,iQK,i 1.35QK

    2a 1.35GK 1.0GK 1.50,1QK,1 1.50,iQK,i 1.35QK

    2b 1.25GK 1.0GK 1.5QK,1 1.50,iQK,i 1.35QK,i

    *Note: Ifthewaterpressurecalculated isthemostunfavourablevaluethatcouldoccurduringthe lifeofthestructure,a

    partialfactorof1.0maybeused.

    BasedonTable5.2,asummaryofEurocodePartialLoadFactorsisgiveninTable5.3for

    theultimatelimitstate.

  • 12

    Table5.3Partialsafetyfactorsforloadsattheultimatelimitstate

    LimitState

    PermanentActions

    (GK)

    VariableActions

    Leadingvariableaction

    (QK,1)

    Accompanyingvariable

    actions

    (QK,I)

    Unfavourable

    Favourable

    Unfavourable

    Favourable Unfavourable

    Favourable

    (a)Static

    equilibrium1.10 0.90 1.50 0.00 1.50 0.00

    (b)Structural

    strength1.35 1.00 1.50 0.00 1.50 0.00

    (c)Asan

    alternative

    to(a)and(b)

    aboveto

    designfor

    both

    situations

    withoneset

    of

    calculations

    1.35 1.15 1.50 0.00 1.50 0.00

    (d)Geotechni

    calstrength1.35 0.00 1.35 0.00 1.35 0.00

    5.5.2.2.2ValuesforServiceabilityLimitState

    Theaction (load) combination for checking the requirementat the serviceability limit

    stateisgenerallyoftheform:

    GK+QK,1+0,iQK,i

    Where, GK, QK,1 and QK,i are permanent action (dead load), leading variable action

    (imposed load)andother secondaryvariableactions (wheremore thanone imposed

    load contributes to the stresses) respectively. In the case of the secondary variable

    load(s),theireffect(s)maybereducedbytheapplicationofthecombinationfactorsas

    given inTable5.4.The corresponding load cases for the serviceability limit statesare

    giveninTable5.5.

  • 13

    Table5.4Combinationreductionfactors,,forbuildings

    Action 0 1 2

    Domestic,residentialarea 0.7 0.5 0.3

    Officearea 0.7 0.5 0.3

    Congregationareas 0.7 0.7 0.6

    Shoppingareas 0.7 0.7 0.6

    Storageareas 1.0 0.9 0.8

    Trafficarea

    Vehicle30kN0.7 0.7 0.6

    Trafficarea

    30kNVehicle160kN0.7 0.5 0.3

    Roofs 0.7 0.0 0.0

    Windloads 0.5 0.2 0.0

    Temperature(nonfire) 0.6 0.5 0.0

    Table5.5ServiceabilityLoadcases

    Designrequirement Action

    Combinations

    Permanent(Dead

    load)Actions

    GK

    Variable(Imposedload)

    Actions

    LeadingQK,1 OthersQK,i

    Functionand

    damagetoelements,

    includingpartitions

    andfinishes

    Characteristic 1.0 1.0 0

    Usercomfort,useof

    machinery,avoiding

    pondingofwater

    Frequent 1.0 1 2

    Appearanceofthe

    structureorelement

    Quasi

    permanent

    1.0 2 2

  • 14

    5.6DEADLOADS

    5.6.1(1)DeadloadsshallbecalculatedfromunitweightgiveninAppendixAtothispartorfrom

    materialsnotprovidedforinthatAppendixasspecifiedoragreeduponwiththe

    Authorityhavingjurisdiction.

    (2) Whenpartitionsareshown inplans,theiractualweightsshallbe included inthedead

    load.Forallfloorsinwhichpartitionwallsareormaybeintendedbutarenotlocated

    on the plans, the beams and the floor slabswhere these are capable of effective

    lateraldistributionoftheload,shallbedesignedtocarryinadditiontootherloads,a

    uniformlydistributed loadpersquaremetreofnot lessthanonethirdoftheweight

    permetrerunofthefinishedpartitions,butnot lessthan1kN/m2 ifthefloor isused

    forofficepurposes.

    5.7LIVE(IMPOSED)LOADSDUETOUSEANDOCCUPANCY

    5.7.1TheminimumliveloadtobeprovidedforshallbeassetoutintheClausesofthisPart,or,

    wherenotcoveredby theseClauses,as specifiedoragreeduponwith the

    AdministeringAuthority.Inallcasestheliveloadorloadsshallbesoplaced

    that incombinationwithdead loadthemaximumstressesareproduced in

    thememberormembersbeingdesigned.

    5.7.2FloorLiveLoads

    (1) Theminimum floor live loads to be provided for shall be taken as being

    equaltoanequivalentuniformstaticLoadorconcentratedloadwhichever

    produces greater stresses and shall be based on the intended use and

    occupancy as set out in Table 5.6 of this Clause. The concentrated loads

    applied over a specified area of a square with a 300mm side shall be

    locatedsoastocausemaximumeffects.

    Table5.6provides fornormaleffectsofordinary impactandacceleration

    butdoesnotincludeanyallowanceforspecialconcentratedloads.Special

    provisionshallbemade formoving loadsother than those ingarages for

    machineryandotherconcentratedloadsassetoutinSection5.8.

    (2) Theconcentrated imposed loadneednotbeconsideredwhere the floor

    slabiscapableofeffectivelateraldistributionofthisload.

  • 15

    (3) Allbeamsshallbedesignedtocarrythedistributionloadappropriatetothe

    usestowhichtheyaretobeputasgiveninTable5.6.

    (4) Beams, ribsand joists spacedatnotmore than1metre centresmaybe

    designedasfloorslabs.

    (5) Where inTable5.6novaluesaregiven for concentrated load, itmaybe

    assumed that the tabulated distributed load is adequate for design

    purposes.

    (6) Whereanareaoffloor isintendedfor2ormoreoccupanciesatdifferent

    times,thevaluetobeusedfromTable5.6shallbethegreatestvaluefor

    anyoftheoccupanciesconcerned.

    (7)Whentheoccupancyofabuildingischangedthebuildingshallconformto

    therequirementsofthispartoftheCodeforthenewoccupancy.

    5.7.3 ReductioninTotalImposedFloorLoads

    (1)Exceptasprovidedforin5.7.3(2)and5.7.3(3),thereductioninassumedtotal

    imposed floor loadsdefinedbelowmaybe taken indesigning columns,piers,

    walls,theirsupportandfoundations.Forpurposesof5.7.2(1)to5.7.3(3),aroof

    mayberegardedasafloor.

    Let, Le be the imposed load upon the roof and let L1, L2, L3 Ln be the

    respective imposed loadsuponthe floorsnumbered1,2,3 nstarting from

    thetopofthebuilding.

    Forthedesignofthepointsofsupportthefollowingimposedloadsmaybe

    adopted:

    Supportsunderroof LO

    Supportsundertopfloor(floor1) LO+L1

    Supportsunderfloor2LO+0.95(L1+L2)

    Supportsunderfloor3LO+0.9(L1+L2+L3)

    Supportsunderfloor4LO+0.85(L1+L2+L3+L4)

    Supportsunderfloorn LO+ (L1+L2+L3Ln)

    Thecoefficient(3+n)/2nisvalidforn>5

    Forfactoriesandworkshopsdesignedfor5kN/m2ormore,thereductions

    shownabovemaybetakenprovidedtheloadingassumedisnotlessthanit

    wouldhavebeenifallfloorshadbeendesignedfor5kN/m2withnoreductions.

  • 16

    (2)Whereasinglespanofabeamorgirdersupportsnotlessthan46m2offloorat

    onegenerallevel,theimposedloadmay,inthedesignofbeamorgirder,be

    reducedby5%foreach46m2supported,subjecttoamaximumreductionof

    25%.Thisreductionorthatgivenin5.7.3(1),whicheverisgreater,maybe

    takenintoaccountinthedesignofcolumnsorothertypemembersupporting

    suchabeam.

    (3)Noreductionshallbemadeforanyplantormachinerywhichisspecifically

    allowedfororforbuildingsforstoragepurposes,warehouses,garagesand

    thoseofficeareaswhichareusedforstorageandfilingpurposes.

    5.7.4RoofLiveLoadsotherthanWindLoadsorRainLoads.

    (1) FlatRoofs

    Flat roofs towhich there is no direct access (except only such cases as is

    necessaryforcleaningandrepairs)shallwithstandanimposedloadof

    0.25kN/m2measuredonplanoraloadof0.9kNconcentratedonasquare

    with300mmsidewhicheverproducesthegreaterstress.

    (2) On flat floorswhereaccess (in addition to thatnecessary for cleaningand

    repair)isprovidedtotheroof,allowanceshallbemadeforanimposedload

    of1.5kN/m2measuredonplanora loadof1.8kNconcentratedonasquare

    witha300mmside.

  • 17

    Table5.6UsesandLoads

    OccupancyorUse

    IntensityofDistributedLoads(kN/m2)

    ConcentratedLoadtobeappliedunlessotherwisestatedoverany

    squarewitha300mmside(kN/m2)

    1. Residential

    MultifamilyhousePrivateapartmentsPublicroomsCorridors

    4.02.05.04.0

    4.51.84.5

    2. DwellingsNotexceeding2storeysExceeding2storeys

    1.52.0

    1.41.8

    3. Hotels Guestrooms Publicrooms CorridorsservingpublicroomsCorridorsabovefirstfloor

    2.05.05.04.0

    1.84.54.54.5

    4. OfficebuildingsAreas(notincludingcomputerrooms)locatedinbasementandfirstfloorFile,roomsinofficesFloorsabovefirstfloorAreawithcomputingdataprocessingandsimilarequipmentToiletrooms

    5.05.02.53.52.0

    4.54.52.74.5

    5. Assemblyareaswithfixedseatsincluding:AuditoriaChurchesCourtroomsLecturehallsTheatresandotherareaswithsimilaruses

    4.0

    6. Assemblyareaswithoutfixedseatsincluding:ArenasBalconiesDancefloorsDiningareasFoyersandentrancehallGrandstandsReviewingstandsGymnasiaMuseumsStadiaStagesandotherareaswithsimilaruses

    5.0

    3.6

  • 18

    7. DrillroomsandDrillhalls 5.0 9.0

    8. Garageforpassengercarsunloadedbusesandlighttrucksnotexceeding2500kgincludingdrivewaysandrampsAll repairworkshops forall typesof vehicleandparking forvehicles exceeding 2500kg grossweight including drivewaysandramps

    2.5

    Tobedeterminedbutnot lessthan5.0

    9.0

    To be determined but not less than9.0

    9. LibrariesReadingandstudyroomswithoutbookstorageRoomswithbookstorage(eg.Publiclendinglibraries)StackRooms

    2.54.0

    2.4Foreachmetrestackheightwithaminimumof6.5

    4.54.57.0

    10. SchoolsandCollegesClassroomsDormitoriesGymnasiaKitchensLaboratiesincludingequipment

    3.01.55.0

    Tobedeterminedbutnot lessthan3.0Tobedeterminedbutnot lessthan3.0

    2.71.83.6

    4.5

    4.5

    11. HospitalsBedroomsandWardsLaundriesToiletrooms UtilityroomsXrayroomandOperatingtheatres

    2.03.02.02.0

    2.0

    1.84.54.5

    4.512. Factories

    LightMediumHeavy

    5.07.510.0

    4.56.79.0

    13. WarehousesGeneralstoragespaceinindustrialandcommercialbuildings

    10.0

    9.0

    (3) SlopingRoofsuptoangleof65otothehorizontalshallwithstandanimposed

    loadof0.25kN/m2measuredonplanoraverticalloadof0.9kNconcentrated

    onasquarewith300mmsidewhicheverproducesthegreaterstress.

    (Note:ForconcentratedloadsPigeaudsorWestergaardstheorymaybeused)

  • 19

    (4) CurvedRoofs

    The imposed loadonacurved roofshallbecalculatedbydividing the roof

    intonot lessthan fiveequalsegmentsand thenbycalculatingthe loadon

    each,appropriatetoitsmeanslopeinaccordancewith5.7.4(1)to5.7.4(3).

    (5) Roof coverings and purlins at a slope of less than 450 shall be capable of

    carryingaloadof0.9kNconcentratedonanysquarewith125mmside.

    5.8DYNAMICLOADING

    5.8.1 Where loads arising from machinery, runways, cranes and other plant

    producing dynamic effects are supported by or communicated to the

    framework,allowanceshallbemade forthesedynamiceffects, including

    impact,by increasingthedeadweightvaluesbyanadequateamount. In

    ordertoensureeconomy indesign,theappropriatedynamic increase for

    allmembersaffectedshallbeascertainedasaccuratelyaspossible.

    5.8.2Theminimumdesign loaddue toequipment,machineryonotherobjectsor

    persons that may produce impact, is the total weight of equipment or

    machinery plus its maximum lifting capacity, or appropriate live load,

    multiplied by an appropriate factor listed in Table 5.7; except in cases

    wheretheactualmultiplyingfactorhasbeensuppliedbythemanufacturer

    orsupplieroftheequipment inwhichcasethisfactorshallbeusedin lieu

    ofthose listed inTable5.7.Wheredynamiceffectssuchasresonanceand

    fatigueare likely tobe importantasaresultofvibrationofequipmentor

    machinery,adynamicanalysisshallbecarriedout.

    Table5.7ImpactLoads

    Impactdueto Factor

    Operationofmotordrivencranes

    Operationofhanddrivencranes

    Liveloadsonhangersupportedfloorsandstairs

    Supportsforlightmachinery,shaftormotordriven

    Supportsforreciprocatingmachineryorpowerdrivenunits

    1.25

    1.10

    1.33

    1.20

    1.50

  • 20

    5.8.3Theminimumhorizontaldesignloadsoncranesrunwayrailsare:

    (a) Lateralforcewhichshallbe:

    (i) forpoweroperatedcranetrolleys,20%and forhandoperatedtrolleys,10%ofthe

    sumoftheweightsoftheliftedloadsandofthecranetrolleyexcludingotherparts

    ofthecrane;

    (ii) appliedatthetopoftherail,onehalfineachsideoftherunway,and

    (iii) consideredactingineitherdirectionnormaltotherunwayrail.

    (b) Longitudinalforcewhichshallbe:

    (i) 10percentofthemaximumwheelloadsofthecrane,and

    (ii) appliedatthetopoftherail.

    5.8.4(1)LoadsonRailings

    Theminimumdesignloadappliedhorizontallyatthetopofarailingwhichguardsadropofmore

    than460mmshallbe:

    (a)5.8kN/mforexteriorbalconiesofindividualresidentialunitsandaconcentratedloadof

    0.9kNappliedconcurrently;

    (b)1.5kN/mforexitsandstairs;

    (c)2.2kN/mforassemblyoccupancies,exceptforgrandstandsandstadia;

    (d)3.6kN/mforgrandstandsandstadiaincludingramps;

    (e)4.4kN/mforvehicleguardrailsforparkinggaragesapplied530mmabove

    the roadway and minimum total load of (11kN) uniformly

    distributedover each vehicle space applied 530mm above the

    roadway,and

    (f) O.6kNconcentratedloadappliedatanypointforindustrialcatwalksand

    otherareaswherecrowdingbymanypeopleisveryimprobable.

    (2)Theminimumdesignloadappliedhorizontallytopanelsunderrailingswhich

    guardadropofmorethan460mmshallbe1.0kN/m2.

    (3)Theminimumdesign loadappliedverticallyatthetopofarailingwhichguardsa

    drop of more than 460mm shall be 1.5kN/m acting separately from the

    horizontalloadprovidedinClause5.8.4(1).

    (4)Grandstandsandanybuildingusedforassemblypurposestoaccommodatelarge

    numbersofpeopleatonetimeshallbedesignedtoresistallinertiaswayforces

  • 21

    producedbyuseandoccupancyof thebuildingorstructure.The inertia force

    shall be not less than 0.30kN/m of seat parallel to each row of seats or

    0.2kN/mofseatperpendiculartoeachrowofseats.

    5.9EFFECTSOFWIND

    5.9.1Scope

    ThisSubsectiondealswithmethodsforcalculatingwindloadsthatshouldbetaken

    into accountwhen designing buildings, structures and components of buildings

    andstructures.

    Itdoesnotapplytobuildingorstructureswhose lightweight, low frequencyand

    1owdampingpropertiesmakethemsusceptibletovibration.

    5.9.2Definitions

    Unlessotherwisespecified, the followingdefinitionsshallapply for thepurposes

    ofthisSubsection.

    1. Breadth:Thedimensionofthebuildingnormaltothedirectionofthewind.

    2. Depth:Thedimensionofthebuildingmeasuredinthedirectionofwind.

    3. Height:Theheightofabuildingabovethegroundadjoiningthatbuilding.

    4. Length:Thegreaterhorizontaldimensionofabuildingabove, theground

    adjoining that building; or the length, between supports, of an individual

    structuralmember.

    5. Width: The lesser horizontal dimension, of a building above the ground

    adjacent to thatbuilding,or thewidthofa structuralmemberacross the

    directionofthewind.

    6. Heightaboveground:Thedimensionabovegenerallevelofthegroundto

    windward.

    7. Element of Surface Area: The area of surface over which the pressure

    coefficientistakentobeconstant.

    8. Effective Frontal Area: The area normal to the direction of thewind or

    shadowarea.

    9. DynamicPressureofWind:Thefreedynamicpressureresultantfrom

    thedesignwindspeed.

    10. Pressure Coefficient: The ratio of the pressure acting at a point on a

  • 22

    surfacetothedynamicpressureoftheincidentwind.

    11. ForceCoefficient:Anondimensionalcoefficientsuchthat

    thetotalwindforceonabodyistheproductoftheforce

    coefficientmultipliedbythedynamicpressureofthe

    Incidentwindandtheappropriateareaasdefinedin

    text.

    12. Topography:Thenatureoftheearthssurfaceas

    influencedbythehillandvalleyconfigurations.

    13. GroundRoughness:Thenatureof theearths surfaceas influencedby

    smallscale obstruction such as trees and buildings (as distinct from

    topography)

    Note:BreadthandDepthofabuildingaretothedirectionof

    wind.LengthandWidtharedimensionsrelatedtotheplanform.

    5.9.3Nomenclature

    A = elementofsurface

    Ae = effectivefrontalarea

    b = breadth

    Cf = forcecoefficient

    Cfn = normalforcecoefficient

    Cft = transverseforcecoefficient

    Cf1 = frictionaldragcoefficient

    Cp = pressurecoefficient

    Cpe = externalpressurecoefficient

    Cpi = internalpressurecoefficient

    d = depth

    D = diameter

    F = force

    Fn = normalforce

    Ft = transverseforce

    F1 = frictionalforce

    h = height

    H = heightaboveground

  • 23

    j = widthofmemberasindicatedindiagram

    ja = widthofmemberacrossdirectionofwind

    k = aconstant

    K = reductionfactor

    l = length

    p = pressureonsurface

    Pe = externalpressure

    Pi = internalpressure

    B = totalloadintensity

    q = dynamicpressureofwind(stagnationpressure)

    Re = Reynoldsnumber

    S1 = topographyfactor

    S2 = groundroughness,buildingsizeandheightabovegroundfactor

    S3 = astatisticalfactor

    V = basicwindspeed

    Vs = designwindspeed

    w = widthofbuilding

    w1 = baywidthinmultibaybuildings

    = windangle(fromagivenaxis)

    = aerodynamicsolidityratio

    = shieldingfactor

    v = kinematicviscosity

    = geometricsolidityratio

    5.9.4ProcedureforcalculatingWindLoadsonStructures

    (1)Thewindloadonastructureshouldbecalculatedfor:

    a) thestructureasawhole;

    b)individualstructuralelementssuchasroofsandwalls;

    c) individualcladdingunitsandtheirfixings.

    (2)Inthecaseofpartiallycompletedstructures,thewindloadwilldependonthe

    methodandsequenceofconstructionandmaybecritical.Incalculatingthe

    temporary higher wind loads, themaximum design wind speed Vsmay be

    assumednot tooccurduring the short constructionperiod and a reduced

  • 24

    factor S3 used. It is recommended that the graphs of Fig.5.6 should not be

    extrapolatedforperiodslessthantwoyears.

    (3)Theassessmentofwindloadshouldbemadeasfollows:

    a) ThebasicwindspeedVappropriatetotheareawherethestructure

    istobeerectedisdeterminedasspecifiedin5.9.5(2)

    b) ThebasicwindspeedismultipliedbyfactorsS1,S2andS3togivethe

    designwindspeedVs(see5.9.5(3)).

    Vs=VS1S2S3

    c) Thedesignwindspeedisconvertedtodynamicpressureq=kVS.2

    Table5.11givescorrespondingvaluesofqandVs

    d) Thedesignexternalpressureorsuctionatanypointonthesurface

    ofthebuildingisgivenby:

    p=Cpq

    A negative value of Cp indicates suction. The resultant load on an

    element or cladding depends on the algebraic difference of the

    external pressure or suction and the internal pressure or suction

    maybecalculatedfrom:

    F=(CpeCpi)qA

    AnegativevalueofFindicatesthattheresultantforceisoutwards.

    The totalwind loadona structuremaybeobtainedbyavectorial

    summationoftheloadsonallthesurfaces.

    e) Where a value of force coefficient, Cf, is available, the totalwind

    loadonthebuildingasawholeismoreconvenientlyobtainedfrom:

    F=CfqAe

    PressurecoefficientsaregiveninTables5.14and5.20forarangeof

    building shapes.Force coefficientsaregiven inTables5.21 to5.25

    foruncladstructures.

  • 25

    5.9.5 DesignWindSpeed,VS

    (1)General:ThedesignwindspeedVsshouldbecalculatedfrom

    Vs=VS1S2S3

    Thebasicwindspeedtableisspecifiedin5.9.5(2)andthefactorsS1,S2,S3

    in5.9.5(3).

    (2)BasicWindSpeed:

    a) The basicwind velocity is themaximum 3second gust speed at a

    height of 10m above ground likely to be exceeded on the average

    notmore thanonce in50years, inopencountry.Thevaluesare

    shownby isophleths(lineofequalwindspeed)onthemapinFig.

    5.1.Table5.8 gives basic wind speeds to be used in some major

    townsinGhana.

    b) Itshouldbeassumedthewindmayblowfromanydirection.

    Table5.8BasicWindSpeed(inmetrespersecond)forsomemajortowns

    m/s

    1. Accra 29

    2. Takoradi 29

    3. Kumasi 36

    4. Tamale 34

    5. Ada 34

    6. Saltpond 29

    7. Axim 29

    8. Ho 29

    9. Akuse 34

    10. KeteKrachi 38

    11. Wenchi 38

    12. Yendi 45

    13. Wa 44

    14. Navrongo 35

    15. Bole 36

  • 26

    Fig.5.1:WindSpeeds(m/sec)

  • 27

    (3)WindSpeedFactors

    (a)Topography Factor, S1: The basicwind speed, V, takes account of the

    general level of site above sea level. This does not allow for local

    topographic(orographic)featuressuchashills,valleys,cliffescarpmentsor

    ridges,whichcansignificantlyaffectthewindspeedintheirvicinity.

    ThefactorS1isameasureoftheenhancementthatoccursinwindspeeds

    overhills,cliffsandescarpments.

    Theeffectoftopography istoacceleratewindnearthesummitofhillsor

    crestsofcliffs,escarpmentsorridgesanddeceleratethewindinvalleysor

    nearthefootofcliffs,steepescarpmentsorridges.

    Table5.9givesrecommendedvaluesofS1

    Table5.9TopographyFactorS1

    Topography

    category

    Description ValueofS1

    1 Allcasesexceptin2and3below 1.0

    2 Very exposed hillslopes andcrests where acceleration of

    windisknowntooccur.

    Valleysshapedsothatfunnelingofwindmayoccur.

    Sites that are known to beabnormallywindy due to some

    localinfluence.

    1.1

    3 Steepsidedenclosedvalleys,sheltered

    fromallwinds.

    0.9

  • 28

    (i) EffectofaClifforEscarpmentontheEquivalentHeightaboveground.

    ThevalueofS1inTable5.9canbeexplicitlycalculatedfortheeffectofacliffor

    escarpmentatasite.

    Theeffectoftopographywillbesignificantatasitewhentheupwardslope()

    isgreaterthan3(or0.05slope),andbelowthat,thevalueofS1maybetaken

    to be equal to 1.0. The value of S1 varies between 1.0 and 1.36 for slopes

    greaterthan3.

    The influenceof the topographic feature isconsidered toextend1.5Leupwind

    and2.5Ledownwindofthesummitorcrestofthefeature,whereLeisthe

    effectivehorizontallengthofthehilldependingontheslopeasindicatedin

    Fig.5.2.ThevaluesofLeforthevariousslopesaregiveninTable5.10.

    Ifthezonedownwindfromthecrestofthefeatureisrelativelyflat(

  • 29

    Fig. 5.2a: Topographical dimensions General notations

  • 30

    Fig.5.2:Topographicaldimensions(a)HillandRidge,(b)Cliffand

    Escarpment

  • 31

  • 32

    Category1Category2Category3

    Fig. 5.5: Categories of Ground Roughness

  • 33

    (b)GroundRoughness,BuildingSizeandHeightaboveground,FactorS2

    The effect of wind on a building, structure or part thereof depends on

    ground roughness variation ofwindwith height above ground and size of

    buildingorcomponentunderconsideration.ThefactorS2takesaccountofthe

    influencesonwindeffectlistedabove.

    (i)GroundRoughness

    Thegroundroughnesshasbeendividedintothreecategoriesandbuildings

    andtheirelementsintothreeclassesasfollows:

    GroundRoughness1:Open,levelornearlylevelcountrywithnoobstructions.

    Examplesaremostofthecoastalregionoutsidemajorurbanandsuburban

    areas,airfieldsandareassurroundingtheVoltaLake.

    GroundRoughness2:Opencountrywithfewtreesandhouses.Examplesarefarmlandand

    mostoftheareasoftheNorthandUpperRegionsoutsidemajorurbancentres.

    GroundRoughness3:Areascoveredbylargeobstructions.Examplesareforestareas,

    townsandtheirsuburbs.Fig.5.5showsareasofthecountryoutsidemajortownsandsuburbs

    wherethedifferentcategoriesshouldbegenerallyapplicable.

    (ii)CladdingandBuildingsize

    Naturalwindsareturbulentandcontinuallyfluctuating.Thereisevidenceavailablethatfor

    buildingsandcomponentsofbuildingsmoresusceptibletotheactionofwind,the3second

    gustspeedshouldbeusedindesignwhileforotherbuildingsalongeraveragingtimecouldbe

    used.Asaconsequenceofthis,3classeshavebeenselected.

    ClassA:Allunitsofcladding,glazingandroofingandtheirimmediatefixingsandindividual

    membersofuncladstructures.

    ClassB:Allbuildingsandstructureswhereneitherthegreatesthorizontaldimensionnorthe

    greatestverticaldimensionexceeds50m.

    ClassC:Allbuildingsandstructureswhosegreatesthorizontaldimensionorgreatestvertical

    dimensionexceeds50m.

    ThevalueofS2forvariationforwindspeedwithheightabovegroundforvariousgroundroughness

    categories and building size classes are given in Table 5.12. The height to be used for the

  • 34

    determinationofS2shouldbetakenastheheightfromthemeangroundleveladjoiningthebuilding

    tothetopofthebuilding.Alternatively,thestructuremaybedividedintoconvenientpartsandwind

    loadoneachpartcalculated,usingS2factorthatcorrespondstotheheightabovegroundofthetop

    of thepart.Thedynamicpressure shouldbeassumed toactuniformlyover the structureorpart

    respectively.

    (c) Factorforbuildinglife,S3

    The factor S3 takes into account the intended lifespan of the building or structure and the

    acceptablecalculatedrisk.Thereisalwaysanelementofriskthatagivendesignwindspeedmaybe

    exceeded inastormofexceptionalviolence.Thegreaterthe lifespanofthestructure,thegreater

    therisk. Fig.5.6showsvaluesofS3equivalenttoaperiodofexposureof50yearsplottedagainst

    intendedlifespanordesignlifeinyears.

    Normally,wind loadsoncompletedstructuresandbuildingsshouldbecalculatedatS3=1except

    for:

    (i) temporarystructures;

    (ii) structureswherealongerperiodofexposuretowindmayberequired;

    (iii) structureswheregreaterthannormalsafetyisrequired.

    Theperiodofexposureshouldneverbetakenaslessthan2years.

    Example: Calculate the design speed for a tower 20m high, situated in a well wooded area (

    roughnesscategory3)andfor100yearprobablelifenearanabruptescarpmentofheight35m.The

    tower is locatedaroundHo.Thecrestoftheescarpment is10meffectivedistance fromtheplains.

    Thetowerislocatedonthedownwindside,5mfromthecrest.

    Tan=10/35=0.2857,=15.74

    X=+5Le=10mH=20mX/Le=+5/10=+0.5H/Le=20/10=2

    BasicwindspeedforHo,V=29m/s(Fig.5.1,Table5.8)

    S3factorfor100yrprobablelifewithprobabilitylevelof0.63=1.05(Fig.5.6)

    S2 factor for 20m for a well wooded area (ground roughness category 3)(Class B) = 0.90 (Fig.5.5,Table5.12)

    S1factorfortopography:

    ForX/Le=+0.5andH/Le=2(Fig.5.2);sfactorfromFig.5.3is=0.05

  • 35

    FromTable5.11,factorC=1.2Z/Le=1.2x20/10=2.4

    S1=1+Cxs=1+0.05x2.4=1.12

    Designwindspeed=Vs=VxS1xS2xS3

    =29(1.12)(0.9)(1.05)=30.7m/s

    NoteonFig.5.6

    Forexample,usingthegraphforprobabilitylevel0.63foraperiodofexposureequalto100yearssay,S3=1.05i.e.there

    istheprobabilitylevelof0.63thataspeedwhichis1.05timestheoncein50yearswindspeedobtainedfromFig.5.1

    willbeexceededatleastoncein100years.

    5.9.6DynamicPressureoftheWind

    Using thevalueof thedesign speedVsobtained from section5.9.5, thedynamicpressureof the

    windqaboveatmosphericpressuremaybecalculatedfrom

    where:k=0.613inSIunits(N/mandm/s)

    Table5.13givescorrespondingvaluesofVsandq.

  • 36

    Table5.12GroundRoughness,BuildingsizeandHeightaboveground,FactorS2

    H(m)

    1.OpenCountrywithnoobstructions

    2.OpenCountrywithfewtreesandhouses

    3.Towns,Suburbs,Forestareas

    Class Class ClassA B C A B C A B C

    3orless

    5

    10

    15

    20

    30

    40

    50

    60

    80

    100

    120

    140

    160

    180

    200

    0.83

    0.88

    1.00

    1.03

    1.06

    1.09

    1.12

    1.14

    1.15

    1.18

    1.20

    1.22

    1.24

    1.25

    1.26

    1.27

    0.78

    0.83

    0.95

    0.99

    1.01

    1.05

    1.08

    1.10

    1.12

    1.15

    1.17

    1.19

    1.20

    1.22

    1.23

    1.24

    0.73

    0.78

    0.90

    0.94

    0.96

    1.00

    1.03

    1.06

    1.08

    1.11

    1.13

    1.15

    1.17

    1.19

    1.20

    1.21

    0.72

    0.79

    0.93

    1.00

    1.03

    1.07

    1.10

    1.12

    1.14

    1.17

    1.19

    1.21

    1.22

    1.24

    1.25

    1.26

    0.67

    0.74

    0.88

    0.95

    0.98

    1.03

    1.06

    1.08

    1.10

    1.13

    1.16

    1.18

    1.19

    1.21

    1.22

    1.24

    0.63

    0.70

    0.83

    0.91

    0.94

    0.98

    1.01

    1.04

    1.06

    1.09

    1.12

    1.14

    1.16

    1.18

    1.19

    1.21

    0.64

    0.70

    0.78

    0.88

    0.95

    1.01

    1.05

    1.08

    1.10

    1.13

    1.16

    1.18

    1.20

    1.21

    1.23

    1.24

    0.60

    0.65

    0.74

    0.83

    0.90

    0.97

    1.01

    1.04

    1.06

    1.10

    1.12

    1.15

    1.17

    1.18

    1.20

    1.21

    0.55

    0.60

    0.69

    0.78

    0.85

    0.92

    0.96

    1.00

    1.02

    1.06

    1.09

    1.11

    1.13

    1.15

    1.17

    1.18

    Table5.13ValuesofqinSIUnits(N/m2)

    Vs

    (m/s)

    0

    1.0

    2.0 3.0 4.0 5.0 6.0 7.0

    8.0 9.0

    10

    20

    30

    40

    50

    60

    70

    61

    245

    552

    981

    1530

    2210

    3000

    74

    270

    589

    1030

    1590

    2280

    88

    297

    628

    1080

    1660

    2360

    104

    324

    668

    1130

    1720

    2430

    120

    353

    709

    1190

    1790

    2510

    138

    383

    751

    1240

    1850

    2590

    157

    414

    794

    1300

    1920

    2670

    177

    447

    839

    1350

    1990

    2750

    199

    481

    885

    1410

    2060

    2830

    221

    516

    932

    1470

    2130

    2920

    (Note:Todetermineqforaspeedofsay33m/s lookunder3alongtherowcorrespondingto30whichgivesq=668N/m2).

  • 37

    5.9.7PressureCoefficientsandForceCoefficients

    (1)General:Theforceonabuildingorstructureorpartthereofisobtainedbymultiplyingthe

    dynamicpressurebyacoefficientthatisdependentontheshapeofthebuildingorstructure

    andbytheareaofthebuildingorstructureorpartthereof.

    Thetwotypesofcoefficientsare:

    (a) pressurecoefficientCpwhichreferstoaparticularsurfaceorpartofbuilding;

    (b) force coefficient Cf which refers to the building as a whole. The values of these

    coefficients are given in Tables 5.14 to 5.23. These tables may be used for other

    buildingsofgenerallysimilarshape.

    (2)PressureCoefficients:Theaveragevaluesgiveninthetablesareforcriticalwinddirectionsin

    oneormorequadrants.Inordertodeterminethemaximumwindloadonabuildingthetotal

    loadshouldbecalculatedfromeachofthesurfacesorpartsofthesurfacesofthebuilding.

    Coefficientsoflocaleffectsarealsogiven.Thesearetobeusedincalculatingloadsforlocalareas

    butnotforcalculatingtheloadonentirestructuralelementssuchasroofandwalls.Insuch

    locations,theconstructionmustbeadequatetoresistthelocalforces(additionalnailing,

    anchoringetc.).

    Furthermore,itshouldbenotedthattheselocalforcescanactinashakingmannerand

    resultinfatiguefailures.

    Thenetdesignloadduetowindonindividualcladdingandtheirfixings,roofsandwallsshouldbe

    thealgebraicdifferenceoftheexternalpressureorsuctionandthedesigninternalpressureor

    suctionfrom:

    F=(CpeCpi)qA

    ValuesofCpearegiveninTables5.14,5.15,5.16andvaluesofCpiinsection5.9.7(3).

    (3)InternalPressureCoefficient:Itisnormallydifficulttoestimatetheinternalpressurecoefficient

    forabuildingasthecoefficientdependsonpermeabilitythroughwindows,ventilationlouvres,

    leakagegapsarounddoorsandwindowsandcladding.Itisrecommendedthatforwallandroof

    loadingtheinternalpressurecoefficientshouldbedeterminedasfollows:

  • 38

    (a)Where there is only negligible probability of dominant opening occurring during a severe

    storm, shouldbe takenas+0.2or 0.3whicheverproduces thegreatereffecton the

    buildingormemberconcerned.

    (b)Whereadominantopeningislikelytooccur, shouldbetakenas7.5%ofthevalueof

    outsidetheopening.

    (4)ForceCoefficients:Forcecoefficientsvaryforthewindactingondifferentfacesofabuildingor

    structure.Indeterminingthecriticalload,thetotalwindloadshouldbecalculatedforeachwind

    direction.Thetotalwindloadonaparticularbuildingorstructureisgivenby:

    F=CfqAe

    Thedirectionoftheforceisspecificinthetable.

    Wherethewindloadiscalculatedbydividingtheareaintoparts,thevalueofCfappliedtoeachpart

    shouldbethatforthebuildingasawhole.

    (6) FrictionalDrag:Forcertaintypesofbuildingsitisnecessarytotakeintoaccountafrictional

    drag inaddition to thewind loadcalculated from5.9.7(2)and5.9.7(4).The frictionaldrag

    maybeneglectedforrectangularcladbuildingswheretheratiod/hord/bisgreaterthan4.

    Thefrictionaldraginthedirectionofthewindisgivenbythefollowing:

    ifhb,F=Cfqb(d4h)+Cfq2h(d4h)

    or

    ifhb,F=Cfqb(d4b)+Cfq2h(d4h)

    Thefirstterm ineachformularepresentsthedragontheroofandthesecondthedragon

    thewalls.

    =0.01forsmoothsurfaceswithoutcorrugationsorribsacrossthewinddirection.

    =0.02forsurfaceswithribsacrossthewinddirection.

    0. =0.04surfaceswithribsacrossthewinddirection.

    For other buildings the frictional drag will be indicated, where necessary, in tables of

    pressurecoefficientsandforcecoefficients.

  • 39

    Table5.14:PressurecoefficientCpeforwallsofRectangularcladbuildings

    BUILDING

    HEIGHT

    RATIO

    BUILDING

    PLAN

    RATIO

    ELEVATION PLAN WIND

    ANGLE

    Cpe forsurface LocalCpe

    A B C D

    h/w

    1

  • 40

    Fig. 5.15: External pressure coefficients (Cpe) for Pitched roofs of rectangular clad

    buildings

  • 41

  • 42

    Table5.16:PressurecoefficientCfeformonopitchRoofsofrectangularcladbuildings

    withh/w

  • 43

    Table5.17:Forcecoefficients(Cf)forRectangularclad(actinginthedirectionofthewind)

  • 44

    Table5.18:Pressurecoefficients(Cpe)forPitchedRoofsofMultispanbuildings

    (allspansequal)withhw

  • 45

    Table5.19:Pressurecoefficients(Cpe)forSawtoothRoofsofmultispanbuildings

    (allspansequal)withhw

  • 46

    Table5.20:Pressurecoefficients(Cp)forCanopyRoofswith1/2h/w

  • 47

    Table5.21:Forcecoefficient(Cf)forcladbuildingsofuniformsection

    (actingindirectionofwind)

  • 48

    Table5.21(cont.)

  • 49

    Table5.21(cont.)

  • 50

    Table5.22:PressuredistributionaroundCylindricalstructures

    Forthepurposeofcalculatingthewindforcesthatactinawayastodeformacylindricalstructure

    thevaluesofCpe inTable5.22maybeused.Theyapplyonly insupercritical flow (i.e. theyshould

    onlybeusedwhereD>0.3m).Theymaybeusedforwindblowingnormaltotheaxisofcylinders

    havingtheiraxisnormaltothegroundplane(i.e.chimneys,silos)andtocylindershavingtheiraxis

  • 51

    parallelwiththegroundplane(i.e.horizontaltanks)providedtheclearancebetweenthetankand

    thegroundisnotlessthanD.

    histheheightofaverticalcylinderorlengthofahorizontalcylinder.Wherethereisafreeflowof

    airaroundbothends,histobetakenashalfthelengthwhencalculatingh/D.Interpolationmaybe

    usedforintermediatevaluesofh/D.

    In the calculation of the load on the periphery of the cylinder, the value Cpi shall be taken into

    account.

    Foropenendedcylinderswhereh/D 0.3;Cpimaybetakenas0.8.

    Foropenendedcylinderswhereh/D 0.3;Cpimaybetakenas0.5

    5.9.8 ForceCoefficientsforUncladStructures

    (1) General:Thissectionappliestopermanentlyuncladstructuresandstructuralframeworks

    whiletemporarilyunclad.

    Structuresthatbecauseoftheirsizeandthedesignwindvelocity,are inthesupercritical

    flowregimemayneedfurthercalculationtoensurethatthegreatestloadsdonotoccurat

    somewindspeedbelowthemaximumwhentheflowwillbesubcritical.

    (2) Force coefficients of individualmembers: The coefficients refer tomembersof infinite

    length.Formembersof finite length, thecoefficientsshouldbemultipliedbya factorK

    thatdependson the ratio l/ja,where l is the lengthof thememberand ja is thewidth

    acrossthedirectionofthewind.ValuesofKaregiveninTable5.23.

    Whereanymemberabutsontoaplateorwall insuchawaythatfreeflowofairaround

    thatendofthemember isprevented,theratiol/jashouldbedoubledforthepurposeof

    determiningK.Whenbothendsofamemberaresoobstructed,theratioshouldbetaken

    asinfinity.

  • 52

    Table5.23ValuesofReductionFactorKformembersoffinitelengthandslenderness

    l/jaorl/D 2 5 10 20 40 50 100

    Circularcylinder,subcriticalflow

    Circularcylinder,supercriticalflow

    Flatplateperpendiculartowind

    0.58

    0.80

    0.62

    0.62

    0.80

    0.68

    0.68

    0.82

    0.69

    0.74

    0.90

    0.81

    0.82

    0.98

    0.87

    0.87

    0.99

    0.90

    0.98

    1.0

    0.95

    1.0

    1.0

    1.0

    5.9.8(3)(a) Flatsidedmembers: The force coefficient in Table5.24 are given for twomutually

    perpendiculardirectionsrelativetoareferenceaxisonthestructuralmember.Theyaredesignated

    CfnandCftandgivetheforcesnormalandtransverse,respectively,tothereferenceplaneaswillbe

    apparentfromthediagrams.

    Forcecoefficientsareforwindnormaltothelongitudinalaxisofthemember.

    Normalforce:F=Cfnqklj

    Transverseforce:F=Cftqklj

    (b)Circularsections:Forcircularsections,theforcecoefficientsCf,whicharedependentuponvalues

    ofDVs,aregiven inTable5.25.ThevaluesofCfgiven in this tableare suitable forall surfacesof

    evenlydistributedroughnessofheight lessthan1/100diameter i.e. forallnormalsurface finishes

    andformembersofinfinitelength.

    Force,F=Cfqkld

  • 53

    Table5.24:ForcecoefficientsCfnandCftforindividualstructuralmembers(flatsides)of

    infinitelength

  • 54

    Table5.25ForceCoefficientsCfforindividualstructuralmembersofCircularSectionandInfinteLengthFlowregime ForcecoefficientCf

    Subcriticalflow DVs 6m2/s

    Re 4.1x105 1.2

    Supercriticalflow

    6 DVs 12m2/s

    4.1x105 Re 8.2x105

    0.6

    12 DVs 33m2/s

    8.2x105 Re 22.6x105

    0.7

    DVs 33m2/s

    Re 22.6x105

    0.8

    Reynoldsnumber,Re>=

    where:Disthediameterofthemember

    Vsisthedesignwindspeed,and

    vistheKinematicviscosityoftheair,whichis1.6x105m2/sat15oCandstandard

    atmosphericpressure.

    (c)Wiresandcables:TheforcecoefficientsforwiresandcablesgiveninTable5.26aredependent

    uponvaluesofDVs.

    Table5.26ForceCoefficientsCfforWiresandCables(1/D>100)

    FlowRegime Smooth

    surfacewire

    Moderately wire

    (galvanized or

    painted)

    Fine stranded

    cables

    Thick stranded

    cables

    DVs 0.6m2/s

    DVs 0.6m2/

    DVs 6m2/s

    DVs 6m2/s

    1.2

    0.5

    1.2

    0.7

    1.2

    0.9

    1.3

    1.1

  • 55

    (4)Singleframes: Ingeneral,themostunfavourablewind loadonasingle frameoccurswhen

    the windisatrightanglestotheframe.

    Thewindloadactingonasingleframeshouldbetakenas

    F=CfqAe

    where;Aeistheeffectiveareaofframenormaltothewinddirection.

    The forcecoefficientsforasingle frameconsistingof(a)flatsidedmembersor(b)circular

    sectionmembersinwhichallthemembersoftheframehaveDVsvaluelessorgreaterthan

    6m2/saregiveninTable5.27.

    Table5.27EffectiveForceCoefficientsCfforSingleFrames

    Solidityratio

    ForcecoefficientCffor:Flatsidedmembers CircularSections

    SubcriticalflowDVs 6m2/s

    SupercriticalflowDVs 6m2/s

    0.10.20.30.40.50.751.0

    1.91.81.71.71.61.62.0

    1.21.21.21.11.11.52.0

    0.70.80.80.81.41.42.0

    Thesolidityratioisequaltotheeffectiveareaofaframenormaltothewinddirectiondividedby

    theareaenclosedbytheboundaryoftheframenormaltothewinddirection.

    (5) Multipleframestructures:Thissectionappliestostructureshavingtwoormoreparallelframes

    wherethewindwardframemayhaveashieldingeffectupontheframesto leeward.Thewind

    loadonthewindwardframeandanyunshelteredpartsofotherframesshouldbecalculatedas

    in5.9.8(3),butwind loadon thepartsof frames thatareshelteredshouldbemultipliedbya

    shieldingfactorn,whichisdependentuponthesolidityratioofthewindwardframe,thetypeof

    membercomprisingthe frameandthespacingratioofthe frames.Thevaluesoftheshielding

    factoraregiveninTable5.28.

    Wheretherearemorethantwoframesofsimilargeometryandspacing,thewindloadonthe

    thirdandsubsequentframesshouldbetakenasequaltothatonthesecondframe.

  • 56

    Table5.28ShieldingFactor,n

    SpacingRatio

    Valueofnforanaerodynamicsolidityratioof:

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8&

    over

    Upto1.0

    2.0

    3.0

    4.0

    5.0

    6.0andover

    1.0

    1.0

    1.0

    1.0

    1.0

    1.0

    0.96

    0.97

    0.97

    0.98

    0.98

    0.99

    0.90

    0.91

    0.92

    0.93

    0.94

    0.95

    0.80

    0.82

    0.84

    0.86

    0.88

    0.90

    0.68

    0.71

    0.74

    0.77

    0.80

    0.83

    0.54

    0.58

    0.63

    0.67

    0.71

    0.75

    0.44

    0.49

    0.54

    0.59

    0.64

    0.69

    0.37

    0.43

    0.48

    0.54

    0.60

    0.66

    Thespacingratioisequaltothedistance,centretocentre,oftheframes,beamsorgirdersdivided

    bytheleastoveralldimensionoftheframe,beamorgirdermeasuredatrightanglestothedirection

    ofthewind.

    Aerodynamicsolidityratio, =solidityratio()xaconstant

    wheretheconstantis:

    1.6forflatsidedmembers;

    1.2 for circular sections in the subcritical rangeand for flatsidedmembers in conjunctions

    withsuchcircularsections;

    0.5 forcircularsections inthesupercriticalrangeand for flatsidedmembers inconjunction

    withcircularsections.

    (6)LatticeTowers:

    (a) Lattice towers of square and equilateral triangular sections constitute special cases for

    whichitisconvenienttouseoverallforcecoefficientinthecalculationofwindload.Thewind

    loadshouldbecalculatedfortheconditionwhenthewindblowsagainstanyface.

    Thewindloadactinginthedirectionofthewindshouldbetakenas:

    F=CfqAe

    TheoverallforcecoefficientCfisgiveninTables5.29,5.30and5.31.

  • 57

    Table5.29OverallForceCoefficientCfforTowerscomposedof

    Flatsidedmembers

    Solidityratio Forcecoefficientoffor:

    Squaretowers Equilateraltriangulartowers0.1

    0.2

    0.3

    0.4

    0.5

    3.8

    3.3

    2.8

    2.3

    2.1

    3.1

    2.7

    2.3

    1.9

    1.5

    Forsquarelatticetowersthemaximumloadoccurswhenthewindblowsontoacorner.

    Itmaybetakenas1.2timestheloadforthefaceonwind.

    For triangular lattice towers the wind load may be assumed to be constant for any

    inclinationofthewindtoface.

    (b) Since it isonly in very few caseswith lattice towers composedofmembersof circular

    sectionthat all the members of a lattice tower are entirely in either subcritical or

    supercritical flow,wind forcecalculationsshouldbecarriedoutasdescribed in5.9.8(4) for

    singleframes,dueaccountbeingtakenoftheshieldingfactorsin5.9.8(5).

    When it can be shown that all themembers of the tower arewholly in the same flow

    regimetheoverallforcecoefficientsCfgiveninTables5.29and5.30maybeused.

    Solidityratioofaframe=.Forlatticesteeltowers,typicallyvariesbetweenabout0.1and

    0.3

  • 58

    Table5.30OverallForceCoefficientCfforSquareTowerscomposedof

    RoundedMembers

    Solidityratiooffrontface,

    ForcecoefficientCffor:Subcriticalflow

    DVs

  • 59

    5.10EFFECTSOFEARTHQUAKES

    5.10.1SCOPEANDFIELDOFAPPLICATION

    5.10.1.1 This Code sets down minimum design requirements to be met when dealing with

    seismic situations i.e. situations inwhich theearthquake action is consideredas a critical

    actioninconjunctionwithotherdeadloadsorliveloads.Itappliesto:

    (1) ReinforcedandPrestressed concretebuildings forordinaryuses,having structural

    resistingsystemsbelongingtooneofthreetypesdefinedbelow:

    (a) Frame System: A system in which both vertical loads and lateral forces are

    resistedbyspaceframes.

    (b)WallSystem:Asysteminwhichbothverticalloadsandlateralforcesareresisted

    bystructuralwallseithersingleorcoupled.

    (c)DualSystem:Asystem inwhichsupportforvertical load isessentiallyprovided

    byaspaceframe.Resistancetolateralactioniscontributedto,inpart,bytheframe

    systemandalsoinpartbystructuralwalls,isolatedorcoupled.

    5.10.2DEFINITIONSANDNOTATIONS

    Definitions

    Crosstie: A continuousbarwithaminimumdiameterof6mm, havinga1350 hookwitha

    tendiameterextensionatoneend,anda900hookwithasixdiameterextensionattheotherend.

    Thehooksshallengagehoopbarsandbesecuredtolongitudinalbars.

    Hoop: Aclosedtieorcontinuouslywouldtiewithaminimumdiameterof6mmtheendsofwhich

    have1350hookswithtendiameterextensionsthatenclosesthelongitudinalreinforcement.

    Boundaryelements: Portions along the edges of walls and diaphragms strengthened by

    longitudinal and transverse reinforcement. Boundary elements do not necessarily require an

    increaseof thicknessof thewallordiaphragms.Edgeopeningswithinwallsanddiaphragmsmay

    alsohavetobeprovidedwithboundaryelements.

  • 60

    Notations

    A= peakgroundacceleration

    Ac= confinedareameasuredtooutsideperipheraltransversereinforcement.

    Ag= grosssectionalareaofconcrete

    Cd=designseismiccoefficient

    Cg =centreofmass

    Ck =centreofstiffness

    E =designseismicaction(symbolic)

    I =importancefactor

    Mu,d= ultimatemomentofaconcretesection,evaluatedwithfactoredvaluesofconcreteand

    steelstrengths

    M+u,d= ultimatemomentofaconcretesection,evaluatedwithcharacteristicvaluesofconcrete

    andsteelstrengths.

    Nd= designaxialforceunderthemostunfavourable loadcombination includingtheseismic

    action.

    K =behaviourfactor

    S =sitecoefficient

    Si =soiltypeindex

    Vcd =shearforcecarriedbyconcreteinbeamorcolumnsections

    a=plandimensionofthebuildinginthedirectionorthogonaltothatofseismicaction

    bw =webwidthofaconcretesection

    h,b =heightandwidthofbeams,majorandminorsidesincolumns

    h,b = distancebetweenreinforcementbars locatedattheendsofsides inandb,respectively,

    measuredtooutsidetheperipheralbars

  • 61

    d=distancefromcentreofstiffnessandcentreofgravityofthegenericfloor

    Sh=spacingoftransversereinforcementinbeams,columnsandwalls.

    fcd=designconcretestrength

    h=heightofafloor

    lw=horizontalwalllength

    hw = totalheightofawall

    hn = verticaldistancebetweenfloorsinwalls

    = spectralamplificationfactor

    = parameteroftheelasticresponsespectrum

    i = distributionfactor

    n = overcapacityfactor

    el = elasticinterstoreydriftundertheseismicactions

    = ratiobetweenmaximumandminimumshearforceatabeamend

    = deformabilityindex

    = amplificationfactorfortorsionaleffects

    w = dynamicmagnificationfactor

    Rd = sheardesignstressofconcrete

  • 62

    5.10.3 DESIGNCRITERIA

    5.10.3.1ReliabilityDifferentiation

    Structuresshallbeclassifiedunderthefollowingreliabilitylevels:

    (1) Class I: Buildings that are required to remain functional and to suffer reduced

    damage after a strong seismic attack (e.g. essential rescue facilities such as

    hospitals, fireandpolicestations,electricitystationsetc.buildingswith likely large

    numberofoccupantssuchasschools,audienceorspectaclehalls,etc).

    (2) ClassII:Buildingsnotincludedin5.10.3.1(1)

    (3) Thedifferent reliability levelsproper toeachClassshallbeobtainedbyamplifying

    thedesignactionwithafactorI,calledimportancefactor.

    5.10.3.2DuctilityLevels

    Structural systems covered by the Codemay be designed to possess different ductility

    levelsaccordingtothefollowingclassification:

    (1) DuctilityLevelI(DLI)isthatpropertostructuresproportionedinaccordancetoBS

    8110(1985)withadditionalrequirementsondetailingcontainedin5.10.8.

    Thisductilitylevel,Iissuitableforlowrisebuildings.

    (2) DuctilityLevelII(DLII)forthislevelseismicprovisionsaretobeadopted,enabling

    the structure to enter the inelastic range of response under repeated reversed

    loading,whileavoidingprematurebrittletypefailures.

    (3) DuctilityLevelIII(DLIII)specialproceduresfortheevaluationofdesignactionand

    fortheproportioninganddetailingoftheelementsaretobeadoptedtoensurethe

    developmentofselectedstablemechanismsassociatedwithlargeenergydissipation

    capacities. DL IIIstructuresshouldbepreferredwhenever largeuncertaintiesexist

    (e.g.Localamplificationeffectsofdifficultevaluationetc).

  • 63

    5.10.4 METHODSOFASSESSMENT

    5.10.4.1Basicdata

    5.10.4.1.1MaterialCharacteristics

    5.10.4.1.1(1)Concrete

    Normalconcretegradesshallsatisfythefollowingrequirements(Table5.10.4.1)

    Table5.10.4.1

    DuctilityLevel MinimumGrades

    DLI C20

    DLII C20

    DLIII C25

    5.10.4.1.1(2)Steel

    (a) DLIandDLIIStructures

    Thereinforcingsteelisdefinedbyitscharacteristicstrength.

    (b) DLIIIStructures

    Thefollowingadditionalrequirementsshallbesatisfied.

    (i) It must be proven the steel used possesses adequate ductility under

    repeatedreverseddeformations.

    (ii) Steel grades with characteristic strengths higher than S400 (400N/mm2)

    shallnotbeused,unlessitisdemonstratedthattheuseofhighergradesin

    specialsectionarrangementsdoesnotaffectunfavourablytheductility.

    (iii) Theactualyieldstressshallnotexceeditsnormalvaluesbymorethan15%.

  • 64

    m

    (iv) The ratioofthemeanvalueoftheultimatestrengthtoactualyieldstress

    shallnotbelessthan1.25forS220and1.15forS400

    (v) Only high bond steel shall be used for flexural reinforcement, unless

    adequateprovisionsaretakentoensurebondandanchorage.

    5.10.4.1.2MaterialSafetyFactor,

    Design values of strength for concrete and steel shall be obtained from their respective

    characteristicvaluesbyusingthefactors:

    Concrete c =1.5

    Steel s =1.15

    5.10.4.1.3StructureBehaviourFactors

    (1) The values of the behaviour factor K, defining the intensity of the design action

    (section5.10.5.3)asa functionof the structural typeandof the selectedductility

    level,aregiveninTable5.10.4.2

    Table5.10.4.2DESIGNBEHAVIOURFACTORS

    StructuralSystemDuctility

    LevelI

    Ductility

    LevelII

    Ductility

    LevelIII

    Frame

    WallandDual

    2

    2

    3.5

    3

    5

    4

    (2) ThevaluesofKinTable5.10.4.2forwallanddualstructuresapplyif,atleast50%of

    thelateralforceinbothdirectionsisresistedbycoupledwalls.

    (3) If condition5.10.4.1.3(2) isnot satisfied, theKvalues forwallanddual structures

    shallbereducedbyafactorof0.7.

    (4) Ductility Level I is permitted only for Class II structures in areas of moderate

    seismicity.

  • 65

    (5) ClassIstructurestobebuiltinhighseismicityareasshallbepreferablydesignedfor

    ductilitylevelIII.Ifappropriate,KvaluesrelativetoDLIIcouldbeusedinthiscase.

    5.10.4.1.4DesignLoadCombination

    Thefundamentalcombinationofloadeffectstobeusedforlimitstatesverification(Section

    5.10.7.4)is

    Sd=S(G+P+E+iQik)...5.10.4.1.1

    whereG= allpermanentloadsattheirnormalvalue

    P= thelongtermprestressingforce

    E= thedesignseismicactionasdefinedinSect.5.10.5.3.4

    Qik= fractile valuesof extremedistributionsof all live loadswhosedurationof

    applicationislongenoughfortheprobabilityoftheirjointoccurrenceswith

    earthquakeactiontobeconsidered.

    I= factorsrequiredtochangethefractilevaluesQiktotheaveragevaluesofQikintheirinstantaneousdistribution(SeeTable5.10.4.3)

    S=SiteCoefficient

    Table5.10.4.3:COMBINATIONFACTORIFORLIVELOADS

    Liveloadsfrompersonsandequipment 0.3

    Liveloadsfrompersonsatplaceswithlikelihoodof

    largenumberofoccupants(halls)0.5

    Longtermstorage(warehouse,libraries) 0.9

    Liveloadsonstaircasesandcorridors 1.0

  • 66

    5.10.4.2Structuralanalysis

    5.10.4.2.1BuildingConfiguration

    Abuildingshallbeclassifiedasregularwhenthefollowingconditionsaresatisfied,regarding

    bothplanandverticalconfiguration.

    (a)PlanConfiguration

    (i) The building has an approximately symmetrical plan configuration with

    respect to,at least twoorthogonaldirectionsalongwhich theearthquake

    resistingelementsareoriented.Whenreentrantcornersarepresent,they

    donotexceed25percentofthebuildingexternaldimension.

    (ii) Atanystoreythedistance(measured inthedirectionorthogonaltothatof

    the seismic action) between the centre ofmass and that of the stiffness

    doesnotexceedl5%oftheresistanceradiusdefinedasthesquarerootof

    theratioofstoreytorsionalandtranslationstiffnesses.

    (b)VerticalConfiguration

    (i) The stiffness and mass properties are approximately uniform along the

    buildingheight.

    (ii) In framestructures, theratiobetweenactualshearcapacity (sumofshear

    forces contributed by all vertical elements at their design strengths) and

    designsheardoesnotdiffermore than20percent, forany twostoreysof

    thebuilding.

    (iii) Inthecaseofagradualsetbackalong itsheight,thesetbackatanyfloor is

    notgreaterthan l0%oftheplandimension inthedirectionofthesetback.

    Thisclauseneednotbecompliedwithifthesetbackoccurswithinthelower

    l5%ofthetotalheightofthebuilding.

    5.10.4.2.2ApplicationofSeismicAction

    (1) HorizontalAction

    (i) The seismic actions shall be applied to the building in the directions

    producingineachelementthemostunfavourableeffect.

  • 67

    i

    (ii) Inbuildingshavingoneaxisofsymmetry,theseismicactioncanbeassumed

    asactingseparatelyalongthisaxisanditsorthogonaldirection

    (2) VerticalAction

    (i) The vertical component of the seismic action shall be considered in the

    designofnonverticalcantileversandofprestressedbeams.

    5.10.4.2.3AnalyticalModel

    (1) The determination of the seismic effects on the structure shall be based on an

    idealized mathematical model which is adequate for representing the actual

    behaviours; themodel shall also account for all nonstructural elements that can

    influencetheresponseofthemainresistingsystem.

    (2) Forthepurposeofthepresentcode,thedeterminationofthe loadeffectsdueto

    designforcesmaybebasedonalinearelasticmodelofthestructuralsystem.

    (3) Regular buildings can be designed according to the simplifiedmethod of analysis

    (indicatedasequivalentstaticanalysis)describedin5.10.4.2.4providedtheirheight

    doesnotexceed80m,andthefundamentalperiodisshorterthan2secs.

    (4) Ifconditions in5.10.4.2.3.(3)arenotsatisfiedor ifthebuilding isof irregulartype,

    thedynamicmethodin5.10.4.2.5shallbeapplied.

    5.10.4.2.4EquivalentStaticAnalysis

    (1) HorizontalDesignForces

    (a) The design lateral force to be applied at each floor level in the direction

    beinganalysed,shallbegivenby:

    F=Cd. i .Wi....5.10.4.2.1whereCd=designseismiccoefficient,equalinvaluetothedesignresponse

    spectrum,asgiveninSection5.10.5.3.4

    = distribution factor, depending on the height of the floor,

    measuredfromthebuildingbase

  • 68

    K1 . . S. A . I = C d

    h W W h =

    ii

    ii i

    i

    Wi=totalgravityloadatfloori

    (b) IncaseswheretheperiodTisnotcalculatedfrommethodsofmechanicsCd

    shallbetakenas:

    ...5.10.4.2.2

    (c) Thedistributionfactoriisgivenbythefollowingexpression

    ...5.10.4.2.3

    wherehiistheheightoffloorifromthefoundationlevel.

    (2) TorsionalEffects

    (a) Ateachfloorofthebuilding,thelateraldesignforceshallbeassumedtobe

    displaced from itsnominal locationat thedistancese1ande2 illustrated in

    Figure5.10.4.1,whichever ismostunfavourable foreverymember tobe

    checked.

    Fig.5.10.4.1TorsionalEffects

    (b) Theexpressionsfore1ande2are:

    e1=0.5d+0.05a ...5.10.4.2.4

    e2=0.05a ...5.10.4.2.5

  • 69

    ax 0.6 + 1 =

    0.10 h.V

    K . . W = l e

    (c) The total shear force and torsionalmoment at the generic floor shall be

    distributed to the various resisting elements below that floor with due

    consideration of their relative stiffness as well as of the stiffness of the

    diaphragm.

    (d) SymmetricalCases:Whencompletesymmetryofstiffnessandmassabout

    one axis parallel to the direction of the seismic excitation exists, torsion

    effectscanbeaccountedforbymeansofthefollowingsimplifiedprocedure:

    (i) thelateraldesignforceshallbeappliedatthefloorcentreofgravity,

    tobedistributedtothevariouselementsasabove;

    (ii) theactions ineachoftheelementsshallbefurthermultipliedbya

    factordefinedas:

    ...5.10.4.2.6

    where x is thedistanceof theelement from the floor centreofgravity,

    measuredperpendicularlytothedirectionofseismicaction.

    (3) SecondOrderEffects

    (a) Secondordereffectsonstoreyshearsandmomentsneednotbeconsidered

    whenthefollowingconditionissatisfiedateveryfloor:

    where =deformabilityindex

    V=seismicdesignshearforceactingacrossthestoreyconsidered

    el=elasticinterstoreydriftduetodesignaction

    K=behaviourfactor

    h=floorheight

    W=totalgravityloadabovetheconsideredstorey

  • 70

    (b) Thedeformabilityindex,shallnotinanycaseexceedthevalue0.20;

    (c) For0.10

  • 71

    (4) TorsionalEffects

    (a) Ateach floorof thebuilding themass contributing to inertia forces shallbe

    assumed to be displaced from its nominal location by the amount "0.05a

    whichever ismoreunfavourablefortheelementtobechecked, abeingthe

    dimension of the building in the direction orthogonal to that of the

    consideredseismicaction.

    (b) When thebuilding isanalysedbymeansofplanarmodels (Clause5.10.4.2.5

    (1)),torsionaleffectscanbeaccountedforbyincreasingtheactioneffectsdue

    tothetranslationaloscillationsofthebuildingbythefactordefinedas:

    =1+0.6x/a

    wherexisthedistanceoftheplanarelementconsideredfromthefloorcentre

    ofgravity,measuredperpendiculartothedirectionoftheseismicaction.

    (5) Secondordereffects

    Clause5.10.4.2.4(3)applies.

  • 72

    5.10.5 SEISMICACTION

    5.10.5.1SeismicZones

    FortheapplicationofthisCode,aseismicriskmap(Fig5.10.5.1)hasbeenusedtodiscretize

    the area of Ghana into a number of zones. Within each zone the normalized ground

    accelerationisassignedaconstantvalueasshowninTable5.10.5.1.

    Fig.5.10.5.1SeismicRiskMapOfGhana

  • 73

    Table5.10.5.1:DEFINITIONOFSEISMICZONES

    SeismicZone

    AssignedHorizontalDesignGroundAcceleration:A

    (gunitsofgravity)

    0

    1

    2

    3

    0

    0.15

    0.25

    0.35

    5.10.5.2CharacteristicsofSeismicActions

    (1) For thepurposeof thecode, thegroundmotion shallbeadequatelydescribedby

    meansof:

    (a) thepeakgroundaccelerationAmax,treatedasarandomvariableofknown

    distribution;

    (b) one or more response spectra for horizontal motion, having a form

    appropriatefortheareaandfirmsoilconditions,normalizedtoAmax=1and

    probabilisticallycharacterized;

    (c) one ormore response spectra for verticalmotion, scaled to 2/3 of the

    correspondencehorizontalmotionresponsespectra.

    (2) Forparticularzones,forinstance,wheregeologicalevidenceindicatesthepossibility

    of near field type of shocks (for which the response spectrum concept is

    inadequate)orwherethere isextensiveanddeepsoil layering (forwhichselective

    amplification can occur) the expected characteristics of ground motion shall be

    determinedbyspecialstudies.

  • 74

    5.10.5.3 DesignSeismicAction

    5.10.5.3.1 NormalizedElasticResponseSpectrum

    For the purpose of this Code, the shape of the standard (rocky or firm soil condition)

    elasticresponsespectrumnormalizedtoaunitpeakgroundaccelerationshallbe idealized

    asshowninFig.1.4.2.

    Fig.5.10.5.2NormalisedElasticResponseSpectrum

    5.10.5.3.2SiteEffects

    When more detailed knowledge of the effects of local soil conditions and on the

    characteristicsofgroundmotionsarrivingatthesite frompossiblydifferentsources isnot

    availabletheprocedureinClause5.10.5.3.2(1)and(2),and5.10.4.4.3shallbeapplied.

    (1) SoilProfileTypes

    Theeffectsofsiteconditionsonbuildingresponseshallbeestablishedbasedonthe

    soilprofiletypesdefinedasfollows:

    i SOILPROFILES1:

    Rockofanycharacteristiceithershalelikeorcrystalline(suchmaterialmaybe

    characterizedbyashearwavevelocitygreaterthan800mm/sec);orstiffsoil

    conditionswhere the soildepth is less than60mand thesoil typeoverlying

    rockarestabledepositsofsandsgravelorstifferclays.

  • 75

    ii SOILPROFILES2:

    Deep cohesionlessor stiff clay soil conditions, including siteswhere the soil

    depth exceeds 60m and the soil typesoverlying rock are stabledepositsof

    sands,gravelsorstiffclay.

    iii SOILPROFILES3:

    Softtomedium stiff claysand sands, characterizedby l0mormoreof soft

    medium stiff clay with or without intervening layers of sand and other

    cohesionlesssoils.

    Inlocationswheresoilpropertiesarenotknowninsufficientdetailtodeterminethesoilprofiletype

    orwheretheprofiledoesnotfitanyofthethreetypes,soilprofileS2shallbeused.

    (2)SiteCoefficient

    ThesitecoefficientS isusedtomodifythestandardelasticresponsespectrumtoaccountforthe

    sitecondition.ItsvaluesaregiveninTable5.10.5.2

    Table5.10.5.2:SITECOEFFICIENT

    SoilCoefficient SoilProfileType

    S1 S2 S3

    S 1.0 1.2 1.5

    5.10.5.3.3SiteDependantNormalizedElasticResponseSpectrum

    The sitedependantnormalizedelastic spectra for the three soilprofiles are shown in Fig

    5.10.5.3,theirordinatesbeingdefinedasthesmallestfromthefollowingexpressions:

    Ras=1+(1).T/T1

    Ras=forsoiltypesS1,S2,S3

    =0.8forsoilS3ifA,asdefinedinClause5.10.5.3.4,isgreaterthan0.3g

    Ras=S..(T/T1)

  • 76

    Incaseoflackofspecificsiterelatedinformationthefollowingcanbeassumed

    T1=0.12secsT2=0.4secs

    =2.5=2/3

    However,forsoiltypeS3thevalueT1=0.25secs.canbeadopted.

    Spectraforverticalmotionsmaybedeterminedwithsufficientaccuracybymultiplyingthe

    ordinatesofthespectraforhorizontalmotionsbyafactorof2/3.

    Fig5.10.5.3SiteDependentNormalizedElasticSpectra

    5.10.5.3.4DesignResponseSpectrum

    The ordinates of design response spectrum are given by the smallest of the following

    expressions:

    forsoiltypeS1,S2andS3,or

    )(K1 . . A . I . 8 0. = (T) a R forsoiltypeS3ifA>0.3g

    )(.)(. 2K1

    TT S. . A . I = (T) a R

    )(K1..A.I (T)aR =

  • 77

    Where:

    I istheimportancefactordefinedinSection5.10.3.1(3)(seeTable5.10.5.3)

    A isthepeakgroundaccelerationtobeadoptedfortheseismiczoneof interest(%ofg

    Table5.10.5.1)

    S isthesitecoefficientasgiveninTable5.10.5.2

    K isthebehaviourfactorgiveninTable5.10.4.1.3

    Inthecaseoflackofspecificsiterelatedinformation,andT2areassignedthefollowingvalues:

    =2.5,=2/3,T2=0.4secs.

    Table5.10.5.3:IMPORTANCEFACTOR

    Class Factor

    I

    II

    1.4

    1.0

    5.10.6 DESIGNACTIONS

    5.10.6.1General

    Structuralelementsshallbedimensionedandverified(seesection5.10.7)fordesignactions

    asdefinedinthissection.

    5.10.6.2DuctilityLevelI:DLI

    DLIstructuresshallbedimensioneddirectlyonthebasisoftheresultsofstructuralanalysis,

    withapossibleredistributionofactioneffectsinaccordancewithBS.8110(1985)

    5.10.6.3DuctilityLevelII:DLII

    (1)Elementssubjecttobending( f . A . 1 . 0 N cdgd )

    (a)Bendingmoments:

  • 78

    The design bendingmoments shall be those obtained from linear analysis of the

    structure for the load combination given by equation 5.10.4.1.1. Redistribution

    accordingtoBS.8110(1985)ispermitted.

    (b)ShearForces:

    (i) The design shear forces shall be determined from the condition of static

    equilibriumoftheelementsubjectedtotherelevanttransverseload,ifany,

    andarationalcombinationoftheendmoments.

    (ii) Theendmoments shallcorrespond to thedesign flexural strengthsof the

    endactionsbasedonactualreinforcementprovided.

    (iii) Thealgebraicratiobetweenthemaximumandminimumvaluesofshearat

    eachendsectionshallbedenotedby.Thevalueofshouldnotbetakenlessthanminusone(Fig.5.10.6.1).

    A VA,d (I) B AVA,d (II)B

    VA,d=VA,d+MA+M1B VA,d=VA,dM1A+MB

    L L

    Fig 5.10.6.1 - DESIGN SHEAR FORCES

  • 79

    (2)ElementsSubjecttobendingandaxialforce( f . A 1 . 0 > N cdgd )

    (a) Axialforcesandbendingmoments

    (i) Forregularstructures,threestoreysandhigher,towhichequivalentstaticanalysis

    hasbeenapplied,thecolumnmomentduetolateralforcesaloneshallbemultiplied

    bythedynamicamplificationfactorwasgivenbythefollowingexpressions:

    PlanarFrames

    w=0.6T1+0.85(1.3

  • 80

    (iii) Columnmoments in addition shall satisfy the conditionon the relative strengthbetween

    columnsandbeamsframingintoajointasspecifiedinClause5.10.7.1(3).

    (b) ShearForces

    (i) In evaluating thedesign shear forces from the conditionof static equilibrium the

    designendmomentsshallbethoseproducingmaximumshearforceobtainedfrom

    analysis,modifiedifappropriatebythedynamicmagnificationfactor.

    (3) StructuralWalls

    (a) The design actions shall be those obtained from a linear analysis of the building

    modifiedasappropriateinaccordancewithClauses5.10.6.3(1)(b)to5.10.6.3(3)(c).

    (b) Redistribution

    (i) Thedistributionofthetotalforcetothevariouswalls,asobtainedfromtheelastic

    analysismay bemodified provided the global equilibrium ismaintained and the

    maximumvalueoftheactioninanywallisnotreducedbymorethan30%

    (ii) Inacoupledwall,theelasticshearforceinthecouplingbeamscanalsobemodified

    with amaximum reduction of 20% provided that corresponding increases in the

    shearcapacitiesofbeamsatotherfloorsaremade.

    (c) BendingMomentDesignEnvelope

    Thedesignmomentsalong theheightof thewall shallbe thosegivenbya linear

    envelopeofthecalculatedmomentdiagram,verticallydisplacedbyadistanceequal

    tothehorizontallengthofthewall.(Fig.5.10.6.3)

  • 81

    Fig5.10.6.3BENDINGMOMENTDESIGNENVELOPE

    (d) EarthquakeInducedAxialLoadinCoupledWalls

    (i) Thedesignaxial load inthewallsduetothe lateralactionshallbecomputedusing

    theshearstrengthsofthecouplingbeamsabovethesectionconsidered,calculated

    byusingcharacteristicvaluesofconcreteandsteelstrength.

    (ii) The shear strength of the beams calculated in 5.10.6.3(3)(d)(i) shall be further

    amplifiedbyafactorof1.25

    (e) DynamicMagnificationFactors

    (i) Wheretheequivalentstaticanalysisisadopted,theshearforcesinthewallsshallbe

    magnifiedbythedynamicamplification factorwasgivenbytheexpressionbelow

    forbuildingsupto5storeyshigh

    w=0.1N+0.9.........1.5.3

    whereNisthenumberofstoreys

    (ii) Forwalls taller than five storeys,w, shallbe linearly increasedup to thevalueof

    w=1.8forN=15

  • 82

    5.10.6.4DuctilityLevelIII:DLIII

    (1) Elementssubjecttobending( f . A . 1 . 0 N cdgd )

    (a) Bendingmoments:Thedesignbendingmomentsshallbethoseobtainedfromlinear

    analysisofthestructure.RedistributionaccordingtoBS8110(1985)ispermitted.

    (b) ShearForces:

    (i)Thedesignshearforcesshallbedeterminedfromtheconditionsofequilibriumofthe

    elementsubjectedtotherelevanttransverseloads,ifany,andtoarationaladverse

    combinationofendmoments,asspecifiedin5.10.6.4(1)(b)(iii)

    (ii) Theendmomentsshallcorrespondtothedesignflexuralstrengthsoftheendsections

    basedonactualreinforcementprovided,multipliedbythefactor 1.25 = n (iii) Thealgebraicratiobetweenthemaximumandminimumvaluesofshearforceata

    sectionshallbedenotedby.Forthepurposestofollow,thevalueofshould

    notbetakensmallerthanminusone.(Fig5.10.6.4)

    AVA,d(1) B AVA,d(11) B

    VA,d=VA,d+MA+M1B VA,d=VA,dM1A+MB

    L L

    Fig 5.10.6.4 DESIGN SHEAR FORCES

  • 83

    ) 1.8 w (1.3 0.85 + T 0.6 = w 1

    ) 1.9 w (1.5 1.10 + T 0.5 = w 1

    (2) Elementssubjecttobendingandaxialforce( f . A . 1 . 0 > N cdgd )

    (a) Axialforcesandbendingmoments

    (i) The axial forces and bending moments to be used for column design shall be determined

    fromalinearanalysisofstructures,eventuallyredistributedaccordingtoBS8110(1985).

    (ii)For regular structures, three storeys and higher, towhich equivalent static analysis has been

    applied, the columnmomentdue to the lateral forces alone, shall bemultipliedby thedynamic

    magnificationfactor,w,asgivenbythefollowingexpressions:

    Planarframes:

    5.10.6.4

    Spatialframes:

    5.10.6.5

    whereT1,isthefundamentalperiodofthestructures.

    (iii) Thevaluesof thedynamic factor,wasgiven in5.10.6.4(2)(a)(ii)areapplicable to storeys

    withintheuppertwothirdsofthebuildingheight.Belowthislevelalinearvariationof,w,

    shouldbeassumed;thevalueat first floor levelshouldbe takenas1.3and1.5 forplanar

    andspatialframesrespectively.(Fig5.10.6.5)

  • 84

    Fig.5.10.6.5ValuesofDynamicFactor

    (iv) Columnmomentsshallsatisfytheconditionontherelativestrengthbetweencolumnsand

    beamsframingintoajoint(see5.10.7.1(3))

    (b) Shearforces

    (i)Inevaluatingthedesignshearforcesfromtheconditionsofstaticequilibriumthedesignend

    momentsshallbethemostadverseonesasobtainedfromtheanalysisofthestructure.

    (ii)Theendmomentsascalculatedaboveshallbefurtheramplified,ifappropriatebythedynamic

    magnificationfactors,andbythe n factor: 1.10 = n

    (3) BeamColumnJoints

    (a) Thedesignactionsshallbethoseinducedinthejointwhenthedesignultimate

    momentsofthebeamorbeamsmultipliedbyafactorn,equalto1.25aredeveloped,

    exceptincaseswhenhingesarepermittedtoforminthecolumns(seeClause5.10.7.1(3))

    Theaxialforceinthecolumnshallbetheminimumcorrespondingtothedesign

    seismicactions.

  • 85

    V - f ) A + A ( = V colyds2s1njh

    (b) HorizontalShearForce(Vjh)

    (i) InteriorJoint(seeFig.5.10.6.6)

    The shear force Vjh across a typical interior jointwithout prestressingmay be calculated

    from:

    ........ 5.10.6.6

    where

    Vcol=2l1.M1+l2M2/(lc+lc).........5.10.6.7

    l1nl2n

    with

    l1,l2=centretocentrespanofadjacentbeams

    l1n,l2n=clearspansofadjacentbeams

    lc,l'c=centretocentreupperandlowercolumnheights

    M1,M2=designendmomentsofbeamsmultipliedby 1.25 = n forspansl1andl2 respectively.

    As1,As2=topandbottomsteelinbeam

  • 86

    ( ) l + l / M . ll 2 = V cc11n

    1col

    hb . V = V

    c

    bjhjv

    Fig.5.10.6.6DesignShearActionsatBeamColumnJoints

    (ii) Externaljoints

    Forexternaljointsequation1.5.6stillapplieswhileequation5.10.6.7becomes

    5.10.6.8

    (c)VerticalShearForce(Vjv)

    Theverticalshearforcemaybeapproximatelyasfollows:

    5.10.6.9

    where

    bb=depthofbeam

    hc=widthofcolumn

  • 87

    (d) Whentwononcoplanarframeshavecommonjoints,verificationofthesejoints

    maybeconsideredineachdirectionseparately.

    (4) StructuralWalls

    (a) Thedesignactionsshallbethoseobtainedfromalinearanalysisofthebuilding

    modifiedasappropriateinaccordancewithclause5.10.6.4(b)(f)

    (b) Redistribution

    (i) Thedistributionofthetotalforcetothevariouswalls,asobtainedfromthe

    elasticanalysis,maybesubsequentlymodified,providedtheglobalequilibriumis

    maintainedandthemaximumvalueoftheactioninanywallisnotreducedby

    morethan30%

    (ii) Inacoupledwall,theelasticshearforcesinthecouplingbeamscanalso

    bemodifiedwithamaximumreductionof20%providedcorresponding

    increasesintheshearcapacitiesofbeamsatotherfloorsaremade

    (c) BendingMoment