GGI Goldberg - indico.cern.ch

22
GGI 2012 Haim Goldberg 0.0 0.5 1.0 1.5 2.0 Flat BAO CMB SNe No Big Bang Neutrino Cosmology Neutrino Workshop 1 Friday, June 22, 12

Transcript of GGI Goldberg - indico.cern.ch

Page 1: GGI Goldberg - indico.cern.ch

GGI 2012

Haim Goldberg 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

FlatBAO

CMB

SNe

No Big Bang

Neutrino Cosmology

Neutrino Workshop

1Friday, June 22, 12

Page 2: GGI Goldberg - indico.cern.ch

0.0 0.5 1.00.0

0.5

1.0

1.5

2.0

FlatBAO

CMB

SNe

No Big Bang

Earliest Observationally Verified Landmarks

11Be

10Be

9Be

8Be

7Be

8B

10B

9B

11C

12C

13C

14C

15C

16C

17C

18C

19C

20C

12N

13N

14N

15N

16N

17N

18N

19N

20N

21N

14O

15O

16O

17O

18O

19O

20O

21O

22O

17F

18F

18Ne

19F

20F

21F

22F

21Ne

22Ne

11B

12B

13B

14B

15B

6Li

5He

7He

10Li

13Be

6He

8He

4He

3He

2H

1n

3H

1H

7Li

8Li

9Li

11Li

12Be

n,γα,p

α,γ

α,np,γ

p,n

n,p

p,α

n,α

BBN (⇠ 20 minutes) CMB (⇠ 380 kyr)

Galaxy Formation (& 1 Gyr)

2Friday, June 22, 12

Page 3: GGI Goldberg - indico.cern.ch

Outline

➤ Right-handed neutrinos are necessary in...

➤ the best of all models: U(1) for everone

➤ Joint constraints on milliweak interactions (CMB-BBN-LHC)

➤ Summary and Conclusions

➤ CMB and BBN data/theory predictions

➤ Effective number of neutrinos

Work done in collaboration with: Anchordoqui, Antoniadis, Huang, Lust, Taylor, Vlcek

PRL 108 (2012) 081805 and arXiv:1206.25373Friday, June 22, 12

Page 4: GGI Goldberg - indico.cern.ch

Steigman, Schramm, and Gunn, PLB66 (1977) 202

Effective Number of Neutrinos➤ Most straightforward variation of Standard Big-Bang Cosmology ☛ extra energy contributed by new relativistic particles “ ’’X

➤ When   don't share in energy released by annihilation ☛ convenient to account for extra contribution to SM energy density

by normalizing it to that of an equivalent neutrino species

X 0s

➤ For each additional relativistic degree of freedom:

➤ If have decoupled even earlier X 0s

when various other particle-antiparticle pairs annihilated(or unstable particles decayed) 

contribution to from each such particle will be�N⌫

and have failed to profit from heating

n<1<4/7

if TX = T⌫ )⇢

�N⌫ = 1 for X = any two� component fermion

�N⌫ = 4/7 for X = scalar

⇢X ⌘ �N⌫⇢⌫ =7

8�N⌫⇢� (with �N⌫ = N⌫ � 3)

4Friday, June 22, 12

Page 5: GGI Goldberg - indico.cern.ch

CMB ➤ Basic equation:

➤ from galaxy distributions and precise measurementsH0

➤ Wilkinson Microwave Anisotropy Probe ☛ N e↵⌫ = 4.34+0.86

�0.88 (2�)WMAP Collaboration, ApJS 192 (2011) 18

➤ Atacama Cosmology Telescope ☛ 

ACT Collaboration, ApJ 739 (2011) 52

N e↵⌫ = 4.56± 0.75 (68%CL)

➤ South Pole Telescope ☛ 

SPT Collaboration, ApJ 743 (2011) 28

N e↵⌫ = 3.86± 0.42 (1�)

➤ WMAP + SPT [ACP] + H(z) ☛

SDSS Collaboration, MNRAS 401 (2010) 2148 Riess et al., ApJ 699 (2009) 539

�N e↵⌫

N e↵⌫

' 2.45�(⌦mh2)

⌦mh2� 2.45

�zeqzeq

�(⌦mh2)

N e↵⌫ = 3.5± 0.3 (1�) [3.7± 0.4 (1�)]

Moresco, Verde, Pozzetti, Jimenez, Cimatti, arXiv:1201.6658

5Friday, June 22, 12

Page 6: GGI Goldberg - indico.cern.ch

P/P

max

, L

p/L

p max

Neff

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

P/P

max

, L

p/L

p max

Neff

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

P/P

max

, L

p/L

p max

Neff

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10Neff

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

∆χ

eff

2

Neff

2 3 4 5 6 7 8 9 10 0

1

2

3

4

5

6

7

8

9

∆χ

eff

2

Neff

2 3 4 5 6 7 8 9 10 0

1

2

3

4

5

6

7

8

9

☛ Planck will reach sensitivity of 0.26 (see Georg lecture from Monday)

Hamann, JCAP 1203 (2012) 021

Combined Likelihood analysis

WMAP7 + ACP + HST

6Friday, June 22, 12

Page 7: GGI Goldberg - indico.cern.ch

R.D.O.F. & CMB ➤ Competition between gravitational potential and pressure gradients

is responsible for peaks and troughs in CMB TT power spectrum

➤ Redshift @ matter-radiation equality

affects time (redshift) duration over which this competition occurs

➤ If  radiation content is increased ☛ matter-radiation equality

is delayed and occurs closer  to recombination epoch

➤ This implies universe is younger @ recombination with a correspondingly smaller sound horizon s⇤

➤ Since location of peak

scales roughly as

nth

n⇡D⇤/s⇤l

and with greater separationpeaks shift to larger☛

zeq = 2.4⇥ 104 ⌦m

h2/(t/t0)2post

➤ Key issue here: parameter degeneracy

multiple parameters affect same feature7Friday, June 22, 12

Page 8: GGI Goldberg - indico.cern.ch

BBNPrimordial ⁴He abundance is driven by decoupling of weak interaction(when neutrinos go out of equilibrium)

Yp / e�(mn�mp)/Tdec

➤ Tdec determined via �(Tdec) = H(Tdec)

T 5dec (g/MW )4MPl ⇠

pN T 2

dec (with MW ⇠ 100 GeV)

➤ For BBN ☛ T ⇠ 5 MeV N ⇠ 10&

increases with ➤

NYp

Observationally inferred primordial fractions of baryonic mass in ⁴He

have been constantly favoring

Simha and Steigman, JCAP 06 (2008) 016

N e↵⌫ . 3

8Friday, June 22, 12

Page 9: GGI Goldberg - indico.cern.ch

BBN Observations➤Unexpectedly ☛ recent determination of primordial ⁴He mass fraction

leads to Yp = 0.2565± 0.0010(stat)± 0.0050(syst)

2�( higher than value given by standard BBN)

For

For ⌧n = 878± 0.8 s ☛ N e↵⌫ = 3.800.80�0.70 (2�)

Izotov and Thuan, ApJ 710 (2010) L67➤⁴He observed primordial abundance has relative large systematic errors

Aver, Olive, and Skillman, JCAP 1103 (2011) 043

is predicted with precision of ➤ Yp ⇠ 0.2%with  precisions of  roughly 5%, 4% and 8%

because of very precise measurement ☛ constraint onBUT

N e↵⌫

from D/H is competitive with that from Yp

➤Setting aside ⁴He constraints

N e↵⌫ = 3.9± 0.44 (1�)

Nollett and Holder, arXiv:1112.2683

and combining CMB with BBN theory and observed D/H

D, ³He, and ⁷Li

9Friday, June 22, 12

Page 10: GGI Goldberg - indico.cern.ch

How to get ➤ If decouples

before reheating�! contribution to ⇢rad washed out

⌫X➢➢

�!after reheating �! full contribution toduring reheating

Decoupling

➤ Thermal decoupling when �sc = �sc nv ⇠ H

g4X T 2

M4X

T 3 ⇠ N T 2

MPl

➤ Normalize w.r.t. decoupling at a few MeV via weak scattering⌫L

MX

MW⌘

✓T decX

T dec⌫L

◆3/4

gX ⇠ g2

with gX ⇠ g2

➤ For decoupling during the QCD crossover, T dec ' 200

MX ⇠ 3 TeV

N e↵⌫ 6= 6

N e↵⌫ = 3

⇢rad ! N e↵⌫ = 6

⇢rad ! 3 < N e↵⌫ < 6

10Friday, June 22, 12

Page 11: GGI Goldberg - indico.cern.ch

How do we get with right-handed neutrinos?

➤ Find model in which

�N e↵⌫ ⇠ 1

⌫R decouples during quark-hadron transition

➤ From previous equation ☛ need non-zero coupling to gauge fields

M ⇠ TeVwith

➤ D-brane candidate: SU(3)C ⇥ SU(2)L ⇥ U(1)B ⇥ U(1)L ⇥ U(1)IR

Y =1

2(B � L) + IR

is non-anomalous if B � L 3 ⌫L0s 3 ⌫R

0sare accompanied by

➤ Matter fields consist of six sets of Weyl fermion-antifermion pairs (labeled by index i = 1 . . . 6)

B

L

➤ Gauging of prevents fast proton decay

☛ mass via Green-Schwarz/Stuckelberg mechanism

➤ Gauging of disallows heavy Majorana

☛ just 3 Dirac neutrinos with tiny Yukawas11Friday, June 22, 12

Page 12: GGI Goldberg - indico.cern.ch

R

LL RE , N

LQ U , D RR

W

gluon

Sp(1) U(1)

U(1)

U(3)

4-Leptonic

3-Baryonic

2-Left 1-Right

Pictorial Representation of D-brane Construct

Cremades, Ibañez, and Marchesano, JHEP 0307 (2003) 0388

12Friday, June 22, 12

Page 13: GGI Goldberg - indico.cern.ch

Model Parameters➤ 3 couplings gB , gL, gIR

➤ 3 Euler angles ☛ field rotation to coupling diagonal in   fixes 2 anglesY

➤ Orthogonal nature of rotation ☛ one constraint on couplings

1

g2Y=

✓1

2gL

◆2

+

✓1

6gB

◆2

+

✓1

2gIR

◆2

➤ Baryon number coupling gBfixed to be SU(3) U(3)of coupling at unification

➤ 2 remaining d.o.f. allow  further rotation leaving in addition to

-- only boson masses are free --

Z 0 B

Z 00 B � L

to couple to (super-heavey string scale)

to couple to linear combinaion of and

☛ determined elsewhere via RG running

1/p6

Y

IR

13Friday, June 22, 12

Page 14: GGI Goldberg - indico.cern.ch

14

The Dramatis Personae

Index Fields Sector SU(3)C × SU(2)L U(1)B U(1)L U(1)IR U(1)Y g′ g′′

1 UR 3 → 1∗ (3, 1) 1

30 1

2

2

30.368 −0.028

2 DR 3 → 1 (3, 1) 1

30 −

1

2−

1

30.368 −0.209

3 LL 4 → 2 (1, 2) 0 1 0 −1

20.143 0.143

4 ER 4 → 1 (1, 1) 0 1 −1

2−1 0.142 0.262

5 QL 3 → 2 (3, 2) 1

30 0 1

60.368 −0.119

6 NR 4 → 1∗ (1, 1) 0 1 1

20 0.143 0.443

- H 2 → 1 (1, 2) 0 0 1

2

1

22.5× 10−4 0.090

LYukawa = −Y ijd Q̄i HDj − Y ij

u εab Q̄ia H†b Uj − Y ij

! L̄iH Ej + Y ijν εab L̄ia H

†b Nj + h.c.

The Dramatis Personae

LYukawa = �Y ijd Q̄i HDj � Y ij

u ✏ab Q̄ia H†b Uj � Y ij

` L̄i H Ej + Y ij⌫ ✏ab L̄ia H

†b Nj + h.c.

LAA, Antoniadis, Goldberg, Huang, Lust, and Taylor, PRD 85 (2012) 086003 ..

14Friday, June 22, 12

Page 15: GGI Goldberg - indico.cern.ch

Obtaining Decoupling Temperature

➤ Adiabatic reheating of all particles except after decoupling

☛ temperature at end of reheating phase➤

☛ effective number of r.d.o.f. at ➤

gives relation

�N e↵⌫ = 3

✓N(Tend)

N(Tdec)

◆4/3

Tend

N(T ) = r(T )(NB +7

8NF)

for lepton/photon andr(T ) = 1➤ r(T ) = s(T )/sSB

qg for plasma

N(Tdec) = 37 r(Tdec) + 14.25

N(Tend) = 10.75

⌫R0s

T

15Friday, June 22, 12

Page 16: GGI Goldberg - indico.cern.ch

Lattice QCD➤ Lower coincides with most rapid rise of entropyT

Bazavov et al., PRD 80 (2009) 014504

0

5

10

15

20

100 150 200 250 300 350 400 450 500 550

0.4 0.6 0.8 1 1.2

T [MeV]

s/T3Tr0 sSB/T3

p4: N�=86

asqtad: N�=86

14

Quark-Hadron Crossover Transition

• Lower T coincides with most rapid rise of entropy

• N(T ) based on energy curve rather than entropy — similar

0

5

10

15

20

100 150 200 250 300 350 400 450 500 550

0.4 0.6 0.8 1 1.2

T [MeV]

s/T3Tr0 sSB/T3

p4: N!=86

asqtad: N!=86

0

2

4

6

8

10

12

14

16

100 150 200 250 300 350 400 450 500 550

0.4 0.6 0.8 1 1.2

T [MeV]

"/T4

Tr0 "SB/T4

3p/T4 p4asqtad

p4asqtad

Bazavov et al., PRD 80 (2009) 014504

16Friday, June 22, 12

Page 17: GGI Goldberg - indico.cern.ch

➤ Excess r.d.o.f. within of central value of each if1�

0.46 < �N e↵⌫ < 1.08

! 23 < N(Tdec) < 44

! 0.24 < r(Tdec) < 0.80

➤ From lattice QCD study ☛ this translates to a temperature range

175 MeV < Tdec < 250 MeVBazavov et al., PRD 80 (2009) 014504

➤ Decoupling of ⌫R occurs when

⌫R m.f.p. � horizon size ) �

int(Tdec) = H(Tdec)

Thermal equilibrium ! int = scatt + ann

Chemical equilibrium ! int = ann

H(T ) = 1.66 hN(T )i1/2 T 2/MPl

Quark-Hadron Crossover Transition

17Friday, June 22, 12

Page 18: GGI Goldberg - indico.cern.ch

0

1

2

3

4

5

6

7

8

100 200 300 400 500

0.2 0.4 0.6 0.8 1 1.2

T [MeV]

Tr0

(�-3p)/T4p4

asqtadHRG

As a check ...

(which is very sensitive to behavior in crossover region)

and our range for straddles this regionTdec

200 MeVshows a sharp peak at

behavior of trace anomaly

➤ Including s ☛ 0.18 < r(T ) < 0.6318Friday, June 22, 12

Page 19: GGI Goldberg - indico.cern.ch

Cross Sections➤ All is fixed except for and massesZ 0 Z 00

➤ For interaction rate

�scat(T ) ' 2.0 G2e↵ T 5

�ann(T ) ' 0.50 G2e↵ T 5

G2e↵ ⇠

XG2

i with 4Gip2=

g06 g0iM2

Z0+

g006 g00iM2

Z00

➤ By setting in turn �ann(T ) = H(T ) ' 10.4 T 2/MPl

and

�ann(T ) + �scatt(T ) = H(T ) ' 10.4 T 2/MPl

one arrives at two values of Tdec

Chemical equilibrium ! Tdec = 2.75 (G2e↵ MPl)

�1/3

Thermal equilibrium ! Tdec = 1.60 (G2e↵ MPl)

�1/3

➤ When each of these is required to lie between 175 MeV and 250 MeV ☛ allowed regions of and masses are defined in each caseZ 0 Z 00

☛ take average over angles and thermal average over energies

19Friday, June 22, 12

Page 20: GGI Goldberg - indico.cern.ch

Constraints

➤ Light shaded regions indicate masses excluded by LHC7 dijet searches ➤ These two estimates should serve to bracket size of actual effect ➤ Designation of B corresponds to Z′ and B − L to Z′′

to accommodate CMB and BBN data➤ Dark shaded areas show region allowed from decoupling requirements

2 4 6 8 10

2

4

6

8

10

MB �TeV⇥

MB⇥L�TeV

⇥Scattering � Annihilation

LHC Excluded Region

2 4 6 8 10

2

4

6

8

10

MB �TeV⇥MB�L�TeV⇥

Annihilation Only

LHC Excluded Region

LAA and Goldberg, PRL 108 (2012) 08180520Friday, June 22, 12

Page 21: GGI Goldberg - indico.cern.ch

ZOOM OUT

Anchordoqui, Antoniadis, H.G, Huang, Lust, Taylor, Vlcek, arXiv:1206.2537

21Friday, June 22, 12

Page 22: GGI Goldberg - indico.cern.ch

Summary and Conclusions❑ We developed dynamic explanation of recent hints that

❑ We work within (string base) gauge theoryU(3)C ⇥ SU(2)L ⇥ U(1)R ⇥ U(1)L

❏ Model endowed with gauge symmetries coupled to

❏ Rotation of gauge fields to basis exactly diagonal in

❏ Requiring current be anomaly free implies existence of 3 right-handed Weyl neutrinos

❑ Task then reverts to explain why there are not 3 additional r.d.o.f.

occurs during course of quark-hadron crossover transition

❑ We find  that for certain ranges of and   decoupling of 

☛ just so that they are only partially  reheated compared to 

❑ Corresponding upper and lower bounds on gauge field masses  yield  ranges to be probed at LHC

MB MB�L ⌫R0s

⌫L0s

is equivalent to about 1 extra Weyl neutrinorelativistic component of energy during BBN and CMB epochs

B � L

B � L B

3U(1) B, L, IR

and very nearly diagonal in andY

fixes all mixing angles and gauge couplings

22Friday, June 22, 12