Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

30
Wireless network positioning: A geometric approach Mohammad Reza Gholami School of Electrical Engineering Signal Processing KTH Royal Institute of Technology E. Ström, H. Wymreesch, M. Rydström, Y. Censor, S. Gezici, L. Tetruashvili, and colleagues at NewCom++ March 5, 2014

Transcript of Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Page 1: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Wireless network positioning: A geometric approach

Mohammad Reza GholamiSchool of Electrical Engineering 

Signal Processing KTH Royal Institute of Technology

E. Ström, H. Wymreesch, M. Rydström, Y. Censor, S. Gezici, L.  Tetruashvili, and colleagues at NewCom++

March 5, 2014 

Page 2: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Global positioning system (GPS)

2

http://en.wikipedia.org/wiki/Global_Positioning_System

Page 3: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

• Limited access

• Latency • Power constraint

3

Position from the network

GPS drawbacks for positioning

Page 4: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Outline

• Introduction• Positioning problem• Geometric interpretation• Positioning as a convex feasibility problem• Upper bounds on a single position estimate (deterministic bound)

• Quantifying the feasible sets • Conclusions and future work

4

Page 5: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

WSN: position information for processing the data GPS not applicable in some scenariosExtracting the position information from the network

Wireless sensor networks (WSNs) positioning

5

Page 6: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)
Page 7: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

7

Page 8: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

8

Problem statement

Page 9: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

9

Problem statement

- MLE- Least squares- Centralized- Distributed- Geometric estimators…

- Noncooperative- Cooperative

Page 10: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Required positioning accuracy

• Complex algorithms, e.g., MLE (difficult nonconvex), to obtain high level of accuracy

• Simple algorithms to provide good initial points • A geometric interpretation • Main idea: confining the location of a target to a bounded

feasible set based on the measurements

10

* M. Hazas, J. Scott, and J. Krumm, `` Location-aware computing comes of age,” Computer, vol. 37, no. 2, pp. 95-97, 2004.

Page 11: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

11

Geometric interpretation: review(noncooperative)

Histogram of the ranging error for the LOS and NLOS condition [1]

* H. Wymeersch, S. Maranò, W. M. Gifford,  M. Z. Win, “A machine learning approach to ranging error mitigation for UWB localization,” IEEE Trans. Commun., pp. 1719-1728, vol. 60, June 2012.

Page 12: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Projection onto convex sets (POCS)

[1] D. Blatt and A. O. Hero, ``Energy-based sensor network source localization via projection onto convex sets,” IEEE Trans. Signal Processing, pp. 3614-3619, 2006.[2] A. O. Hero and D. Blatt, ``Sensor network source localization via projection onto convex sets (POCS),” IEEE ICASSP, pp. 689-692, vol. 3, 2005.[3] M. Rydström, E. G. Ström, and Arne Svensson, ``Robust sensor network positioning based on projections onto circular and hyperbolic convex sets (POCS),” IEEE SPAWC, 2006.[4] M. Rydström, L. Reggiani, E. G. Ström, and Arne Svensson, ``Suboptimal soft range estimators with applications in UWB sensor networks,” IEEE Trans. Signal Processing, pp. 4856-4866, vol. 56, 2008.[5] J. Wang and P. A. Regalia, `` Sensor network localization via boundary projections,” 43rd Ananual Conf. on Information Science and Systems, pp. 224-229, 2009.

[6] M. R. Gholami, S. Gezici, M. Rydström, and E. G. Ström, `` A distributed positioning algorithm for cooperative active and passive sensors,” IEEE PIMRC, pp. 1713- 1718, 2010.[7] M. R. Gholami, M. Rydström, E. G. Ström, ``Positioning of node using plane projection onto convex sets,” IEEE WCNC, Sydney, 2010.

12

Page 13: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Upper bounds on position error

Other bounds: Bound 2: maximum length based on 2-norm Bound 3: maximum length based on bounding box covering the intersection

[1] M. R. Gholami E. G. Ström, H. Wymeersch, and M. Rydström, ``On geometric upper bounds for positioning algorithms in wireless sensor networks,” submitted to Signal Processing, Oct. 2013. [Online]. Available: arXiv preprint arXiv:1201.2513.[2] M. R. Gholami, E. G. Ström, H. Wymeersch and S. Gezici, ``Upper bounds on position error of a single location estimate in wireless sensor networks,” EURASIP Journal on Advances in Signal Processing 2014, 2014:4. 13

Bound 1:

Page 14: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

14

Numerical results

Tightness:

Relative tightness:

Estimates from the POCS approach

Page 15: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

15

Bound 3

Bound 2

Bound 1

* M. R. Gholami et al. ``On geometric upper bounds for positioning algorithms in wireless sensor networks,” submitted to Signal Processing, Oct. 2013. [Online]. Available: arXiv preprint arXiv:1201.2513.

Page 16: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

An application

16

* M. R. Gholami et al. ``On geometric upper bounds for positioning algorithms in wireless sensor networks,” submitted to Signal Processing, Oct. 2013. [Online]. Available: arXiv preprint arXiv:1201.2513.

Page 17: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Cooperative scenarios

An example:

17

Assumption:

Page 18: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Implicit convex feasibility problem (ICFP)

[1] M. R. Gholami et al. ``Wireless network positioning as a convex feasibility problem,” Eurasip Journal. Wireless Comunication and Networking, 2011, 2011:161.[2] M. R. Gholami et al. ``Cooperatives wireless sensor network positioning via implicit convex feasibility,” IEEE Trans. Signal processing, pp. 5830-5840, vol. 61, 2013.[3] M. R. Gholami et al. ``Robust distributed positioning algorithms for cooperative networks,” IEEE SPAWC, San Francisco, 2011.

18

Page 19: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

CFP and ICFP

19

Page 20: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

20

[1] M. R. Gholami et al. ``Wireless network positioning as a convex feasibility problem,” Eurasip J. Wireless Comunication and Networking, 2011, 2011:161.[2] M. R. Gholami et al. ``Cooperative wireless sensor network positioning via implicit convex feasibility,” IEEE Trans. Signal processing, pp. 5830-5840, vol. 61, 2013.[3] M. R. Gholami et al. ``Robust distributed positioning algorithms for cooperative networks,” IEEE SPAWC, San Francisco, 2011.

Page 21: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

The proposed algorithm

21

Page 22: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Mathematical model

(1)

(2)

* M. R. Gholami et al. ``Cooperative wireless sensor network positioning via implicit convex feasibility,” IEEE Trans. Signal processing, pp. 5830-5840, vol. 61, 2013.

22

Page 23: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Numerical results

Cooperative Parallel Projection method (Coop. PPM)Cooperative Projection onto Convex set (Coop. POCS) [1]Cooperative Parallel Projection onto Boundary (Coop. PPB) [2]

[1] M. R. Gholami et al. `` Wireless network positioning as a convex feasibility problem”, Eurasip J. Wireless Commun. And Networking, vol. 2011:161, 2011.[2] T. Jia and R. Buehrer, `` A set-theoretic approach to collaborative position location for wireless networks, IEEE Trans. Mobile Comput., pp. 1264-1275, 2011.

23

Page 24: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

24

Numerical results

Page 25: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Quantifying feasible regions

Page 26: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

The Proposed algorithm

(*)

26*M. R. Gholami et al. ``Distributed bounding of feasible sets in cooperative wireless network,” IEEE Comm. Letters, pp. 1596-1599, 2013.

Page 27: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

*M. R. Gholami et al. ``Distributed bounding of feasible sets in cooperative wireless network,” IEEE Comm. Letters, pp. 1596-1599, 2013.

The Proposed algorithm

Page 28: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Numerical results

28

*M. R. Gholami et al. ``Distributed bounding of feasible sets in cooperative wireless network,” IEEE Comm. Letters, pp. 1596-1599, 2013.

Page 29: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Positive and negative measurement errors

• The intersection no longer contains the target location• Manually manipulating the measurements

29* M. R. Gholami, E. G. Ström, H. Wymeersch and S. Gezici, ``Upper bounds on position error of a single location estimate in wireless sensor networks,” EURASIP J. on Advances in Signal Processing 2014, 2014:4.

Page 30: Geometric_positioning (KTH-5392's conflicted copy 2014-03-05)

Conclusions

Low complexity estimators based on a geometric interpretationProjection based approach: fully distributed algorithm Upper bounds on the position errors - reasonably tight in many situationsQuantifying the feasible sets in cooperative scenarios - the method converges fast - outperforms the existing approachFuture work: - improving the tightness of the upper bound - improving the convergence of positioning algorithm based on projection - convergence of the distributed bounding of feasible regions

30