Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

147
Geometric Geometric Representations Representations of of Graphs Graphs Jan Kratochvíl, DIMATIA, Prague

Transcript of Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Page 1: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Geometric Representations Geometric Representations of of GraphsGraphs

Jan Kratochvíl, DIMATIA, Prague

Page 2: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Intersection Graphs

{Mu, u VG} uv EG Mu Mv

Page 3: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

String Graphs

{Mu, u VG} uv EG Mu Mv

Page 4: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Personal Recollections

1982 – Czech-Slovak Graph Theory, Prague

Page 5: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Personal Recollections

1982 – Czech-Slovak Graph Theory, Prague

1983 – Prague

1990 – Tempe, Arizona

Page 6: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Personal Recollections

1982 – Czech-Slovak Graph Theory, Prague

1983 – Prague

1990 – Tempe, Arizona

1988 – Bielefeld, Germany

Page 7: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Intersection Graphs

Every graph is an intersection graph.

Page 8: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Intersection Graphs

Every graph is an intersection graph.

Mu = {e EG | u e}

Page 9: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Intersection Graphs

Every graph is an intersection graph.

uv EG Mu Mv

Mu = {e EG | u e}

Page 10: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Intersection Graphs

Every graph is an intersection graph

Restricting the sets

Page 11: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Intersection Graphs

Every graph is an intersection graph

Restricting the sets – by geometrical shape

Motivation and applications in scheduling, biology, VLSI designs …

Page 12: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Intersection Graphs

Every graph is an intersection graph

Restricting the sets – by geometrical shape

Motivation and applications in scheduling, biology, VLSI designs …

Nice characterizations, interesting theoretical properties, challenging open problems

Page 13: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Few Examples

Page 14: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Few Examples

Interval graphsInterval graphs -

Gilmore, Hoffman 1964

Fulkerson, Gross 1965

Booth, Lueker 1975

Trotter, Harary 1979

Page 15: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Few Examples

Interval graphsInterval graphs -

- neat characterization

chordal + co-comparability

- recognizble in linear time

- most optimization

problems solvable in polynomial time

- perfect

Page 16: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Few Examples

SEG graphsSEG graphs -

Ehrlich, Even, Tarjan 1976

Scheinerman

Erdös, Gyarfás 1987

JK, Nešetřil 1990

JK, Matoušek 1994

Thomassen 2002

Page 17: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Few Examples

SEG graphsSEG graphs -

- recognition NP-hard and

in PSPACE,

NP-membership open

- coloring, independent

set NP-hard, complexity of CLIQUE open

- near-perfectness open

Page 18: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Near-perfect graph classes

A graph class G is near-perfect if there exists a function f such that

(G) f((G))

for every G G.

Page 19: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Few Examples

String graphsString graphs -

Sinden 1966

Ehrlich, Even, Tarjan 1976

JK 1991

JK, Matoušek 1991

Pach, Tóth 2001

Štefankovič, Schaffer 2001, 2002

Page 20: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Few Examples

CONV graphsCONV graphs -

Ogden, Roberts 1970

JK, Matoušek 1994

Agarwal, Mustafa 2004

Kim, Kostochka,

Nakprasit 2004

Page 21: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Few Examples

PC graphsPC graphs -

Fellows 1988

Koebe 1990

JK, Kostochka 1994

Spinrad

JK, Pergel 2002

Pergel 2007

Page 22: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Few Examples

Circle graphsCircle graphs -

De Fraysseix 1984

Bouchet 1985

Gyarfas 1987

Unger 1988

Kloks 1993

Kostochka 1994

Page 23: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Few Examples

Circle graphsCircle graphs -- recognizable in linear time - coloring NP-hard- independent set, cliquesolvable in polynomial time- near-perfect log O(2) - close bounds open

Page 24: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Few Examples

Circular Arc graphsCircular Arc graphs -

Tucker 1971, 1980

Gavril 1974

Gyarfás 1987

Spinrad 1988

Hell, Bang-Jensen, Huang 1990

Page 25: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Few Examples

Circular Arc graphsCircular Arc graphs -

Tucker 1971, 1980

Gavril 1974

Gyarfás 1987

Spinrad 1988

Hell, Bang-Jensen, Huang 1990

Page 26: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 27: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 28: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 29: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Outline

String graphs CONV and PC graphs Representations of planar graphs

Page 30: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. String graphs

Sinden 1966

Page 31: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. String graphs

Sinden 1966 = IG(regions)

Page 32: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. String graphs

Sinden 1966 = IG(regions)

Graham 1974

Page 33: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. String graphs

Sinden 1966

JK, Goljan, Kučera 1982

Page 34: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. String graphs

Sinden 1966

JK, Goljan, Kučera 1982

Thomas 1988

IG(topologically con) =

all graphs,

String = IG(arc-connected sets)

Page 35: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. String graphs

Sinden 1966

JK, Goljan, Kučera 1982

Thomas 1988

JK 1991 – NP-hard

Page 36: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. String graphs

SEGCONV

STRING

Page 37: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. String graphs

SEGCONV

STRING

Page 38: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. String graphs

Sinden 1966

JK, Goljan, Kucera 1982

Thomas 1988

JK 1991 – NP-hard

Recognition in NP?

Page 39: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. String graphs

Sinden 1966

JK, Goljan, Kucera 1982

Thomas 1988

JK 1991 – NP-hard

Recognition in NP?

Page 40: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Abstract Topological Graphs

G = (V,E), R { ef : e,f E } is realizable if G has a drawing D in the plane such that for every two edges e,f E,

De Df ef R

G = (V,E), R = is realizable iff G is planar

Page 41: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Worst case functions

Str(n) = min k s.t. every string graph on n vertices has a representation with at most k crossing points of the curves

At(n) = min k s.t. every AT graph with n edges has a realization with at most k crossing points of the edges

Lemma: Str(n) and At(n) are polynomially equivalent

Page 42: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

String graphs requiring large representations Thm (J.K., Matoušek 1991):

At(n) 2cn

Page 43: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 44: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 45: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 46: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 47: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. String graphs

Sinden 1966

JK, Goljan, Kucera 1982

Thomas 1988

JK 1991 – NP-hard

Recognition in NP?

Are they recognizable at all?

Page 48: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Thm (Pach, Tóth 2001): At(n) nn

Thm (Schaefer, Štefankovič 2001): At(n) n2n-2

Page 49: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. String graphs

Sinden 1966

JK, Goljan, Kučera 1982

JK 1991 – NP-hard

Schaefer, Sedgwick,

Štefankovič 2002 –

String graph recognition is in NP (Lempel-Ziv compression)

Page 50: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. Some subclasses

Page 51: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. Some subclasses

Page 52: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. Some subclasses

Complements of

Comparability graphs

(Golumbic 1977)

Page 53: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Co-comparability graphs

Page 54: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Co-comparability graphs

Page 55: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Co-comparability graphs

=

Page 56: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Co-comparability graphs

Page 57: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Co-comparability graphs

Page 58: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. Some subclasses

“Zwischenring” graphs

NP-hard

(Middendorf, Pfeiffer)

Page 59: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. Some subclasses

Outerstring graphs

NP-hard

(Middendorf, Pfeiffer)

Page 60: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. Some subclasses

Outerstring graphs

NP-hard

(Middendorf, Pfeiffer)

Page 61: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

1. Some subclasses

Interval filament graphs

(Gavril 2000)

CLIQUE and IND SET

can be solved in

polynomial time

Page 62: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. CONV and PC

JK, Matoušek 1994 –

recognition in PSPACE

Page 63: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Thm: Recognition of CONV graphs is in PSPACE

Reduction to solvability of polynomial inequalities in R:

x1, x2, x3 … xn R s.t.

P1(x1, x2, x3 … xn) > 0

P2(x1, x2, x3 … xn) > 0

Pm(x1, x2, x3 … xn) > 0 ?

Page 64: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

{Mu, u VG} uv EG Mu Mv

Mu

Mv

Mw

Mz

Page 65: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Mu

Mv

Mw

Mz

Choose Xuv Mu Mv for every uv EG

Xuw

Xuz

Xuv

Page 66: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Cu Cv Mu Mv uv EG

Mu

Mv

Mw

Mz

Replace Mu by Cu = conv(Xuv : v s.t. uv EG) Mu

Xuw

Xuz

Xuv

Page 67: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Introduce variables xuv , yuv R s.t. Xuv = [xuv , yuv ] for uv EG

Page 68: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Introduce variables xuv , yuv R s.t. Xuv = [xuv , yuv ] for uv EG

uv EG Cu Cv guaranteed by the choice Cu = conv(Xuv : v s.t. uv EG)

Page 69: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Introduce variables xuv , yuv R s.t. Xuv = [xuv , yuv ] for uv EG

uv EG Cu Cv guaranteed by the choice Cu = conv(Xuv : v s.t. uv EG)

uw EG Cu Cw = separating lines

Page 70: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Introduce variables xuv , yuv R s.t. Xuv = [xuv , yuv ] for uv EG

uv EG Cu Cv guaranteed by the choice Cu = conv(Xuv : v s.t. uv EG)

uw EG Cu Cw = separating lines

Cu

Cw

auwx + buwy + cuw = 0

Page 71: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Introduce variables xuv , yuv R s.t. Xuv = [xuv , yuv ] for uv EG

uv EG Cu Cv guaranteed by the choice Cu = conv(Xuv : v s.t. uv EG)

uw EG Cu Cw = separating lines

Cu

Cw

auwx + buwy + cuw = 0

Representation is described by inequalities

(auwxuv + buwyuv + cuw) (auwxwz + buwywz + cuw) < 0 for all u,v,w,z s.t. uv, wz EG and uw EG

Xuv

Xwz

Page 72: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Recognition – NP-membership

“Guess and verify”

Page 73: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Recognition – NP-membership

“Guess and verify”

- INT, CA, CIR, PC, Co-Comparability

- IFA – mixing characterization

- CONV, SEG ?

!! String – Lempel-Ziv compression

Page 74: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Recognition – NP-membership

Thm (JK, Matoušek 1994): For every n there is a graph Gn SEG with O(n2) vertices s.t. every SEG representation with integer endpoints has a coordinate of absolute value 22n.

Same for CONV (Pergel 2008).

Page 75: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. CLIQUE in CONV graphs

- CO-PLANAR CONV (JK, Kuběna 99)

Page 76: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 77: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 78: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 79: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 80: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 81: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 82: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. CLIQUE in CONV graphs

- CO-PLANAR CONV (JK, Kuběna 99)

- Corollary: CLIQUE is NP-complete for CONV graphs. (Since INDEPENDENT SET is NP-complete for planar graphs.)

- CLIQUE in SEG graphs still open (JK, Nešetřil 1990)

Page 83: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. CLIQUE in MAX-TOL graphs

Page 84: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. MAX-TOLERANCE

(Golumbic, Trenk 2004)

Page 85: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. MAX-TOLERANCE

S S = {Iu | u VG } intervals, tu RR tolerances

uv EG iff |Iu Iv| ≥ max {tu, tv}

Page 86: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. MAX-TOLERANCE

Theorem (Kaufmann, JK, Lehmann, Subramarian, 2006): Max-tolerance graphs are exactly intersection graphs of homothetic triangles (semisquares)

Page 87: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. MAX-TOLERANCE

Iu

tu

Tu

Iv

Tv

Page 88: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Lemma (folklore): Disjoint convex polygons are separated by a line parallel to a side of one of them.

Page 89: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

A B

C

Page 90: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Maximal cliques

Q a maximal clique

Page 91: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Maximal cliques

h highest basis of Q, v rightmost vertical side,t lowest diagonal side

Q a maximal cliquet

h v

Page 92: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Maximal cliques

Q(h,v,t) = all triangles that intersect h,v and t

Q a maximal cliquet

h v

Page 93: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Claim: Q(h,v,t) = Q

Page 94: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Claim: Q(h,v,t) = Q

Proof:

1) Q Q(h,v,t)

h

Page 95: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Claim: Q(h,v,t) = Q

Proof:

1) Q Q(h,v,t)

2) Q(h,v,t) is a clique

Page 96: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Claim: Q(h,v,t) = Q

Proof:

1) Q Q(h,v,t)

2) Q(h,v,t) is a clique

Suppose a,b Q(h,v,t) are disjoint, hence separated by a line parallel to one of the sides, say horizontal.

Page 97: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Claim: Q(h,v,t) = Q

Proof:

1) Q Q(h,v,t)

2) Q(h,v,t) is a clique

a

b

Page 98: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Claim: Q(h,v,t) = Q

Proof:

1) Q Q(h,v,t)

2) Q(h,v,t) is a clique

b cannot intersect h,

a contradiction

a

b

h

Page 99: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Maximal cliques

Q(h,v,t) = all triangles that intersect h,v and tHence G has O(n3) maximal cliques.

Q a maximal cliquet

h v

Page 100: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Polygon-circle graphs

PC graphsPC graphs -

Fellows 1988

Koebe 1990

JK, Kostochka 1994

Spinrad

JK, Pergel 2002

Pergel 2007

Page 101: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Polygon-circle graphs

PC graphsPC graphs -

Fellows 1988

Koebe 1990

JK, Kostochka 1994

Spinrad

JK, Pergel 2002

Pergel 2007

Page 102: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Polygon-circle graphs

PC graphsPC graphs -

Fellows 1988

Koebe 1990

JK, Kostochka 1994

Spinrad

JK, Pergel 2002

Pergel 2007

Page 103: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Polygon-circle graphs

CIR PC

IFA

CA

CHOR

Page 104: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Polygon-circle graphs

CIR PC

IFA

CA

CHOR

Page 105: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Polygon-circle graphs

CIR PC

IFA

CA

CHOR

Pergel 2007

Page 106: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Polygon-circle graphs

CIR PC

IFA

CA

CHOR

Pergel 2007

Page 107: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Short cycles

Do short cycles help?

Page 108: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Short cycles

Do short cycles mind?

Does large girth help?

Page 109: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

DISKUNIT-DISK

Page 110: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

DISKUNIT-DISK

PSEUDO-DISK

Page 111: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Short cycles

Thm (J.K. 1996) Triangle-free intersection graphs of pseudodisks are planar.

Page 112: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Short cycles

Thm (J.K. 1996) Triangle-free intersection graphs of pseudodisks are planar.

Page 113: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Short cycles

Thm (J.K. 1996) Triangle-free intersection graphs of pseudodisks are planar.

Corollary: Recognition of triangle-free PSEUDO-DISK and DISK graphs is polynomial.

Page 114: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

Koebe (1936)

Page 115: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 116: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 117: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Short cycles

Thm (J.K. 1996) Triangle-free STRING graphs are NP-hard to recognize.

Page 118: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Short cycles

Thm (J.K. 1996) Triangle-free STRING graphs are NP-hard to recognize.

Thm (JK, Pergel 2007) PC graphs of girth 5 can be recognized in polynomial time.

Thm (JK, Pergel 2007) For each k, recognition of SEG graphs of girth k is NP-hard.

Page 119: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

2. Short cycles

Problem: Is recognition of String graphs of girth k NP-complete for every k ?

Thm (JK, Pergel 2007) PC graphs of girth 5 can be recognized in polynomial time.

Thm (JK, Pergel 2007) For each k, recognition of SEG graphs of girth k is NP-hard.

Page 120: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

Page 121: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

Page 122: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

- Planar graphs are exactly contact graphs of disks (Koebe 1934)

Page 123: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

- Planar graphs are exactly contact graphs of disks (Koebe 1934)

- PLANAR DISK

- PLANAR CONV

- PLANAR 2-STRING

Page 124: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 125: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 126: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 127: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

- PLANAR 2-STRING- Problem (Fellows 1988): Planar 1-STRING ?- True: Chalopin, Gonçalves, and Ochem

[SODA 2007]

Page 128: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

- PLANAR 2-STRING- Problem (Fellows 1988): Planar 1-STRING ?- True: Chalopin, Gonçalves, and Ochem

[SODA 2007]

- Problem: PLANAR SEG? (Pollack, Scheinerman, West, …)

Page 129: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

- PLANAR SEG (?)- 3-colorable 4-connected triangulations are

intersection graphs of segments (de Fraysseix, de Mendez 1997)

- Planar triangle-free graphs are in SEG (Noy et al. 1999)

- Planar bipartite graphs are grid intersection (Hartman et al. 91; Albertson; de Fraysseix et al.)

Page 130: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Bipartite planar graphsDe Fraysseix, Ossona de Mendez, Pach

d

c

f

e

b

a

12

3 5

6

4

7

abcdef

1 2 3 4 5 6 7

Page 131: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Bipartite planar graphsDe Fraysseix, Ossona de Mendez, Pach

abcdef

1 2 3 4 5 6 7

Page 132: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Bipartite planar graphsDe Fraysseix, Ossona de Mendez, Pach

abcdef

1 2 3 4 5 6 7

Page 133: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

- PLANAR CONV- Planar graphs are contact graphs of triangles (de

Fraysseix, Ossona de Mendez 1997)

Page 134: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.
Page 135: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

- PLANAR CONV- Planar graphs are contact graphs of triangles (de

Fraysseix, Ossona de Mendez 1997)- Are planar graphs contact graphs of homothetic

triangles?

Page 136: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

- PLANAR CONV- Planar graphs are contact graphs of triangles (de

Fraysseix, Ossona de Mendez 1997)- Are planar graphs contact graphs of homothetic

triangles?- No

Page 137: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

1 2

3

b

c

a

Page 138: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

1 2

3

b

c

a

1

23

a b

c

Page 139: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

1 2

3

b

c

a

1

23

a b

c

Page 140: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Planar – open problems

- PLANAR MAX-TOL? (Lehmann)

(i.e. are planar graphs intersection graphs of homothetic triangles?)

Page 141: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Planar – open problems

- PLANAR MAX-TOL? (Lehmann)

- Conjecture (Felsner, JK 2007): Planar

4-connected triangulations are contact graphs of homothetic triangles.

Page 142: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Planar – open problems

- PLANAR MAX-TOL? (Lehmann)

- Conjecture (Felsner, JK 2007): Planar 4-connected triangulations are contact

graphs of homothetic triangles. This would imply that planar graphs are

intersection graphs of homothetic triangles.

Page 143: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

1 2

3

b

c

aa b

c

Page 144: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

1 2

3

b

c

aa b

c

Page 145: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

3. Representations of planar graphs

1 2

3

b

c

aa b

c

Page 146: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.

4. Invitation

Graph Drawing, Crete, Sept 21 – 24, 2008 Prague MCW, July 28 – Aug 1, 2008

Page 147: Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague.