GeolIletric boundary conditions for lIlodelling the velocity · mechanical ice-sheet model (e.g. H...

10
Allnals Glaciolog), 23 1996 © Int e rn a ti onal Gl ac io l og ica l Society GeolIletric boundary conditions for lIlodelling the velocity field of the Antarctic ice sheet ]ONATHi\ :'\ L. BAI\IB ER M ullard Space Scie ll ce Labom lol )" De/ Ja r lmen l Qf SjJace & Climale Ph )' sics, College LO ll doll, Holmblll), SI Jl m) ', Dorkillg, RH5 6 \T, England PHILlPP E H CYBREC HTS Alfred- I I 'egener -Jn slillll ftir Polar- IIlId J1J eeresJorschIIlIg, D- 275 15 Breme r ha v en, and GeograJisc/z [ lIs lillll, r-rije Ullil'ersileil B russeL , Pleilllaa ll 2, B-J 050 B russel, Belgium ABSTRACT. Thi s paper pr ese nt s impro\'ed geo metric bo und ary co nditi ons (s ur face eleva ti on and ice thickness) requir ed as input s to ca lcul a ti ons of the s ur face -\ ' e1 ocity fi eld f or the Ant arc ti c ice sheet. A co mp a ri son of the two -dim ensional horizo nt al \' e1oc it y fi e ld o bt ained on the basis of co nser ya ti on of mass (balance \'C loc it y) w ith th e d iag nostic \'eloc it y fi eld ca lcula ted \\ - ith an ice-sheet m ode l (d yna mic \'elocity) m ay yield inf or ma ti on on shortco min gs ill th e \\ 'ay the ice-sheet model desc rib es the ice now . Here, the s ur face -cl e\ 'a ti o ll grid is describ ed in deta il , as it has been generated spec ifi ca ll y for such a s tud y a nd re pr ese nt s a new sta nd a rd in acc ur acy and resolution for ca lculating s urf ace slop es . Th e di gita l- e le va ti on mod el was ge nerated on a 10 km grid size from O\'er 20 000 000 height es tim at es o bt a in ed from eig ht 33 d rep ea t cy cles of E RS-I ra dar-a ltim eter data. F or s urf ace slopes less th a n 0.4°, the acc ur acy is bett er than 1.5 m. I n a reas of hi gh s urf ace slope (coas tal a nd mo unt ainous r egions), the a ltim eter measureme nt s h a\"C been s uppl eme nt ed with da ta taken (i 'o m th e Antar ct ic Di gital Database. So uth o f 8 1 .. 'j ° , data fr om the SPRI (o li o map ha\'C been used. T he ice -thi c kn ess g ri d was produ ced [i-o m a co mbin a ti on of a redi g iti za ti on of th e S PRI fo li o a nd the o ri ginal radio-echo-so undin g fli g ht lines. For ar eas of gro und ed ice, the el eva ti on of the bed was es tima ted fr om s urf ace eleya ti on a nd ice thickness. Signifi ca nt diff erences (in excess of 25% of ice thickness) were o bt ained between an ea rlier digiti za ri on of the fo li o be d- eleva tion map and the data se t d e ri ved here. Furth e rm ore, a n ew \ 'a lue of 26.6 x 10 1 , km 3 was o bt ained for the total vo lum e o rth e ice sheet a nd ice shelves, which is a redu c ti on of 12% co mp ared with th e o ri ginal es timate d eriv ed du ring the co mpila ti on of the S PRI ro li o. Th ese diff erences will ha\ "C an imp o rt a nt inOuence on the r es ult s o bt ained by num e ri ca l ice-sheet models. INTRODUCTI ON dynamic \ ·e l oc ity (e.g . Budd a ndJ enssen, 1989), fr om th e s urf ace slope, the ice thickness a nd a n ex pression for the flo\\' la w. Emplo ying a the rmom echa ni ca l mod el requir es runnin g the model thr ough a full glac ial- interglac ia l cycle so that the the rm odynami ca l pa rt of the model ca n equilibr ate. Thi s is necessary to remo\'e the clfect o f" te mp era tur e on the now pa ram eters fr om the analys is. Unf o rtun ately, dir ect in-situ meas ur eme nt s of surface yclocity to co mpar e the model with are very sparse. Acc ur ate modelling of the dynami cs of the ice sheets is a first step in dete rminin g their futur e beha\'io ur und er co nditi ons of a changing clim at e. Th e rm omechani ca l models 0 (" ice-sheet dynamics are, h owe \ "C I" , necessa rily hi g hl y non-lin ea r a nd th e a pp ro pri ate desc ripti on of the ice rheology over the co mplet e ran ge of s tr esses, s tr a in histor y, cr ys tal fabric a nd te mp era tur e fo und in the polar ice sheets raises s ub stantial difficulti es (e.g. Alley, 1 992 ). Des pit e th ese a nd other pro blem s, co nsiderable success has been ac hi eved in re pr odu cing the ge neral fo rm of the pre se nt-d ay ice shee ts using a full y co upled the rm o- mechani ca l ice-sheet model (e.g. H uy br ec h t s, 1990 ). On e w ay to inves ti ga te the tr ea tm e nt of ice dynamics is to sce ho \\ ' we ll the model is able to re pro du ce the pr ese nt-d ay velocity Geld. Considering a Gxed geo me tr y, it is possible to caleulate the dia gnos ti c \ "C l oc it y field , a lso te rm ed th e 364 It is a lso possibl e to ca lculate the mean ice \ "C locity using the prin ciple of conser va ti on of mass. Thi s is o ft en te rm ed the balance \'c1 oc it y. It is a function of the acc umul a ti on pattern (a nd ablation if relenl nt ), the ice thickness a nd the s urf ac e to po g raph y of the ice. Th e la tt er is necessary to find the fl ow dir ec ti o n. Th e ca lcul a ted balan ce \'eloc iti es gi\'e an es tim a te o f pr ese nt-d ay dy nami cs ir the ice shee t is in equilibrium. Alth ough the balan ce \Tlocity is a dc pth- ave ra ge d value, diff erences

Transcript of GeolIletric boundary conditions for lIlodelling the velocity · mechanical ice-sheet model (e.g. H...

Page 1: GeolIletric boundary conditions for lIlodelling the velocity · mechanical ice-sheet model (e.g. H uybrech ts, 1990). One way to investi gate the treatment of ice dynamics is to sce

Allnals ~f Glaciolog), 23 1996 © Intern a ti ona l G lac io log ica l Socie ty

GeolIletric boundary conditions for lIlodelling the velocity field of the Antarctic ice sheet

]ONATHi\ :'\ L. BAI\IB ER

M ullard Space Sciell ce Labomlol)" De/Ja rlmen l Qf SjJace & Climale Ph)'sics, Ulliversi~)' College LOlldoll, Holmblll), SI Jlm)', Dorkillg, SlI rr~)' RH5 6 \T, England

PHILlPPE H C YBRECHTS

Alfred- I I 'egener-Jnslillll ftir Polar- IIlId J1JeeresJorschIIlIg, D-27515 Bremerhaven, Gmllal~)1 and GeograJisc/z [lIslillll, r-rije Ullil'ersileil BrusseL, Pleilllaall 2, B-J050 Brussel, Belgium

ABSTRACT. This pa per presents impro\ 'ed geometric bo und ary conditi o ns (sur face eleva ti on a nd ice thi ckn ess ) required as inputs to ca lcul a ti ons of th e surface -\'e1 ocity fie ld for th e Anta rc ti c ice shee t. A co mpa rison of th e two-dim ensiona l horizonta l \'e1ocity fi e ld obta ined o n the basis of conse rya ti on of m ass (ba la nce \'Clocit y) with th e d iagnos ti c \ 'e locit y fi eld ca lcula ted \\-ith a n ice-sheet mode l (d yna mi c \'e loc ity) may yield informa ti on o n short comings ill th e \\'ay th e ice-shee t model desc ribes th e ice now. Here, the surface -cle\ 'a ti o ll g rid is d esc ribed in d e ta il , as it has been ge nera ted spec ifi ca ll y fo r such a stud y a nd represents a new sta nda rd in acc uracy a nd reso lution for ca lcula tin g surface slo pes . The digita l-eleva ti on mod el was ge nera ted on a 10 km g rid size from O\'e r 20 000 000 heig ht estim a tes obtained from eig ht 33 d repea t cycles of ERS-I rad a r- a ltimeter d a ta. For surface slopes less th a n 0.4°, th e acc uracy is be tter th a n 1.5 m. I n a reas of hig h surface slo pe (coas ta l a nd mounta ino us regions), the a ltimeter measu re ments ha\"C been supplemented with da ta ta ken (i'om th e Antarct ic Dig ital D a ta base. So uth o f 8 1 .. 'j ° , d a ta from th e SPRI (o li o ma p ha\'C been used. T he ice-thickn ess g ri d was p rodu ced [i-o m a combina ti on of a redig iti za ti o n o f the SPRI fo li o a nd th e o ri ginal radi o-echo-sounding flig ht lines. Fo r a reas of gro unded ice, th e el eva ti o n of the bed was es tima ted fro m surface e leya ti o n a nd ice thi ckn ess. Sig nifi cant diffe rences (in excess o f 25% of ice thi ckn ess ) were obta ined be tween a n ea rli e r di giti za ri on of th e fo li o bed- eleva ti on ma p and th e d a ta se t d eri ved here. Furth ermore, a new \'a lue of 26. 6 x 101

, km 3 was o bta ined for th e to ta l vo lum e o rth e ice shee t a nd ice shelves, which is a reducti o n o f 12% compa red with the ori gina l es tima te d erived du ring th e compil a ti o n of th e S PRI ro li o. Th ese diffe rences will ha \"C a n impo rta nt inOuence o n th e res ults obta in ed by num eri ca l ice-shee t mod els.

INTRODUCTION d yna mi c \ ·e loc ity (e.g. Budd andJ enssen , 1989), from th e surface slo pe, th e ice thi ckn ess a nd a n ex pression fo r the flo\\' la w. Employing a th ermom ec ha ni ca l mod el requires running th e mod el throug h a full g lacia l- interg lac ia l cycle so th a t th e therm od y na mi ca l pa rt o f th e mod el can equilibra te. This is necessa ry to remo\'e th e clfec t o f" tempera ture on the now pa rameters fro m th e a na lysis.

Unfo rtuna te ly, direc t in-situ m easurements of surface ycloc ity to compare th e mod el with a re ve ry spa rse .

Accura te modellin g of th e d yna mics o f th e ice shee ts is a first step in d e termining th eir future beha \'iour und er conditi ons of a cha ng ing clima te. Th erm o mecha nica l mod els 0 (" ice-shee t d yna mics a re, howe\"C I" , necessa rily highl y no n-linea r a nd th e a pp ro pria te desc ripti on of th e ice rh eo logy over th e complete ra nge o f stresses, stra in

hi sto ry, crys ta l fa bri c a nd tempera ture fo und in th e pola r ice shee ts ra ises substa n tia l diffi culti es (e.g . Alley , 1992 ). Des pite th ese a nd o th er problems, considera ble success has been ac hieved in reproducing th e ge nera l form of the present-d ay ice shee ts using a full y coupl ed th erm o­mecha nica l ice-shee t mod el (e.g. H uybrech ts, 1990 ). One way to inves tiga te th e trea tment of ice d yna mics is to sce ho \\' well th e mod el is a ble to reproduce the present-d ay ve locity Geld. Consid ering a Gxed geometry, it is poss ible to caleu la te th e diag nos ti c \"C loc it y field , a lso te rm ed th e

364

It is a lso possibl e to ca lcula te th e mean ice \ "C loc it y using the principle of conse rva ti o n o f mass . This is o ft en te rm ed th e bala nce \'c1 ocity. It is a functi on o f the a ccumul a ti o n pa tt e rn (a nd a bl a tion if re lenlnt ), th e ice thi ckn ess a nd the surface topograph y of th e ice. The la tter is necessa ry to find the fl ow direc ti on. The ca lcul a ted ba la nce \'e loc iti es g i\ 'e a n es tim a te o f prese nt-d ay d ynami cs ir the ice shee t is in equilibrium. Altho ug h th e balance \T locity is a d cpth-averaged va lue, d iffe rences

Page 2: GeolIletric boundary conditions for lIlodelling the velocity · mechanical ice-sheet model (e.g. H uybrech ts, 1990). One way to investi gate the treatment of ice dynamics is to sce

Ball/bel' alld H{~)'brechls: .\Jodellillg Ihe l'e/ocilj'Iield oII/ze .-jll larclic ice shel'l

-45 .0 0.0

45.0

-60 .0 -60.0

J.

90 .0

-60 .0 -60 .0

"

135.0

-135.0 180.0

Fig. I. The allimeler-dala coverage qJierJILlerillg. ill ire mode ,Ior a single 35 d re/Jeal (I )de ofERS-l . Also showlI are Ihe lowliolls oIlhe 1l1'0 grolllld-traNr.lf data se Is used. Sel A is alii red 011 ])011/1' C alld Jet B comjJrises two Irawne:; rtl7lIIillg ajJjJlOlill1ale(J' alollg a cOlllollr lille wilhill lite Lamberl Glacier draillage basill .

be twee n it a nd th e d yna mi c \'e locit ), may gi\'e informa ­ti o n on Cl d e\'ia tion from stead y sta te bu t more likely point

to short comings in th e way th e ice fl O\\ ' is d escribed in th e

mod el. or pa r t icul a r impo rta nce a re d e fi cienc ies in th e fl o ll' lall' a nd th e occ urrence o f'b asa l sliding . fo r lI'hi eb no ge ncra l theo ri cs a rc a \'ail a blc , Bala nce-\'eloc it y ca lcul a­ti o ns a re \'ery sensiti\'e to th e geo metri c input a nd th ere[() I'C' need th e bes t d a ta sets <1\'a il a ble.

Until recen tly, th e onl y d a ta se ts d escribing th e

geo metry o f' th e Ant a rcti c ice shee t a nd bed liT re [ro m a sing le source - th e Sco tt Pola r R esear ch In stitut e (SPRl ) fo li o ma ps (Drew ry, 1983 ), Ice thi ckn ess a nd s urf~lce e levation we re d e ri\'ed , prim a ril y, f~'om radi o­ec ho-so undin g fli g ht lin es, suppl e m ented b y sm a ll

a mounts o f' se ismi c d a ta . Th e fo li o bed- a nd sur[ace­

C'i e\'a tion m a ps we re c1i g i ti zed in 198'1 to prod uce a 20 km g rid d a ta se t of' each. For the sake or bre\'it y, th ese d a ta se ts w ill he rcfl' rred to as the Buclel g rid s (Budd a nd o th ers, 1984), Substa llli a l e rrors (in n ecss 0(, 200 m ) have

been fo und in th e Budd g rid 0 [' th e surface ele\'a ti on

(Ba mber. 1994a ) due to a combinati on of erro rs in th e

o ri g in al m a p and in th e digiti zati on process , D es pite th ese

e r ro rs, th e d a ta se ts ha\ 'e bee n used ex tensivel y in m od elling th e Anta rc ti c ice sheet (Budd a nd o th ers,

198+; R ad ok a nd o th e rs, 1986; Huy brechts, 1990). due to

a n a bsence of a n \' suit a ble a lt e rn a ti\'es , In thi s pa per, a nev, surCace-C'ie\'<ltion d a ta se t has

been d crin·d from ERS-I rad a r- a ltim e te r l11 eaS LI rcmen ts a nd combined w ith a n imprO\'('d ice-thi ckn ess gr id to

d eri\'e til e bes t possible bed topogra ph y [o r a reas o r

g ro und t'd ict' , Th e purpose o f' th ese new d a ta is ( 0 prO\' id e

imprO\'ecl bound a ry conditi ons [o r bo th numeri ca l icc ­shee t m od elling a nd th e d eri\ 'a ti on of balance \T loc ili es , Th e Anta rcLi c Peninsul a h as not bee n inc lud ed ill lh e stu d\', due to th e complexit y o f th e ice C O\ ' ( ')' in thi s regIo n,

DATA SOURCES

Surface elevations

F or thi s st ud y, eigh t 35 d rt' pca t c"c1 es of ERS-I ra cl a r­

a ltim e ter \\'a \ 'C-f'o rm d a ta wer e <l\ 'a il a bl e (European

36.5

Page 3: GeolIletric boundary conditions for lIlodelling the velocity · mechanical ice-sheet model (e.g. H uybrech ts, 1990). One way to investi gate the treatment of ice dynamics is to sce

Bamber and Hl~J'bre('hts : M adeUillg the l' eloci~J'.!ieLd aJ tlte Alltarctic ice sheet

-45.0 0.0

45.0

-60.0 -60.0

90.0

-60.0 -60.0

135.0

-135.0 180.0

Fig . 2. Locatioll oj tlu radio-ecllO-sOllllding.Jlightlill fS llsed ill t/ie [oll/jJilatioll oj the SPRfjolio mal)s and tile ice-thickness grid derizw/ ill this stl/rb'.

S pace Age ncv, 1992 ), compnslIlg onT 20 milli on height es tima tes m 'er Antarc ti ca . Th e altim eter o n boa rd ERS-J ca n o pera te in t\\'o m odes kn own as "ocea n" a nd "i ce" . T he la ll er mode has a lower-ra nge reso luti on (by a Cacto l' 4 ) but ca n , as a conseq uen ce , ma inta in " loc k" over a la rger p roporti on o f the ice shee t a nd , in p a rti cul a r , m 'er

the steeper ma rg in a l a reas . The coverage pro\·ided by one 3.5 d repea t oC " ice-mode" d a ta (a ft er filt ering, di scussed la ter) is shown in Fig ure 1. Compa rison with a n ea rli er stud y using onl y "ocea n-m ode" data (Bamber, 1994a) indica tes th e imp ro \'ed co\ 'C'rage, es pec ia ll y a ro und

Fimbulh eim en, th e La mbert Gl ac ier drain age basin , th e

Antarc ti c Peninsul a a nd the m a rg ins of Wilkes L a nd. H owe\'C r, for surface slo pes g rea ter tha n a bout 0 .65 (th e ha lf-power beam width of th e a ltim eter's a ntenn a ) , th e heig h t es tima tes fi'om the a l ti me ter become u nrcl ia ble. This a ffec ts 10% of th e continent, pred o min a ntly nea r the

ma rgins. For th ese a reas, a nd fa r th e region so uth o f th e

o rbi ta l cove rage of ERS-I (8 1.5°) , d a ta from th e Antarc ti c Digita l D a ta base ha \'e been used (British Antarcti c Sur\'ey a nd oth ers, 1993 ). Nea r th e marg ins, much of th e eleva ti o n da ta from thi s so urce was d eri\'ed

366

from stereo-photogra mmetry a nd is, then'fore, o f rela­tively high acc uracy ( ± 10 m ). For th e region south of' 8 1. 5 , the d a ta source was the SPRT Coli o ma p (based o n o\'e r-sno\\' a nd a irborn e p ress urc-ba rome ter d a ta ) a nd, consequel1ll y, of poo rer qu a lity (Bamber, 1994a ).

Ice thicknesses

Th e mos t comprehensi\'e compil a ti o n oC rad io-ec ho sounding (RES ) data rema ins th a t which was used in the ge nera ti on of th e SPRI foli o ma p se ri es (Drewr),.

1983 ). The cm 'e rage prm·id ed by thi s d a ta se t is shown in

Fig ure 2. Tt is a ppa rent th a t a pprox im a tel y ha lf of the East An ta rc ti c ice shee t CO il ta ins no nig h t lines . T n thi s area . there a re onl y a handful of g round-traverse lines to

provide ice thi ckn esses a nd th e errors in \'a lu es ext ra ­pola ted fro m these lin es are, ine\·ita bl y, la rge . T o prm'id e the bes t poss ible da ta se t for ice thi cknesses, the RES d a ta

were used , \\'here th ey "" ere present. For th e res t of the ice shee t, a redi g iti za ti o l1 of th e SPRI foli o ice-thi ckn ess contours was used. As a consequence, th e acc uracy in the gridd cd da ta se t va ri es d epending on the da ta source .

Page 4: GeolIletric boundary conditions for lIlodelling the velocity · mechanical ice-sheet model (e.g. H uybrech ts, 1990). One way to investi gate the treatment of ice dynamics is to sce

Bamber alld Hl~)'brec!tts : .Hodellillg the Ilelori~)'Jield DJ t/te Alltarctir ice s/t eet

The bed eln'ations were cleri ved from the di(l(>ITn ce between ice thi c kness and surfac e eJc\'a tion. This is only

\ 'a lid (or grounded ice, At a late r stage, to make th c bcd­

elcvation g rid of more general use , data for the sea floor

beneath the ice sh eh-es and on the continental shelf will be in clud ed. F o r the purposes o f'determining the velocity fi e ld, however , this was no t required,

AL TIMETRIC DATA REDUCTION

The process in g or a ltime ter data o\Tr an ice sheet is complicated by the exis ten ce or topography with a

significant surface slope, To impro\T the accuracy or

ele\ 'a tion estimates O\'er such surfac es, it is n ecessa ry to

app ly a range-es timate re!inement procedure (known as

\\ 'a\'e-form retracking) and a slope co rrection to prO\'ide

th e correct range a nd location for thc corresponding sub­

sa tellitc ground point. Th e form er \I 'as ca rried out using th c offset centre-of-gra\'ity method of calcu lating the

wa\T-form amplitude, with a power threshold of 25%,

This threshold \\ 'as chosen as it best represents the m ea n

heig ht O\Tr a topographic surface ( Pa rtingto n and others, 1989 ) , Slope correction \\'as app li ed usin g the relocation method with se \ 'e ra l modifications, These procedures

h <1\'e been desc ribed , in detaiL e lsew here (Bambn,

1994b) , As many repea t cyc les as poss ible were used for

a number of reasons: (i) it is possibl e to reducc so me of the

random errors by averaging th e data , (ii ) the cycles do

not repeat exactly and there is a bout 1 km of across-track shift in the orbits, which helps pro\ 'id e the across-track

slope required in the slope-correction procedure , and (iii )

each cycle has a number of mi ss ing tracks, due to

transmission or transcription problems with the raw data

(3S ca n be seen in Figure I ) , By usi ng se\'Cra I repea ts. these miss ing tra c ks can be lilled in , as thel' occur, in genera l, randomly ( there arc , howe\'(']', a sl1lallnul1lber of

tracks \>\' hich arc nn'e r obtained due to o n-board

reco rding limitat ions ) ,

A numbcr o f problems ha\ 'e been associated with th e

\\'3\'e-form data from ERS-I which. in particular, arfected thc reliability of the interna l range co rrect ion and the atmospheric correCtions, \\ 'e dealt \I 'ith the former by

app lying 3 n e \\' correction based on a look-up table

deri\'ed from the a ltimeter-engineering data, The latter

\\'C addresscd from an ana lys is of 17000 radiosonde

profiles collected from 16 meteorological sta tions in Antarctica (Connollcy and King, 1993 ) , From these data , mean I'alues for the wet and dry tropospheric

corrections were deri\'ed, The resulting correct ions

obta in ed were

~rd=2,25±O,02m at sea le\'el,

~T'\\' = 0,02 ± 0,03 m

where ~'''d is the dry tropospheric correction and ~7'\1' is

the wet.

Due to its relativel y small size. the la (l er correction

was igno red, Th e dry tropospheric correction was calc­ulated using an ad iaba ti c lapse rate 01'9,7 x 10 :1 °C m I to

est im ate the te mperature c h ange as a function of

clC\ 'a tion, Th e total e rror in adop tin g th ese co rrections

is estimated to bc ± 4 cm, The ionospheric correction \\ 'a s

bcli(,I'('d 10 be reliablc and, like the \\'Ct tropospheric

eo rrcction , is relatively small O\ 'er Antarctica, The orbits

used \"ith the data \\TIT prO\'ided by the Tec hnical

Uni\'ersity of Delft and ha\'e a g loba l accuracy of ± 13 cm

(Scharoo and others, 1994) , The OSU91 a geopotentia l

model \\ 'as used to COI1\'Crt from e llipso idal hei g hts to geoid a l \ 'a lu es (Rapp and others. 1991 ),

Considerable care \\'as taken in the quality assessment

of th e data, Thc checks ca n broadly be separatcd into

tcs ts of \\ 'a \'e-form shape, bac k-sca tter coe ffici e nt and

re trac king-correction \ 'a lue, These tests \I 'ere applied to remO\'C data that \\ '(' IT beginning to lose lock on th e surface or had already done so before the in strument fl ags

had declared loss of lock, Approx im ately 24% of the d a ta

were remO\'ed during thi s filtering procedure, A further

s tep \\ 'as required to 1T mo\ 'C th c occasiona l spurio us orbit.

It was found that approximately one in 400 orbits \\'as in

error by sew ral metres, This cou ld only be detec ted by examining the e ight repeat s Co r each sa tellit e track,

:'Iea n s a nd sw nd a rd de\'ia tions (a ) were calcula ted for

e\Try point a long the track a nd outliers were identified by

the magnitude oC the a as a function oC local surCace slope,

Th e a threshold was dete rmined [i'olll the pa tte rn o f

cross in g- po int di(ferc nccs (described later) , Once the \,<lrious co rrcctions had bee n applied and

filterin g carried o ut , th e d a ta \\'('IT interpol a ted on to a

10 km grid, A polar s tc rcographic projcc tion, with origin

at the South Pol e . and standard parallel of 71 ' S was

used to translate from polar to Cartesian coordinates,

This is a standard p roject ion used for Antarctica, Ho II'C\'('r , it does not prescnT area ancl, consequently. \I'hen calcu lating ice \ 'o lumes and mean bed ele\'ations,

each grid -po int \ 'a lu e \\ 'as cotTected \"ith thc scale

distortion for that point.

The spatial di s tribuli on of the a llimeter data is highly anisotropic - height estimates a re separated by 335 m a long track and IJ\' 30km across track at 60 v S ( Fig, I ) ,

To pre\'ent introducing biases on indi\'iclual grid point s

(duC' to th e spati a l sa mpling pattern and grid spacing), a

two-s tage g ridding proccdure was employed, The first

step ill\'o h-ed splitting the data up into the boxes defined by the 10 km grid, \\' ithin each box , di stance-\\'e ig ht ed means of' ,r. y a nd z \.\'('re calcu lated, producing a quasi­

regular array OL1\'erage height es timates, 1\ tri angu lat ion

procedure was then used to intcrpolate to the exact grid­

point locations (Rcnka a nd Cline, 1984) , A similar

methodology \\ 'as employed Cor the g ridding of the ice­thickness data , For the purposes of' calcu lat in g total ice \ 'o lum e, thi ck nesses for th e ice sheln's \I'lTC c1 c ri\ 'ed Crom

the Digital Elevation Model (DEl\I ) using equat ion (2 )

from Bamber and Bcntl e\' ( 1994) ,

South oC the altimeter co\'e rage, data from the

Antarctic Digi tal D a ta b ase lI'ere merged \\' i th the a ltimeter data by calcu lat in g the hei gh t offset at th e boundary between the two data sc ts and using this to

weight th e Antarctic Dig ital Database data a s a function

of distance from th e boundary, A distance-c ubed weight­

ing was found to prO\'ide a sm oo th trans iti on and

cont inui ty of slope across the boundary, The resultant 10 km DEi\[ is di splayed as a shaded

planimetric relief m ap in Fig ure 3, The brightness is a

function of botlt s ud~1Ce slopc and cle\'ation , decreasing

with th e former a nd increas ing with the latter. This

367

Page 5: GeolIletric boundary conditions for lIlodelling the velocity · mechanical ice-sheet model (e.g. H uybrech ts, 1990). One way to investi gate the treatment of ice dynamics is to sce

Bamber alld Huybredlls: illodellillg the velocity .field 0/ the An/arctic ice Jlteet

Fig. 3. A jJ/allimetric , shaded reLie./majJ 0./ Alltmctiea derilwl from the 10 kill dl~f!,ital elellalioll model.

pro\ 'ides bo th the effec t of perspect i\'e a nd con tras t be twee n fea tures. M ajor ice divides a ppear brig ht , as d o o th er na t, hig h-eleva ti o n a reas such as th e surface ex p ression of the Vosto k subglacia l la ke, T he level of d e ta il is a lso a ppa rent; fo r exam ple, th e in-n ow of Byrd Gl acier into the R oss Ice Shelf a nd th e Doa ke I ce Rumples o n th e R o nne I ce Shel f a re bo th clea rl y

resok ed .

ERROR ANALYSIS

RandoIIl errors

The magnitude of the ra nd om errors in th e a ltimeter da ta can be d e termin ed from a n a na lys is o r c rossing points or d escend i ng a nd asce nd i ng t rac ks and from com pa ri ng repea t cycles fo r the same trac k. From such a n a na lys is, th e mea n ra ndom erro r for a sing le d a ta point \I'as fo und

to be ± 0 .8 1m (for a more comprehensi\ 'C disc uss ion of

th is to pi c sce Ba mber (1994a )) . This va lue is a n a \'C rage 0 \ ' ('1' a ll th e different surface types, The magnitude o r th e d ifference is co rrel a ted to su rface slo pe du e to th e increased elTec ts of topograph y on th e acc uracy of th e re trac k co rrectio n a nd nadir oif-ra ng ing effects (where th e

a ltimeter pi cks up returns ('rom brig ht ta rge ts a way from th e nadir point ) , By a \'eraging r ight repra ts, th e ra ndom error is red uced to 0, 29 m , H owever, no t a ll th e o rbits

368

we re present [o r eac h repeat cycle a nd th e m ean number o f repea ts for a gi\'Cn trac k was nea rer six.

Th e erro rs introduced by th e non-uniform sa m pling a nd interpo la ti on procedu re were in ves ti ga ted using a simula ted ice-shee t surface with sinusoid a l un d ul a ti ons a nd simil a r trac k spac ing to a 35 d repea t. The standa rd d e\'ia ti on of th e difference be t Il'een the grid poin t a nd th e

simul a ted s urf~1Ce was 5.05 m with a mea n of zero . Th e

rela ti\ 'e ly la rge e rror assoc ia ted with th e g ridd ing proced ure is d ue to the hig hl y non-uniform distributi on o r da ta a nd the consequent undersa mpling or short 1\'a \ 'C leng th to pograp hy in th e across-trac k d irect ion nea r th e m argins of th e ice shee t. As with th e cross-OI 'e r

di stribution , th e interpola ti on error is a fun ction of loca ti o n , d ecreasing inla nd du e to th e redu ct ion in ac ross-trac k spac ing (Fig . I ) a nd "smoo th er" topogra ph y (l\ l clntyre, 1986; Seko a nd o th ers, 1993 ).

Th e sta nda rd d evia tio n, fo r each g rid po int with suffi cient d a ta, was calc ul a ted during th e a \'e raging

p rocedure (th e urst step in th e g ridding p rocess ) a nd is

di splayed in fi g ure 4 as a shaded conto ur ma p . As with the crOS5-0\'(' r d istribu tion, th e la rges t \ 'a lues lie il ea l' th e ma rg ins a nd a rc c lose ly re la ted to th e ki lom et re-sca le surface roug hn ess a nd ice thi cknl'ss, whi ch a re, in turn , co rrel a ted \I,ith th e surface slope , T he p lo t, th erefore,

prov id es a n ind ica tio n o f th e heig h t \'a ri a bi li t y wi thin each 10 km g rid ce ll.

T he to ta l ra nd olll-error budge t o n a sing le g rid point ,

Page 6: GeolIletric boundary conditions for lIlodelling the velocity · mechanical ice-sheet model (e.g. H uybrech ts, 1990). One way to investi gate the treatment of ice dynamics is to sce

Balllbfl' alld J-JI!J,brechls : ,1Jodellillg Ihe l'eloci{J,.field o/Ihe Alllarclic ire sheel

·4; 0 00

-1350 1800

Fig . 4. COlllour lIIa/) of Ihe slandard da-ialioll (ill Ill) ~/ Ille averaging procedure /lsed ill Ihe firsl sle/) ill illlopo/alillg Ihe rada r-allilllelfl' dala all 10 a regular grid. T he Nlria ll ce is close(}, relaled 10 Ihe kilolllelre-sm!e sU I/are roug/lIless, which is, ill lum , lillked to the sfo/le and ice thickness.

inc luding th e sampling e rror ra nges from 10, 7 m a t 65 ' S

a nd a slope o f 0 .65 to l.4m a t 75 S a nd a slo pe ofO.1 G,

These erro rs a re d omin a ted by th e heig ht \ 'a ri a bilit y

w ithin each g rid ce ll (Fig . 4 ) ra th e r than f rro rs in th e i nd i\ 'id ua l al ti m e tri c ele\ 'a ti on es tima tes ,

Biases

Sys tem a ti c e rro rs 1Il th e a ltim e te r d a ta can be intro­

duced ri'om seve ra l sources in c luding geog raphica lly

co rrela ted o riJit e rro rs (Scharoo and o th e rs, 1994) , e r ro rs in th e slo pe co rrec ti o n procedu re a nd n o n-u nifo rm sp a ti a l sa mpling ,

T o d e te rmine th e a bso lute acc urac), of th e DEI\I , t\\'o

g ro und-tra\'erse d a t<l se ts werf used, The loca ti ons o f

th ese d a ta se ts a rc shown in Fig ure I. Sft A was obta in f d

by GPS sun'ey ing techniques a nd has a n es tim a ted acc uracy of ± 10cm ( Cef ~d o a nd o th ers, 1994 ). The data a r e ce ntred on D om e C, w hich is a re la ti\'e1 y na t a rea.

where th e a ltime ter would be expected to produ ce good

res ults. Se t B li es to th e south and cast o f th e Amery Ice

She lf a nd \\'as coll ec tf d during th e a ustra l summers of

199 1 92 a nd 1992 93 (pe rsonal communi ca tion from M, High a m , 1993 ). These d a ta come from a relati\'c1 y stee p regio n with signifi cant short-wa \'e leng th topog ra phy (as is e\ 'id ent ri'om examinatio n of th e profiles~ fi g ure 5a

(Ba mber, 1994a )), \I'here th e d a ta cO\ 'era ge is incomplfte.

Th e height es tim a tes \,"eIT obtained [i'om GPS m eas ure­ments e\'ery 30 kill , with barom etri c e!e\'a tions e\'er)' 8 15 m in be tween , At control stations. the acc uracy I S

2 m , n Slll g to 5 III a t th e midpoint be twee n contro ls (perso na l communica ti on fro m 1\1. Higha m , 1993 ). DE~1

e lc\'a ti ons a t th e tra \'e rse points were ca lcula ted using a

bilin ea r inte rpo la ti on procedure , T a bl e I sho ll's th e m ea n diffe rence (a ltim e ter- gro und tra \'e rse ) a nd sta nda rd d e\'iati on [o r th e two d a ta se ts.

It is e \'ident th a t th e a ltime ter dat a o\'(' r D om e C a re acc ura te to well \I 'ithin th e to ta l erro r budge t disc ussed in

th e las t pa rt o f th e sec ti on on ra nd o m e rro rs, Fo r th e

L a mbert G lac ier d a ta se t, th e hig h stand ard d n 'ia ti on is

due, pri ma rily , to sho rt-\l-a \'e! eng th « 10 km) undula­ti ons th a t ho\\ 'e bee n sm oo th ed o ut in th e a ltime tri c DE.\1. Bo th d a ta se ts indi ca te th a t th ere is no sig nifi cant bi as in th e a ltime ter d a ta o r th e process ing th a t has bee n appli ed

to it.

T able 1, Slal/slics of Ihe cOIll/JariSOIl belleI'm the 11l'0

groulld-Ilm'use da la se Is alld Ih e aflillleler digilal elel'alioll //lode f

Se t A

Se t B

J\Jeall

III

0 .06

0.00

Slandard decia lioll

m

0,78

10,53

369

Page 7: GeolIletric boundary conditions for lIlodelling the velocity · mechanical ice-sheet model (e.g. H uybrech ts, 1990). One way to investi gate the treatment of ice dynamics is to sce

Bamber alld J-!lIybrechts: }\IIodelLing the velocity field ~f the Antarctic ice sheet

RESULTS

Surface elevations

The DENI derived from th e combination of sources described ea rli er contains a number of improve ments over the previo usly published data set o btained with ERS-I (Bamber, 1994a). Th ese includ e a n improvem ent in th e resoluti on of short-wavelength fea tures, such as the ice

streams dra ining into th e Filchn er- R onne a nd R oss I ce

Shelves. Th e use of the Antarctic Digita l D a tabase in th e steepes t 10% of the ice shee t has increased the reli a bility of the data in these regions . There is a lso, however, a genera l im provement in the a ltime tri c cove rage, a nd hence acc uracy, in the m argin a l regions of the ice sh eet

below the angu la r cut-off of the rad a r a ntenna (a pproxi­mately 0.65°) . The precision of the height es timate h as a lso improved with the use of th e wa\'e-form data du e to (i) impro\'ed filtering, (ii ) the ca pab ilit y to retrack the d a ta a nd (iii ) a g rea ter number o f repeat cycles a nd th e improved cove rage of the ice mode wh ich, in turn , has

imprO\'ed the slope correc tion . The ra ndom error on a

single point has been reduced from 4.8 to 0.81 m (based on a cross ing-points analysis) . Combined , these improve­ments have signifi ca ntly reduced the error of the surface slopes d erived from the DEN!. Surface slope d etermines the mag nitude of the gravitat ional dri ving force and provid es the direc tion of fl ow. E tim a tion of bal a nce ve locity is hi g hl y se nsitive to loca l errors in slope direct io n. The surface slope (over di sta nces over which th e driving stress is typicall y ca lculated ) is now the bes t­known boundary condition available a nd the limiting

variab le on th e accuracy of th e ba la nce-velocit y ca lcula­

tion is currentl y the ice thi ckn ess a nd /or acc umulation d istri bu ti on , d epending on the region .

Ice thickness

A visua l comparison between th e SPRI folio map and the

g ridded data set derived here shows no differences. This is reass uring, as the two ma ps were deri\ 'ed from the same orig in a l da ta source. However, a calcul at ion of the tota l ice volume produces a va lue of2 .66 x 107 km 3 as opposed to th e va lu e of 3 .01 x 10 7 km 3 es timated previously

(Drewry and others, 1982 ) from the same da ta source

a nd is clo, er to earlier es timates of ice volume (Thiel , 1962 ) , Th e difference represel1lS a disc repancy of 12% in the tota l vo lume of the ice shee t a nd ice shelves . This is sig nifi ca ntl y la rger than th e es ti mated er ror budget of8 % (Drewry a nd others, 1982 ) . Sim il a rl y, the mean ice thi ckn ess calcu la ted here is 2014 m com pa red wi th 2 160 m

in Drewry a nd o thers ( 1982 ). It is d i fli cu I t to see how a bias cou Id be in trod uced in

the methodology adopted here for calc ul a tin g ice thick­ness wh ich invoh 'ed summing the mea n value for each complete ce ll (represenred by the average of the four grid

points of the ce ll ) and co rrect ing for the projection sca le di sto rti on, T his is eq ui valent to one of th e methods used

previously (Drewry a nd o th ers, 1982, ('q Ll ation (3)) but more rigo rously a pplied and to a consid era bl y fin er grid, I n pa rti cul a r, consid era bl e a n ention was given to th e interpo la ti on proced ure used. Severa l d i fTe renr methods were investigated which a ll ga\'C th e same result for ice

370

\'o lume a nd m ean thickness a nd no ne o f th e methods used introduced a mean bias. Th e source for th e substa nti al di screpancy between the present d a ta a nd Drewry's result therefo re rem ains unclea r.

A crossing-points compari son of the RES tracks th a t we m ad e produced a sta nd a rd d evia tion of 198m for 665 va lues. This is approxima tely 10% o[ the mean ice thi ckn ess , which is considera bl y worse than the 1.5% error es timate quoted by Drewry a nd others ( 1982) . The di sc repancy is most proba bly du e to errors in digiti zation

of the RES films and naviga ti on errors. Where there are no RES fli ght lines, the erro rs in th e ice-thickness g rid wi ll be sig nifi cant ly la rger, a ltho ugh it is difli cult to d etermine thi s prec isel y a nd no indica ti on of thi s is g ive n with the orig in a l data so urce. Visua l exam ination of the d a ta cove rage in these areas a nd the magnitude of th e ice­thi ckn ess g radients, where there were RES data , suggests tha t the errors could be in excess of 1000 m O\'er dista nces of 200- 300 km. M ajor deepen ings such as the Benrl ey Subglac ial Trench (in W es t Antarctica) or the Aurora Subglac ia l Basin cou ld be compl etely undetec ted over a

substanti a l pa rt of the East Antarctic ice sheet.

Bed

The bed-el eva ti on grid was derived from the difference between ice-thickn ess a nd surface eleva tion. C lea rl y, any errors in th e ice-thi ckness g rid will be refl ected in the bed

eleva ti ons, For thi s stud y, onl y the ground ed ice is relevant and hence d a ta below th e ice shelves were no t included . Furth ermore, du e to its complex terrain , the Antarctic Pen insula was no t includ ed in this stud y. The

gro unding line was estimated from the magnitude of the

second derivative of th e DEM (the rate of cha nge of

slope) . Comparison of this es tim a te with data from o ther sources [or th e R oss I ce Sh elf (Bamber and Bentley, 1994; J aco bel a nd others , 1994) sugges ts th a t this approac h worked well, excep t for some of the ice streams in the eas tern side of the R oss J ce Shelf. H ere, a test for fl ota tion

was add ed , based on meas urements deri ved elsewhere on the Ross I ce Shelf (Ba mber and Bentl ey, 1994).

A shaded contour plo t of the new bed topog rap hy is shown in Fig ure 5. \,y ith a contour intcrval of 500 m, differences be tween this data se t a nd th e SPRI fo lio ma p

(Drewry, 1983 ) are not easily seen . H owever, it was

possible to m a ke a qua ntitative comparison between the bed eleva tions calcu lated here and the Budd grid . This is shown in Figure 6 as a difference plot (our grid minus Budd ' s) . I t is appa re nt th a t th e re a re substa nti a l differences ( > 600 m ) between th e two g rids. Most of the differences a re due to errors in the origin a l ( 1984)

di giti za ti on of the fo lio maps. These errors were a lso a ppa rent in the surface-eleva tion data (Ba mber, 1994a) and a re fo ld ed into the Budd ice-thickn ess g rid also as thi s was not dig iti zed separa tely but deri ved from the surface­a nd bed-elevation grids.

Ig noring the d ig iti za ri on errors in th e Budd g rid and

comparing the SPRJ fo li o wi th th e new bed-elevations d a ta se t in detail indicates some subtl e differences. J n thi s case, differences are due en ti re ly to errors in the fol io s urf~lce - e l e \'a tion map. The foli o bed-ele\'ation m a p has no t been redigitized so it has not been poss ib le to produce a qua ntitati\'e es tim ate of the difle rences . H owe\'er, a

Page 8: GeolIletric boundary conditions for lIlodelling the velocity · mechanical ice-sheet model (e.g. H uybrech ts, 1990). One way to investi gate the treatment of ice dynamics is to sce

Bamber and Hu,ybrec/zts: Nfodelling the l'eloeity Jield oJ the Antarctic ice sheet

- 450 0.0

45.0

90.0

-Above 2500 -2000 · 2500 -1500· 2000 -1000 · 1500 -500 . 1000 - o· 500

~ · 500

~ 1000 500

~ """" 1000

135.0

-135.0 180.0

Fig . 5. Contollr mat) oJ bed elevations del'ivedJroll1 tlte new sll1jace-elevation and ice-thickness grids obtailled in this study. The COIl/Ollr interval used is 500 m. A coastlille has been included i1l tlte diagram , to show the groullded-ire mask t/tat was used. No te t/ta/ the Alltarctic Penillsula was nol included in the present bed grid. The Om contollr is shown ill bold.

- 4 5.0 0.0

45.0

90.0

-_bOY. 600 -400 600 -200 . '00 - o· 200 -' 200 . 0

!i:lJ ·.00 .;>00

~ ·600 400

!i:lJ ""Iow ·600

135.0

- 135.0 180.0

Fig. 6. Maj) oJ the differences ( ill m) between the bed grid derived here and the onc obtailled ill 1984 ]ram the SPRI Jolio. A positive difference means that the bed ill the Budd data set lies below ollrs . The 0111 contour is showlI in bold.

37 1

Page 9: GeolIletric boundary conditions for lIlodelling the velocity · mechanical ice-sheet model (e.g. H uybrech ts, 1990). One way to investi gate the treatment of ice dynamics is to sce

Bamber alld Hlly brechls: M odellillg Ihe ueloci{y fie ld of Ihe Alllarctic ice sheel

ca reful visua l inspectio n indicates that there a re signifi­ca nt differen ces in th e regio n o r Princess Eli za be th La nd (70 S, 78° E ), Dronning M a ud Land- Coat s La nd (whi ch is too hi g h in th e foli o ma p ), th e P ole o r Inaccess ibility (8 10 S , 40" E ) and in th e vi ci ni ty of th e Bentle y Su bglacial

Trench .

A histogra m of th e distribution oC bed elevations is shown in Fig ure 7. It is not possible to compare thi s direc tl y \\'irh fi g ure 4e from Drewr), a nd o th ers ( 1982) as it d oes no t cont a in d a ta ri'om th e ice shelves. Lt is, !Jo\\'C\Tr, d ea r th a t th e di stributio n of cieva tions is not

G a uss ia n fo r thi s d a taset ; thi s result diITers from th a t

o hta ined b y Dre\\Ty a nd o thers (1 982) . W e found th e m ea n bed d evati on {o r th e pa rt of th e ice shee t that is g ro und ed to be + 142 m compared w ith 160 m obtained by Drewr), a nd o th e rs ( 1982 ) fo r th e whole con tin en t (including th e contin ental shell' which is signifi cantl y

below sea Ic\·e l) . Wc a lso ca lcula ted sta ti stics fo r th e East

Anta rc ti c ice shee t o nl y b y including a m ean bed eleva ti o n [o r the Amery I ce She lf' obta in ed fro m the foli o m a p. \V e fo und a mea n bed ele\'a ti on o r + 25 1 m compared with + 15 m obtained b y Drewry and oth ers

(1982 ) . H O\lT\'e r , th e prec ise region d efin ed by Dre\lT)'

and o thers as " E as t Anta rc tica" is no t clea r so eyen thi s

compa ri son rem a ins equi\·oca l.

II § o

U

2500

2000

1500

1000

500

-2000 0 2000 Bed elevation (m)

Fig . 7. Histogralll of bed elevaliolls fo r all areas included ill the bed grid. Data were grollj;er/ ill to 100 711 bins.

DISCUSSION

Th e la rge dirTerences be tween th e Buclcl g rid a nd th e d a ta d eriyed he re a rc likely to ha \-e a sig nifi cant crTee t on th e

beha \ 'io ur oC th e ice-shee t num erica l m od el. \ 'e rti call y

a \'e raged d yna mi c \T lociti es d epend on surface gr adient to th e third power a nd on ice thi ckn ess to th e rourth PO\\'C r. A difTercnce o r ice thi ckn ess o f' 10 'Yc, \\ 'ill thus lead to a diffe rence in th e modell ed \ 'C loc it y o f' 4,6 % ,

372

Additiona lly, ice thi ckn ess has a stro ng control on th e

basa l tempera ture beca use of th e insulating effec t o f th e ice a nd thi s will in turn a flec t th e fl ow-l a w pa ra meter. The d a ta d eri\'ed he re represent a n improvement o\'C r th e Buclcl g rid in th a t th ey h3\'C been derived direc tl y from the measurements a nd no t as th e difference o[ inaccurat e

digiti zati ons of surCa ee- anel beel-e1eva tions d a ta. N C\'Cr­

th eless, th e thi ckn ess e rro r re tains Cl strong regio na l variation depending on th e d ensit y o f th e RES fli g ht trac ks.

In additi on , there is a consid era bl e ga in in acc uracy

elu e to th e new surface d a ta, Fo r s urf~lc e slopes of 0 ,5°,

which g i\ 'es a heig ht eliITerence of 350 m o\'e r th e 40 km

typica ll y required to ca lcul a te th e dri\ 'ing stress, a to ta l error of 1. 5 m would im ply a dilTeren ce in \'eloc i t y of onl y 1.3°;(,. Th e e rro r in \ 'C loe ity fo r a typi cal centra l Anta rc ti c slope of 10 3 (using th e new DE\I ) is a bo ut 4% , Th ese

erro rs arc sig nifica ntl y be tte r , b y a fac to r 5 10, than th ose

obta ined using th e Buckl g rids o r th e DE~1 in Bamber ( 1994(1 ).

The magnitude of th e differences in bed elenlli on a re a substa nti a l frac ti on of' th e ice thi ckn ess in pa rts of E as t Anta rcti ca . 1 n pa rti cul a r , th ere is a n area more th a n

600 In too IO\\' in th e Budd d a ta se t in Qu een M a ry La nd

(68 72 S , 11 0 E), \I'here th e ice thi ckn ess is in th e ra nge 1500 3000 m, Th e La mbert Glacier drain age bas in is a no th e r a rea wh ere th e e rro r in bcd ele\'a tion is on th c o rd CT 0 [' 25'Y.) of th e ice thi ckn ess, Furth ermore, th e

patte rn or difTe rences d oes no t consist o r regiona l tilts a nel

bi ases but is ra nel om , leading to signifi cant erro rs in bed slopes e\ 'C rywhere, Th ese e rrors d o not direc tl y a ffec t es tim a tcs of th e d yna mic or ba la nce \'e1 ociti es but become importa nt in mod el runs whi ch im'o l\'e th e calcula ti on o r th e free surface, f o r instance, th e d epth of subglac ia l

cha nnels contro ls the m agnitude of th e ice outfl ow a nd

thi s will a ffec t the surface morph ology furth er upstrea m , Th e el eva tion o f th e subg lac ia l te rra in is a lso a n impo rt a nt bo unda ry conditi on I(l r experiments concen­tra tin g on g rounding-lin e mi g ra ti on o r on th c beha \'io ur o f th e Anta rc ti c ice shee t in much wa rm er c limates

(Huybrechts, 1994 ),

The no n-Gauss ia n di stribution of bed eb 'ati ons (Fig . 7) is also of importa nce , as a number of studi es ha \'C bcen based on th e assumpti on th a t th e bed clC\'a ti ons ha \'C a normal di stributi on (DrewI' )' a nd oth ers, 1982 ). C lose r exa min a ti on of th e hi stogra m indi cates th a t el e\'a ti ons

abo \'e a pproxim a te ly 150m co nfo rm to a Ga ussia n

distribution while th ose below d o no t. 1\ pl o t o f th e

loca tio n of th e bed abo\'e a nd belo\\- this thres ho ld rewa ls tha t a bout 70 % o f th e a rea below 150 m is cove red by RE S fli g ht trac ks, This sugges ts th a t th e Ga ussia n di stribution (o bt a ined fo r th e a reas d e\'o id of'R ES fli g ht

lin es ) is a n a rtefac t introduced by the poo r spa ti a l

sampling in th ese a reas.

CONCLUSIONS

A new level o r accuracy has been obta ined in p roducing

surface slopes a nd ele\'ati ons o\'Cr th e A n ta rC'lic ice shee t.

Th ese d a ta ha \ 'e been combined \\'ith a n impro\'ed ice­thi c kn css d a ta se t to prO\-id e bed e ln 'ati o ns o \'C r g round ed regions o f' th c ice shee t. Th ese c1 ata se ts " 'ill

Page 10: GeolIletric boundary conditions for lIlodelling the velocity · mechanical ice-sheet model (e.g. H uybrech ts, 1990). One way to investi gate the treatment of ice dynamics is to sce

Bamver alf(/ liLo,l; r echl,\: .\fode/lillg Ihe l'e/ori{J' jie/d o/Ihe .-I lllarc/ie ia j /lI'el

be used as inputs into modelling dynamic and balancc

ycloc ities. Thc major uncertainty in the calcul at ion of

ba lance \T loc ity \\'ill no\\' come from inaccuracies in the ice-thickn css and /or acc umul a tion data rather th a n th c surfitce slope,

I n the process o f" genera ting thc data sc ts, the tota l \'o lum c of icc was ca lcul ated and fou lldto be 12% small e r

than the pre\'iolls est im ate by Drewr), and others ( 1982 ),

The difference is equ i\'alent to 8m in g loba l mean sea Ic\'c1 and is morc than thc ent ire \'olumc ofthc Grccnland icc shee l.

Compariso n of the ice-th ickness and bed-elc\'ation g rid s that had been pre\iously obtained from the SPR [

foli o maps indicatcs difle rences in excess of600 m, In SOllle

areas th e differcnces represents 25 30% or the total ice thi ckness. \ Vc attribute these large dine- rences primarily to errors in the original digitiz<1tion of" thc (cl li o and , 10 a lesser extent, to errors in the fo li o surface-e levat ion map,

These la rge errors \I·ill ha\'(' had a substan ti a l influence on

both th e dynami c and balance veloc iti es deri\Td fi'om the

origina l d a ta se ts.

ACKNOWLEDGEMENTS

W c thank S. T siobbe] for rcdigitizing the ice-th ickn ess

contours from thc folio map, the Sco tt Polar R esea rch Institut e fo r a llowing access to th e RES data and tile British Antarcti c Sun'ey for prO\'iding th e RES data , W c are a lso g rateful to E, Tabacco for ma kin g a\'ai la ble the

GPS data ri'om Dome C a nd to :\l. Hig ham for the

L a mbert G lacier trayerse data. During this research ,

J. L. B. was funded by a C.K. NERC Ea rth Obse r\'ation Lectureship , a nd p , H , was on lea\ 'C \I 'ith the Brlg ian :"Jatioll a l Fund f'o r Scientifi c Resca reh (NF\ \ 'O ).

REFERENCES

.\Ik>. J{ , B, 1992, Flrm··b\\' h\,put heSl" I() r irc-,hcct nwelding, ]. (;llIciol .. 38 129 . 2-}.1 256,

Bam!)er. j , L. 1!l'Ha,.\ digital e l,'\ 'atio n l1lodd " r the .\ntarct ic ice , h('e t clcri\ccl li'Om ERS-I a ltimc tt"l' data a ncl compar i,on \\'ith tctTcstrial mcasurcments .. 11111, Glacial .. 20. 18 :i 1.

Bamher. j , L. 199+b, Ice shect altimeter prol'l'ssin,g ,chem(', 1111,]' Rell/ole

.\'{'/lIillJ;. 15 I , 925 938, Ba III hcr. j , L, ancl C, R, Ben tl e>, 1991. ,\ (,()]llpa ri"Jll of ,atellitc·

a ltinll't r> a nel iCl'-thickne" nll'a,utTmt'llts " I' tht' R"" I ce Shell~

,\ntarnica, , 11111, (:tllriol .. 20, 357 :~(i+,

Briti sh ,\Il tarctic Sun'l'\' IB.\S ), Scott Pola r Resea rch Illstitute (S I'R I ,

a ncl \\ 'o rlel CtHl<l' ,"\"a tioll .\Iollitorin g- (:cntre \\'(: '\1(: 199:1, . l lIlalrlif digillll dalllb{/Il 11'1'1" gllidr IIl1d II./IIIII(/' 1II1I1I1Ia/. Cam briclg-e.

Scientilic Committee on .\ marnic Re'ca rch,

Bllcld . \\ ', F, and D , J en"en , 1989, Th e cl\'namics of the .\marnic ice , heel. . 11111, (.Iariol .. 12. I G 22,

Blleld , \\' , F .. D, j e ll""" alld 1. " , S,"ith, 1981. ,\ thrcc-dilllc",iollal tillle-dependc llt model or the \\·('st .\nl an: lil icL' <.dll'l' l. . l lIn. (;Io(io/., 5. 29 36,

Ccf;t!o. R .. G, .\ lanl.Uni a nd E, TalJacco , ICl91, " 'illullalir prtlrl'llillg o/('PS

In!/rrlllli!" alolllld /) 0111, C. Trit" te, Uni\'('r,ily of Tries lc, rT ech nica l

Report , COil no ll e> ' \\ ', ,\1, a llcl j, C Kill g, I ClC)3, .\lIl1o' phcric \\'alCr-\'apo ur

tra nsport 10 .\ n13ITtica inrerred from raeiio"iondc claw. Q. }. R. .l/ l'Illl/ot. SOf., Scr, B. 119 .-)10. :125 :l I2,

Dn'\\ r ~ . D.J .. ('(I. 1983 . . 11I101(Ii((I: p,l(lri%gital alld l!,I'fJIJ/{)'lira/ .Iil/io.

Cambridgc, SCOtt Polar R ~,('arch In,titute,

I Drt,\\t'\. I) ,j.. S,R, J ord a n and E, j a nko\\,ki, 1982, .\I rasu rl'd

propertic, or the ,\ ntarctic icc , lll 'C l: , urface conoe;u ration. icc lhicknt'''. \ ol ulll c and bedrock charat t'Ti,tics, . 111/1, (;Iflrin/.. 3, B3 91,

Europea n Space .\ g-C Il C\ ES.\ 1<)92, I :'/?S-I ,~I' " I(/II, Pari" Eu ropean Spacc ,-\g-e nl'\, I ES.'\ S P-I 1+6,

H u> b"ccillS. P. 1990, ,\ 3-D model It)r th e .\ntarcti c ice shect: a ,,'nsiti\ 'il \ st uch on tlw glacia l intcrglacial con tra st. Uilllall D" II ..

5 2 1,79 92,

Hu > lJrl'cllls. P. 199+, Formation and di,inll',gra lion or the .\ ntarnic ice , hcct. . 11111, (:Iariol .. 20. :>36 3+0,

J aco"e l. R , \\ ' .. ,\ . E, Robi ll ,on a nd R. ,\ , Bind,c hadk r. I 99-} . Studie, or tht·l.{roullding -lill (" locat io ll (I ll In ' SUT<lIll, l) alld E .. \ntarClica . . 11111.

(:Ia, iol .. 20. 39 -}2,

'\Idll t\ ),( ', :\. F 1986, ,\n ta rct ic ice-sheet lopoe;raph\' and su rfa cc­bedrock relali onship" . 11111, (;I({rinl .. 8, 121 128,

PartinglO n, ~ ,C: .. j.~ , Ridln. Cc.;, RaplCl ancl H,j. Z\\·"lh , 1989,

Obsc'Y'llion, of" the surl,lCt' propertic, or the ice , Iweb by ,a lcllile r,,,lar altilll ct l"\ ,]. (;Iflcio/., 351120.267 27.i,

Rad ok, L' " T ,.J, 131'0\\"11. D, .1"11"" 11 . 1.:\ , Stnitil a"d \\ ', F , BudcJ , 19iHi, Oil 1/l{llIrgiJ/,~ Iwlf'lIlio/ '!.l Iwlar ia IlrNIII/I, ParI 1" . . Jlllonlic if('

({(( l/lJIlllalioN b{oilll alld Iilfil moill rlilr/UiJ,!!,f' regiON\. Boulder, CO. L' ni\cr,il\ of Colorado, Coop"rati\'l' I"'titulc fill' Re,earch in Em ironnlt'ntal Scienn's: .\lelbou t'tl l', L' ni\ '(Tsil\' of :\lelbou t'tl l',

'\icl l'o ro log> Dcpartmen t. CS Departlll cnl of" Encrg\' R eport DE I·:R 60197-5,

R app, R , H .. \" , \1. \\ 'a ll g- and :\, K, " "dis, 1')91, Th,' Ohio Slal< 1991

,!!,('o/JOlullial allr/II'a Hu/aft' l()fJ(J.!!,ruIJ/~l' hallllolli{ (Olj/ir ifIJI Il/odd\. COlllllliJlI'. O H, Ohio State L' "i\'('r,i t\" Dcpartlllcnt of Geodctic Science Sur,",'\', Report -[ I (J,

Renb , R , L. and ,\ , K, CIinc, 19H-}, ,\ tri an,lilc- ba,ed C interpolalion

tllcllwcl, Rolkl' JIOllllloill]. .111I11t" 14, 223 237, Srharoo, R .. 1\. , {C, \\ 'a lker ancl C; ,j. .\I n" 199[, The orbit d cterm ina·

lion accu ran of th e ERS-I mission, .)'/10((, al Ih,· .)'l'rl'ia 0/ 0111

1:'III 'iroo(l/{III, I 'weeedi(lg' rIlh(' Sero(lr/ I ,RS-I SI'III/lO' iUIII , 11 f.I Oclol}(1

1993. Ilall//nll;!!._ (;frl1l(ll~J. f 'o/. 2" Pari ..;. European Space . \ ~('n("~_ 7 ~1:1

7 10, I::S.\ SP·:l61. Scko. K .. T, !'urub\\ a. !" :\ i, hio a ncl 0, \\ 'atanabe , 1993, L' ndulat ing

lllpngra ph> on the .\ Illarctic ice sht'l't rl'\l'aled b\ :\0.\ .\ .\\ ·HRR imagl'" . 11111, (,'Imin/.. 17. 55 62,

Thid. E, C, 1962, Thl' amounl of ict' Oil plall('l Earlh, I II \\ 'nolcr. H .. i\1..J , Rui>ill and,J, E. Ca,k,'\" . .Jr. Nil, . l lIlanli, ""wllch: The .11"lh"I. ' FOIl/a;nt" .\laUJ.T ,\/(,INoriul . ~)'IIII)fJ.\illm. \\ '<i'i llill i!,"to ll. DC, . \rll cJ' i t";lll

C;t'llp l"sical L' nioll, 172 17.;, (;coph"ical .\l oII IJgraph 7,

373