Geochemistry of Ground Waters From the Great Artesian Basin, Australia

21
Journal of Hydrology, 126 (1991 ) 225-245 225 Elsevier Science Publishers B.V., Amsterdam [2] Geochemistry of ground waters from the Great Artesian Basin, Australia A.L. Herczeg , T. Torgersen b, A.R. Chivas c and M.A. Habermehl d ~Centre Jor Groundwater Studies and CSIRO Division ~1" Water Resources, Private Bag No. 2, Glen Osmond, S.A. 5064, Australia UDepartment of Marine Sciences, University of Connecticut, A veo' Point, Grown, CT 06340, USA ~Research School o["Earth Seiences, The Australian National University, G.P.O. Box 4, Canberra, A.C.T. 2601, Australia dDivision o[" Continental Geology, Bureau o[ Mineral Resources, Geology and Geophysics, G.P.O. Box 378, Canberra, A.C.T. 2601, Australia (Rece ived 8 Dec embe r 1989; accepted after revision 11 November 199 0) ABSTRACT Herczeg, A.L., Torgersen, T., Chivas, A.R. and Habermehl, M.A., 1991. Geochemistry of ground waters from the Great A rtesian Basin, Australia. J. Hydr ol., 126: 225-245. Ground waters from the confined Lower Cretaceous-Jurassic aquifer of the Great Artesian Basin, Australia (GAB) are characterised by Na-HCO 3 type water s through out the eastern and central parts of the basin and Na-SQ-C1 type waters in the western part. Sodium and bicarbonate increase in concen- tration from the no rtheastern margins to the southwestern discharge areas along the regional groundwater flowlines. A mass-balance and equilibrium model for major dissolved species and stable carbon isotopes of dissolved inorganic carbon s how that the chemica l trends observe d are caused by mass transfe r reactions involving cation exchange of Na for Ca-Mg, carbonate dissolution and reactions between Na and kaolini te to form Na-smectite. The stable carbon isotopic composition of dissolved inorganic carbon (DIC) increa ses f rom value s o f about - 15 %o near t he basin marg ins to - 6 %o in the interior of the basin. An inverse relationship exists between 6~3C and DIC indicating addition of enriched carbon as the ground waters move basinwards. A t2C- ~3C mass balance indicates that the trend toward heavier 6~3C values in the interior of the basin results from bacterial reduction of carbon dioxide to produce methane rather t han di ssolution of, and equilibration with, carbona te mi nerals. The GAB aquifer system is apparently open to CO ~ which is the produc t of in situ anaerobic fermentation producing CO 2 enriched in t3C. The chemical evolution of the major dissolved spec ies and carb on iso tope distribu tion in the eastern and central par ts of the GAB c an then be envisaged as an initial pCO 2 up to sev era l orders o f magnitude abo ve atmospheric le vel is acquired within the recharge area by plant respiration and oxidation of organic matter in the soil zone. Initial y, silica te and carbonate minerals may dissolve , at least in some parts of the basin, resulting in increased a lkalinity, higher Ca and Mg concentrati ons, and a 6~3Cconce ntrat ion of the DIC of around - 12%0. Processes suc h as cation exchange of Na for Ca an d Mg in add ition to the removal of some Na by reverse wea ther ing which produ ces a Na smectite dominate in the interior of the GAB. The chemistry of ground waters derived from the western recharge areas is controlled by evaporite dissolution as indicated by very high CI/Br ratios.

Transcript of Geochemistry of Ground Waters From the Great Artesian Basin, Australia

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 1/21

Journal of Hydrology, 126 (1991 ) 22 5-2 45 225

E l s e v i e r S c i e n c e P u b l i s h e r s B . V . , A m s t e r d a m

[2]

Geochemistry of ground waters from the Great

Artesian Basin, Australia

A . L . H e r c z e g , T . T o r g e r s e n b , A . R . C h i v a s c a n d M . A . H a b e r m e h l d

~Centre Jor Groundwater Studie s and C SI RO Division ~1" W ater Resources, Private Bag No. 2,

Glen Osmond, S.A. 5064, Austral ia

UDepartment of M arine Sciences, University of Connecticut, A veo ' Point, Gro wn, C T 06340, US A

~Research Schoo l o[" Earth Seiences, The Austral ian Nati onal University , G.P.O . Bo x 4, C anberra,

A.C .T . 2601, Austra l ia

dDivision o[" Co ntine ntal Geology, Bureau o [ M ine ral Resources, Ge ology and Geophysics,

G.P.O. B ox 378, Canberra, A.C .T. 2601, Austral ia

(Received 8 December 1989; accepted after revision 11 November 1990)

ABSTRACT

Herczeg, A.L., Torgersen, T., Chivas, A.R. and Habermehl, M.A., 1991. Geochemistry of ground waters

from the Great Artesian Basin, Australia. J. Hydrol., 126: 225-245.

Ground waters from the confined Lower Cretaceous-Jurassic aquifer of the Great Artesian Basin,

Australia (GAB) are characterised by Na-H CO 3 type waters throughout the eastern and central parts o fthe basin and Na-SQ-C1 type waters in the western part. Sodium and bicarbonate increase in concen-

tration from the northeastern margins to the southwestern discharge areas along the regional groundwater

flowlines. A mass-balance and equilibrium model for major dissolved species and stable carbon isotopes

of dissolved inorganic carbon show that the chemical trends observed are caused by mass transfer reactions

involving cation exchange of Na for Ca-Mg, carbonate dissolution and reactions between Na and kaolinite

to form Na-smectite. The stable carbon isotopic composition of dissolved inorganic carbon (DIC)

increases from values of about - 15%o near the basin margins to - 6%o in the interior of the basin. An

inverse relationship exists between 6~3C and DIC indicating addition of enriched carbon as the ground

waters move basinwards. A t2C-~3C mass balance indicates that the trend toward heavier 6~3C values

in the interior of the basin results from bacterial reduction of carbon dioxide to produce methane

rather than dissolution of, and equilibration with, carbona te minerals. The GAB aquifer system is

apparently open to CO~ which is the product of in situ anaerobic fermentation producing CO 2 enrichedin t3C.

The chemical evolution of the major dissolved species and carbon isotope distribution in the eastern and

central par ts of the GAB can then be envisaged as an initial pCO 2 up to several orders of magnitude above

atmospheric level is acquired within the recharge area by plant respiration and oxidat ion of organic matter

in the soil zone. Initially, silicate and carbonate minerals may dissolve, at least in some parts of the basin,

resulting in increased alkalinity, higher Ca and Mg concentrations, and a 6~3C concentrat ion of the DIC

of around - 12%0. Processes such as cation exchange of Na for Ca and Mg in addition to the removal of

some Na by reverse weathering which produces a Na smectite dominate in the interior of the GAB. The

chemistry of ground waters derived from the western recharge areas is controlled by evaporite dissolution

as indicated by very high CI/Br ratios.

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 2/21

2 2 6 A .L . H E R C Z E G E T AL.

I N T R O D U C T I O N

Ge oc h e m ic a l p r oc e s se s oc c u r r in g w i t h in gr ou n d w at e r s an d r e ac t ion s w i t h

aq u i f e r m in e r a l s h ave a p r o f ou n d e f f e c t on w at e r q u a l i t y . Th e r e f or e , t h e

e va lu a t ion o f t h e im p or t an c e o f su c h p r oc e s se s i s e s se n tia l i f gr ou n d w at e rr e s ou r c e s ar e t o b e p r o p e r ly d e v e l o p e d f o r h u m a n c o n s u m p t i o n a n d p a s to r a l

or m in in g ac t iv i t ie s . T h i s p ap e r in ve s t iga te s t h e p os s ib l e p h ys i c a l an d c h e m ic a l

p r oc e s se s a f f e c t in g t h e m aj or e l e m e n t an d s t ab le c ar b on i so t op ic c om p os i t ion

o f g r o u n d w a t e r s f r o m t h e G r e a t A r t e s ia n B a s i n ( G A B ) o f A u s tr a l ia .

T h e G A B i s l oc a t e d in t h e s e m i -ar id an d ar id p ar t s o f e a s t e r n A u s t r a l ia an d

u n d e r l i e s ab ou t 22 ( 1 .7 x 106 k m 2 ) o f t h e A u s t r a l ian c on t in e n t (F ig . 1 ). I t

i s a c on f in e d gr ou n d w at e r b as in c om p ose d o f aq u i f e r s in c on t in e n t a l

q u a r t z o s e s a n d s t o n e s w i t h c o n f i n i n g b e d s o f p a r t l y m a r i n e m u d s t o n e a n d

s i l ts t on e o f Tr ia s s ic , Ju r as si c an d C r e t ac e ou s age u p t o 30 00 m t h ic k ( F ig . 2 ) .R e c h ar ge o f gr ou n d w at e r oc c u r s m a in ly in t h e e as te r n m ar g in a l zon e w i t h

som e m in or in p u t f r om t h e w e s te r n m ar g in . P r e c ip i t a t ion in t h e r ec h ar ge ar e a

ave r age s 6 0 0 m m ye ar ~ an d i s lar ge ly s e ason a l w i t h r e lat ive ly d r y w in t e r s

~ ' ~ ~ ~ ~' ~'

- . . . . .

• t ' f

Fig . 1 . Locat ion o f the Great Ar te s ian Bas in , Aus tra l ia ( ins e t ) and inferred f low l ines bas ed on poten-

t iom etr ic s ur faces ( a f ter Haberm ehl , 1980 ) . Recharge occurs m os t ly on the eas tern and nor theas tern

m arg ins s upp ly ing water to the wes tward and s outhward f lowing reg im es . Som e fur ther recharge occurs

in the wes tern m arg ins . D i s charge v ia upw ard l eakage takes p lace throug hout the bas in through ar te s ian

s pr ings and by d i f fus e d i s charge in the s outhwes tern m arg ina l par t o f the bas in .

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 3/21

GREAT ARTESIA.N BASIN GEOCHEMISTRY 227

- . ~

~ o

~ Cretoceou aquifer

~ C o n fl n L qg b a d - - - - B o u n d e r b e t w e e n c o n fi n e d a q u if e r s P o t O M l O O ~ f r l curface Jurassic aqulf orJ~ Oand conr~mmg l~ds

- -- -- Walertable .. .. Pofont/omotr/C urface duras 4C qul~g,/970durasslc aquifer

Fault o Petroleum exp/orat/on o//

I I B . . . . . , . . . . . T o p o ~ r op h . . . . . f o u r { re ) o b eY * M S L

Fig . 2 . Genera l i s ed cros s - s ec t ion o f the Great Ar te s ian Bas in s howing the Juras s ic aqui fer and the over ly ingconf in ing b ed and cre taceous aqui fer . The s ec t ion re fers lo the l ine A- A ' ( a f ter Hab erm ehl , 1980 ) .

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 4/21

228 A.L. HERCZEG ET AL.

'; ~ 1-/ ~ ~ u _;~ c 'J ; . AI N C ,,.

/ < V l ~ t_ / \ \ .

- t , 1 , , . . . . . . . . . . . ¢ ~ f ~ F , . < ,

Fig. 3. Location o f artesian water wells sampled in May 1985 for this investigation. Sample numbers 73-98

refer to our inte rnal code (see Table 1). The three transects discussed in the text are given here as Line A

(wells 73-77), Line E (wells 78-92) and Line W (wells 93-98).

a n d w e t s u m m e r s . L a r g e -s c a le g r o u n d w a t e r m o v e m e n t is t o w a r d s t h e s o u th -

w e s t e r n a n d s o u t h e r n m a r g i n s ( F ig . 1 ). D i s c h a r g e o c c u r s v ia u p w a r d l e a k a g e

a n d t h r o u g h s p ri n g s a n d d if fu s e d i s c h a rg e in t h e s o u t h w e s t e r n a n d s o u t h e r n

m a r g i n s ( Fi g. 1). T h e p o t e n t i o m e t r i c s u rf ac e o f t h e L o w e r C r e t a c e o u s - J u r a s s ic

a q u i fe r s y s te m i s a b o v e g r o u n d le v e l t h r o u g h o u t m o s t o f t h e b a s in . A q u i fe r s

f r o m t h e U p p e r C r e t a c e o u s r o c k s h a v e m u c h l o w e r w a t e r y ie ld s a n d g r e a t e r

s a li n it y t h a n w a t e r fr o m t h e L o w e r C r e t a c e o u s - J u r a s s i c a q u i f e r s y s te m

( h e r e a f t e r t e r m e d t h e J u r a s s ic a q u i f e r s y s te m ) a n d t h e r e f o r e a r e o f l e ss e r

i m p o r t a n c e f o r e xp l o it a t i o n . T h e g e o l o g y a n d h y d r o g e o l o g y o f t h e G r e a t

A r t e s i a n B a s i n i s d e s c r i b e d i n c o n s i d e r a b l e d e t a i l in H a b e r m e h l ( 19 80 ).

T h i s p a p e r d e a l s e x c lu s i v e ly w i t h g r o u n d w a t e r c o l le c t e d fr o m t h e w i d e l y

e x p l o i t e d J u r a s si c a q u i f e r s y st e m , in p a r t ic u l a r w i t h w a t e r f r o m t h e H o o r a y

S a n d s t o n e a n d its e q u i v a l e n ts w h ic h a r e h i g h l y p r o d u c t iv e , a n d t h e u p p e r

a r te s i a n a q u if e rs in t h e G A B . T h e w a t e r s a re d o m i n a t e d b y N a + a n d H C O 3

t h r o u g h o u t m o s t o f t h e b a s i n w i t h a g e n e r a l i n c r e a s e i n to t a l d i s s o l v e d s o li d s

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 5/21

GREAT ARTESIAN BASIN GEOCHEMISTRY 229

f r o m t h e n o r t h e a s t e r n a n d e a s t e r n m a r g i n s t o w a r d s t h e in t e r io r o f th e b a s in .

W a t e r s o f p r e d o m i n a n t l y N a - C 1 t yp e o c c u r n e a r th e w e s t e r n m a r g i n a l z o n e

w h e r e r e c h a r g e f r o m t h e w e s t d i s so l v e s e v a p o r i t e m i n e r a l s ( H a b e r m e h l , 1 980).

H a b e r m e h l ( 1 98 0, 1 9 8 6 ) a n d C a l f a n d H a b e r m e h l ( 1 98 4) d e a l w i th s o m e

a s pe c ts o f t h e h y d r o c h e m i s t r y o f t h e G A B g r o u n d w a t e rs i n te r m s o f g e n e ra lp a t te r n s t h r o u g h o u t t h e b as in . A d i s c u ss i o n o f t h e e n v i r o n m e n t a l is o t o p e

d i s t r i b u t i o n i n th e g r o u n d w a t e r s b y A i r e y e t al . (1 9 79 ) i n d i c a te s t h a t t h e

w a t e r s a r e e n t ir e l y o f m e t e o r i c o r i g in .

N i n e t e e n c h e m i c a l a n d i s o to p ic a n a l ys e s o f g r o u n d w a t e r s a m p le s w e r e

o b t a i n e d f r o m e x is t in g f l o w i n g a r t e s i a n w a t e r w e l ls in t h e J u r a s s i c a q u i f e r

o f t h e G A B i n 1 9 8 5 . S a m p l e w e l l l o c a l it ie s fo r t h i s s t u d y a r e s h o w n i n F i g . 3.

W e u s e d a c h e m i c a l a n d i s o to p i c m a s s b a l a n c e a n d e q u i l i b r i u m a c t i v i ty

r e l a t io n s h i p s to d e t e r m i n e th e t yp e s o f m i n e r a l - w a t e r i n t e r a c t i o n s t h a t a r e

l ik e ly to t a k e p l a c e. I d e n t i fi c a t io n o f s o l id m i n e r a l p h a s e s a n d t h e i r c h e m i c a lc o m p o s i t io n s w e r e c a r r ie d o u t t o v e ri fy w h e t h e r t h e p r o p o s e d c h e m i c a l

r e a c t i o n s d e r i v e d f r o m t h e r m o d y n a m i c m o d e l l in g a r e f ea s ib l e. A ~3C i s o t o p e

a n d d i ss o l v ed i n o r g a n i c c a r b o n m a s s b a l a n c e p la c e s a d d i t i o n a l c o n s t r a i n t s o n

t h e p r o p o s e d c h e m i c a l r e a c t i o n s i n v o l v i n g p r o t o n t r a n s f e r r e a c t io n s w i t h i n

t h e g r o u n d w a t e r s y s t e m .

ANALYTICAL METHODS

W a t e r s a m p l es w e r e c o l l e c te d i n a c i d - w a s h e d N a l g e n e b o t tl e s f r o m a r t e s ia n

w e l ls t h a t w e r e fl o w i n g c o n t i n u o u s l y a n d h a d b e e n d o i n g s o f o r s e v e r a l y e a r s

o r d e c a d e s . A l l s a m p l e b o t t le s w e r e f lu s h e d w i t h s e v e r a l v o l u m e s o f w a t e r

b e f o r e c h e m i s t r y s a m p l e s w e r e t a k e n . S e p a r a t e 5 0 0 -m l s a m p l e s w e r e ta k e n f o r

c a t i o n s a n d a n i o n s a n d f il te r e d i m m e d i a t e l y t h r o u g h 0.4 5-/~ m M i ll i po r e ®

f il te r s a n d t h e c a t i o n a l i q u o t a c i d i fi e d t o p H < 1 . 5 . A l k a l i n i t y s a m p l e s w e r e

c o l l e c te d i n 1 00-m l W h e a t o n ® b o t tl e s t o w h i c h 1 m l o f s a t u r a t e d H g C 1 2

s o l u t io n w a s a d d e d , a n d a r u b b e r s e p t u m w a s s e c u r ed b y a n a l u m i n i u m

c r i m p e d s e a l . T h e p H w a s m e a s u r e d i n t h e f i e l d u s i n g a p o r t a b l e O r i o n p H

m e t e r c a l i b r a t e d w i t h t w o s t a n d a r d b u f fe r s o lu t i o n s ( p H v a l u e s o f 7 a n d 9 ).

M a j o r c a t i o n s w e re a n a l y s e d by a to m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y .

S u l p h a t e , b r o m i d e a n d f lu o r i d e w e r e d e t e rm i n e d o n a D i o n e x ® i o n c h r o m a -

t o g r a p h . C h l o r i d e w a s d e t e r m i n e d s e p a r a te l y b y p o t e n t i o m e t r i c ti t r a t io n w i th

s il v er n i t ra t e . A q u e o u s s i lic a w a s a n a l y s e d b y a t o m i c a b s o r p t i o n f o l lo w i n g t h e

m e t h o d o f K i s s (1 982 ). A l k a l in i t y w a s m e a s u r e d b y a p o t e n t i o m e t r i c G r a n

t i tr a t i o n i n t h e la b o r a t o r y . T o t a l d i s s o l v e d i n o r g a n i c c a r b o n ( D I C ) w a s

d e t e r m i n e d b y c a l c u l a ti o n f ro m p H a n d a l ka l in i ty d a t a u s in g th e p r o g r a m

P H R E E Q E ( P a r k h u r s t e t a l ., 1 980). F o r d e t e r m i n a t i o n o f 61 3C D Ic, B a C 12 a n d

N a O H w e r e a d d e d t o a b o u t 2 5 0 m l o f w a t e r t o in d u c e p re c i p it a t i o n o f

d i s s o l v e d C O 2 a s B a C O 3 . T h e p r e c i p i ta t e s w e r e a c i d i fi e d i n a v a c u u m l in e a ft e r

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 6/21

2 3 0 A.L. HERCZEG ET AL.

r e t u r n t o t h e l a b o r a t o r y a n d t h e e v o l v e d C O 2 d e t e r m i n e d f o r i t s i so t o p ic

c o m p o s i t i o n o n a m o d i f ie d N u c l i d e M S 1 2 m a s s s pe c t r o m e t e r . P r e c is io n f o r

i s o t o p e a n a l y s e s i s n o m i n a l l y _+ 0.1 % o.

R E S U L T S

R e s u l t s o f c h e m i c a l a n d 6 ~3C a n a l y se s o f g r o u n d w a t e r s f r o m t h e J u r a ss i c

a q u i fe r s in t h e G r e a t A r t e s i a n B a s in a r e p r e s e n t e d i n T a b l e 1. T h e d a t a a r e

g r o u p e d in t o t h r e e t ra n s e c t s ( F ig . 3) w h i c h r e p r e s e n t d o w n g r a d i e n t e v o l u t i o n

f r o m t h e i r re s p e ct iv e r e c h a r g e a r e a s . T h e w a t e r s o n o u r L i n e E t r a n s e c t ( w e ll s

7 8 -9 2 ) a r e d o m i n a n t l y N a - H C O 3 t y p e w i t h t o t a l d i s s o l v e d s o l i d s ( T D S )

c o n t e n t s r a n g i n g f r o m 3 6 2 p p m i n t h e n o r t h e a s t e r n z o n e t o g r e a t e r t h a n

1 6 00 p p m n e a r t h e d i s c h a r g e a r e a s i n th e w e s t e r n a n d s o u t h w e s t e r n p o r t i o n s

o f t h e b a s i n . W e l ls 7 3- 7 7 , w h i c h lie o n a n e a s t - w e s t l i n e t o w a r d s t h e e a s t e r ns id e o f t h e b a s in ( L i n e A ) , t e n d t o h a v e h i g h e r T D S c o n t e n t s t h a n t h o s e

e m a n a t i n g f r o m t h e n o r t h e a s t e r n p a r t o f t h e b a si n . T h e y a r e c h a ra c t e r i s e d b y

h i g h e r N a , H C O 3 a n d C 1 c o n c e n t r a t i o n s t h a n t h e g r o u n d w a t e r s f r o m L i n e E

f u r t h e r t o t h e n o r t h . W a t e r s f r o m t h e w e s t e r n t r a n s e c t , L i n e W ( we lls 9 3- 9 8 )

a r e o f t h e N a -C 1 t yp e a n d h a v e m u c h h i g h e r T D S c o n t e n t s (u p t o 5 835 p p m )

t h a n t h e e a s t e r n t r a n s e c t s .

F i g u r e 4 s h o w s t h e t r e n d s o f c h e m i c a l p a r a m e t e r s a n d ~3C a l o n g t h e t h r e e

t r a n s e c t s d e fi n e d as L i n e s A , E a n d W ( s h o w n i n F ig . 3) f r o m n e a r t h e i n f e r r e d

r e c h a r g e a r e a s t o w a r d s t h e d i s c h a r g e a r e a in t h e s o u t h w e s t e r n p a r t o f t h eb a s i n . T h e r e is a g e n e r a l i n c r e as e i n d i s s o lv e d s o l id s c o n c e n t r a t i o n a l o n g a ll

t r a n s e c t s t o w a r d s t h e i n te r io r o f t h e G A B , w h i c h is a c o m m o n f e a tu r e o f m a n y

l a rg e g r o u n d w a t e r b a s in s . S i m i l a r ly N a c o n t e n t a n d a l k a l i n i ty s h o w s i m i l a r

i n cr e as e s t o t h o s e o f t h e T D S c o n t e n t a n d t h e y d o m i n a t e t h e T D S t re n d .

C h l o r i d e i n c r e a s e s g r a d u a l l y f o r t h e m o s t p a r t ( e x c e p t f o r t h e w e s t e r n

t r a n s e c t ) a n d i n c re a s e s b y a b o u t a f a c t o r o f t h r e e a l o n g L i n e E . T h e r e i s a q u i te

d i s t in c t s e p a r a t i o n o f c h l o r i d e c o n c e n t r a t i o n f o r th e t h r e e t ra n s e c t s a n d r a n g e

o v e r t w o o r d e r s o f m a g n i t u d e . P o t a s s i u m m i m i c s c h l o r id e t o s o m e e x t e n t a s

i t s h o w s a s l i g h t d e c r e a s e a l o n g L i n e E a n d t h e n s o m e in c r e a s e f o r th e l a s t f o u r

w e l ls . C a l c i u m a n d m a g n e s i u m s h o w a m a r k e d d e c r ea s e to a b o u t 30 0 k m t h e n

r e m a i n a t v e r y l o w c o n c e n t r a t i o n s e x c e p t f o r L i n e A w h i c h s h o w s a g e n e r a l

i n c r e a s e , a lb e i t a t a l o w l e v e l. A l k a l i n i t y , D I C a n d 6 ~3C s h o w s i m i l a r p a t t e r n s

f o r L i n e E a s t h e y i n c r e a se s t e a d i ly a lo n g t h e t ra n s e c t . A l k a l in i t y a n d D I C

c o n c e n t r a t i o n s a r e m a r k e d l y h i g h e r fo r L i n e A t h a n t h e o t h e r t r a n se c ts .

X - r a y d i f f r a c t i o n a n a l y s i s o f a q u i f e r s o l i d m a t e r i a l w a s c a r r i e d o u t t o

d e t e r m i n e w h i c h m i n e r a l s w i t h i n t h e b a s i n a r e l ik e ly to i n f l u e n c e t h e w a t e r

c h e m i s t r y . F i f t e e n d e e p d r i l l h o l e ( p e t r o l e u m e x p l o r a t i o n w e l l ) c o r e s a n d

c u t t in g s o f s a n d s t o n e s a n d c o n f in i n g m u d s t o n e s s h o w a u n i f o r m d i s t r ib u t i o n

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 7/21

©~

T

I

>

Cmica63Caysog

werm hG

AeaBnTsmpenmbreoonenc

Trsed

-~

nmbshQnaWaeRo

CmmisoRsedBnmb78aha

aedRsedBnmbo

>

thShAraDpmenoMinaE

89Aruaqednmimoemicmoeomieqvenp

z

kom ancedT

se

dappmioasccuaedbsumminhodaDsa

reoha

mae~ 

dsaohwaoar

Sccerpnhsuonohsoucwhrpoccew

n

vnmb

z

inceu

uoTcCshcb1cmpoohDC C

H

e

dnpminaoravosad

PD Sm

e

R

Tm

pH

D

a

N

+

K+

Ca2~S2 Mg2+

SO

Z

k

C

SO4

B

F

TSH

O_

, 1

Ln

S

n

n

(C

lcd(kn

(m

ok

I

{m

I

(pm

(

m

~g

I

t0~PD

n

cc

-

(mmoekI

(um

k

I

(m

e

(m

ok

I

,<

7

4

6

3

76

2

2

00

0

2

4

06

1

7

3

0

6

1

1

7

48

A

00

7

1

7

5

7

2

2

6

01

0

t

6

08

2

4

27

0

6

1

2

1

2

A

00

7

4

8

5

7

3

1

7

01

01

3

4

08

1

4

37

0

8

1

1

1

5

A

00

7

1

8

72

3

27

00

01

4

5

12

11

3

07

1

1

2

52

A

+

1

7

4

8

8

71

4

3

6

01

01

7

1

08

2

4

47

10

2

2

3

57

A

+

0

7

5

3

5

71

8

22

01

11

4

1

01

60

1

00

4

~

5

7

1

E

+

0

7

1

4

2

67

1

1

(1

06

2

8

02

36

0

0

2

4

3

1

1

E

07

8

4

7

9

65

2

55

01

02

9

05

51

0

0

5

5

2

1

E

0

8

2

8

1

7

4

70

0

00

2

09

59

09

(0

2

8

6

6

1

E

02

8

1

6

72

5

1

6

00

00

5

05

79

58

0

6

7

1

7

I15

h

05

8

1

6

2

74

5

96

00

00

I

06

7

13

00

2

1

7

4

1

1

F

06

8

1

6

6

77

6

97

00

00

2

05

68

18

~

6

7

2

~9

 

01

8

1

9

2

75

8

96

00

00

I

09

70

15

01

3

I0

7

4

1

6

E

02

8

6

0

9

7

9

1

5

01

00

2

10

9

18

03

5

1

1

1

7

E

07

8

6

0

8

9

66

1

1

7

02

00

~

6

07

1

4

16

00

~

I1

1

5

64

E

11

9

6

0

8

8

68

1

1

3

03

00

2

07

1

3

22

00

4

1

1

3

6

E

06

9

6

0

5

5

67

1

2

02

01

2

03

1

1

41

6

2

1

4

62

E

08

9

6

0

3

3

74

2

5

8

04

03

8

5

01

1

1

2

0

05

1

1

3

1

77

+

0

9

6

0

3

8

73

2

7

6

14

19

3

1

02

I15

8

2

32

2

5

5

7

89

+03

9

6

2

3

1

68

2

7

4

18

51

6

1

02

36

6

7

71

4

4

5

8

1

2

02

9

6

5

2

9

64

1

6

8

10

46

5

1

02

3

5

3

61

4

2

4

1

1

07

9

5

0

4

3

7

1

2

9

06

18

1

1

03

41

1

8

32

21

2

6

1

(1

9

5

0

4

4

7

8

/7

04

14

6

1

03

2

1

5

1

7

4

1

2

1

(3

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 8/21

b

i

.

.

.

.

.

 

(g

 ~k 

0

~

O

lC

C

10  0

 

,,,,.,,i,i,

0

2

4

6

B

1

1

I~

~

,,,,,,,,,,,,,

0

2

4

B

8

1

1

1

0

2

4

6

B

io

1

1

1

1

 

i

3

.

.

.

oo 

.

i

 

,

,

,

,

,

 

200 

400 

6o0 

eoo 

1ooo 

leoo 

14oo 

200 

400 

600 

eoo 

1ooo 

~2oo 

14oo 

4o 

8oo 

aoo 

1ooo 

12oo 

14oo 

:

eo

 

Boo 

~2 

14 

BOO 

12 

14 

too 

BOO 

12 

14 

DItnce 

i)

Ditnce 

i)

Ol

nce 

i)

Fig.4a

PooT

CNKCMgaknyDCa£]3CDIC aohh

r

nFg3N

hT

CaMga

~

dpaoao

hmicse

N

 

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 9/21

GREAT ARTESIAN BASIN GEOCHEMIS TRY 233

TABLE 2

Average sandstone and shale composition from GAB core cuttings collected throughout

the basin

Average GAB sandstone Average GAB shale(n = 7) (n = 8)

% SD % SD

SiO 2 71.1 10.9 60.6 3.54

TiO, 1.17 0.39 1.47 0.24

A120~ 12.9 3.8 16.54 1.34

Total Fe 3.82 2.12 6.17 0.91

MgO 0.89 0.41 1.32 0.21

CaO 2.10 1.52 1.78 0.77

Na~O 1.36 0.22 1.47 0.49K20 1.57 0.22 1.95 0.34

CaCO~ 1.80 2.06 3.45 1.73

Organic C 0.85 0.25 1.09 0.16

o f p r e d o m i n a n t l y qu a r t z , k a o l in i te , i ll i te a n d s m e c t i t e w i th m i n o r a m o u n t s o f

c a lc i te a n d a l b it e . P e t r o g r a p h i c e x a m i n a t i o n o f c o r e c u t t i n g s i n d i c a t e t h a t t h e

p l a g i o c l a s e f e l d s p a r s a r e c o m p l e t e l y s e r ic i ti z e d b u t a l k a l i f e l d s p a r s a n d q u a r t z

a r e e ss e n t ia l ly u n a l t e r e d . T h e c h e m i c a l c o m p o s i t i o n o f th e a q u i f e r m a t e r i a l

( T a b l e 2 ) v e r if ie s t h a t t h e a q u i f e r i s h i g h l y a lt e r e d a n d d e f i c ie n t in b a s e c a t i o n s .

T h e o r g a n i c c a r b o n c o n t e n t o f t h e s a n d s t o n e s is a b o u t 1 % w h i l e C a C O 3

c o n t e n t r a n g e s u p t o 3 .5 % b y w e i g h t .

DISCUSSION

I n c r e a s e i n T D S d o w n g r a d i e n t

T h e i n c r e as in g T D S c o n t e n t d o w n g r a d i e n t o b s e r v e d in th e G A B m a y b e

c a u s e d b y s e v e r a l p r o c e s s e s . T h e s e i n c l u d e : (1 ) m i x i n g o f t h e d i l u t e r e c h a r g e

w a t e r s w i t h s a l in e w a t e r s p r e s e n t w i t h i n d e e p e r p a r t s o f t h e b a s i n ; ( 2 ) i o n -

f i l t ra t io n t h r o u g h s h a le m e m b r a n e s ; (3) d i s s o l u t i o n o f e v a p o r i t e s , c a r b o n a t e

m i n e r a l s o r i n c o n g r u e n t d i s s o l u t i o n o f f e ld s p a r s , m i c a s o r c l a y m i n e r a ls .

T h e o n l y s a li n e w a t e rs t h a t m a y i n fl u e n ce G A B h y d r o c h e m i s t r y a r e n e a r

t h e w e s t e rn m a r g i n w h e r e d i s s o l u t io n o f h a li te a n d g y p s u m o c c u r ( s e e b e l o w )

a n d p o t e n t i a l l e a ka g e f r o m a b o v e o r b e l o w . L e a k a g e is u n l i k e ly t o o c c u r f r o m

t h e o v e r ly i n g C r e t a c e o u s s e q u e n c es b e c a u s e o f t h e n e t u p w a r d h e a d i m p o s e d

b y t h e Ju r a s s ic a q u i f e r b u t d i f fu s i o n o f io n s d o w n w a r d s a g a i n s t t h e h y d r a u l i c

g r a d i e n t m a y o c c u r . T h e r a t e o f u p w a r d m o v e m e n t o f w a te r e xc e e ds th e r a te

a t w h i c h C I a n d N a c a n d i f fu s e d o w n w a r d s , h e n c e t h e i n fl u e n c e o f m o r e s a li n e

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 10/21

234 A.L. HERCZEG ET AL,

1 • . a ) b )

L i n e A

2

2 0 0 4 0 0 0 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

1 0 5

. . . . . . . . . . . . i ° ) . . . . . . . . . . . . . . . ( d )

5 ~ o,o3

1 0 3 0 . 0 2

0 . 0 1

1 0 , L , 1 , i , i , L , i , 0 . 0 0 ° , i , i , i , i , i , L ,2 0 0 4 0 0 6 0 0 8 0 0 I 0 0 0 1 2 0 0 1 4 0 0 2 o 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

i s tance k m ) > D i s t a n c e k i n ) )

F ig . 5 . ( a ) - ( d ) P l o t s o f t h e m o l e r a t i o s o f N a / C I , (C a + M g ) / C 1 , C I / B r , a n d S r / C a a l o n g t h e t h r e e t ra n s ec t s

represented in Fig. 3.

w a t e r f r o m t h e U p p e r C r e t a c e o u s a q u i f e r s m u s t b e c o n s i d e r e d t o b e s l i g h t .

S a l i n e w a t e rs f r o m t h e m a r i n e C r e t a c e o u s m u d s t o n e s m a y l ea k in t o t h e

J u r a s s i c a q u i fe r , p a r t ic u l a r l y n e a r t h e d i s c h a r g e a r e a s b u t i t w o u l d n o t a c c o u n t

f o r t h e o v e r a l l c h e m i c a l t r e n d s d e s c r i b e d a b o v e .

T h e G A B w a t e rs a r e p r e ss u r is e d in t h e in t e r io r o f th e b a s i n ( a t m o r e t h a n2 00 b a r ) a n d t h e y a r e o f m e t e o r i c o r i g i n a s d e t e r m i n e d f r o m s t a b le i s o t o p i c

c o m p o s i t i o n o f h y d r o g e n i s o t o p e s in t h e w a t e r m o l e c u l e s (A i r e y e t a l. , 1 979 ).

U sin g 36C1a n d t o t a l c h l o r i d e c o n c e n t r a t i o n s , B e n t le y e t al . (1 9 86 ) c o n c l u d e d

t h a t i o n f i l t r a t io n d o e s n o t o c c u r in t h e G A B b u t t h a t t h e r e is a c o n t r i b u t i o n

o f 'd e a d ' c h l o r i d e in t h e e a s t e r n f lo w r e g im e s , p o s s i b ly f r o m a n u n d e r l y i n g

a q u i fe r th a t c o n t a i n s c o n n a t e w a te r . W e c o n c l u d e t h a t a c o m b i n a t i o n o f

e v a p o t r a n s p i r a t i o n w i th i n t h e r e c h a rg e a r e a s a n d m i n e r a l d i s s o l u t io n p r o v i d e

t h e m o s t p la u s ib l e m e c h a n i s m f o r th e c h e m i c a l t r e n d s o b s e r v e d a l o n g L i n e s

E a n d W . E v a p o r i t e d i s s o l u t i o n a n d e n t r a i n m e n t o f m o r e s a l i ne g r o u n d w a t e r s

a r e n o t i m p o r t a n t c o n t r i b u t o r s e x c e p t i n t h e w e s t e r n a n d s o u t h w e s t e r n

m a r g i n s o f th e b a s in .

P l o t t i n g t h e i o n /C 1 r a t io s a s a f u n c t i o n o f d i s t a n c e a l o n g e a c h t r a n s e c t

a l lo w s u s t o d e l i n e a t e c h e m i c a l p r o c e s s e s t h a t a r e n o t r e l a t e d t o e v a p o t r a n s -

p i r a t i o n v a r i a ti o n s d u r i n g r e c h a rg e b e c a u s e C1 is c o n s e r v e d d u r i n g g r o u n d -

w a t e r e v o l u t io n t h r o u g h o u t m o s t o f th e G A B . S o d i u m / c h l o r i d e r a ti o s t e n d t o

b e v a r i a b le t h r o u g h o u t t h e b a s i n ( F ig . 5 ( a )) b u t g e n e r a l ly in c r e a s e b y a f a c t o r

o f a b o u t t h r e e . S o d i u m / c h l o r i d e m o l e r a t i o s a r e a lw a y s g r e a te r t h a n t w o

( e x ce p t f o r L i n e W ) , d e m o n s t r a t i n g t h a t h a l i te d i s s o l u t i o n o r m i x i n g w i t h

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 11/21

G R E A T A R T E S I A N B A S IN G E O C H E M I S T R Y 2 3 5

1

A

¢ o 0

_ .

*2 ' i i i i5 10 15 20 25

A l k a l i n i t y

F i g . 6 . S a t u r a t i o n i n d e x o f G A B g r o u n d w a t e r s w i t h r e sp e c t t o c a lc i te ( g iv e n a s t h e ra t i o o f t h e io n i c a c t i v i t y

p r o d u c t d i v i d e d b y t h e e q u i l i b r i u m s a t u r a t i o n v a l u e ) a s a f u n c t i o n o f a l k a l i n i t y . A v a l u e o f z e r o r e p r e s e n t s

s a t u r a t i o n w h i l e v a l u e s le s s t h a n 0 r e p r e s e n t u n d e r s a t u r a t i o n .

t r a p p e d s e a w a t e r b r in e s d o e s n o t c o n t r i b u t e t o t h e i n c r e as e in s o d i u m o b s e r v e d

h e r e . T h e r a t i o o f ( C a + M g ) /C 1 d e c r e a se s m a r k e d l y fo r t h e f ir s t 30 0 k m a l o n g

t r a n s e c t E ( F ig . 5 ( b )) b u t t h e n r e m a i n s a t v e r y l o w le v e ls , t h e r e f o r e C a a n d M g

a r e r e m o v e d f r o m s o l u t io n d u r i n g t h e f i r st o n e - t h i r d p o r t i o n o f th e t r a n se c t .

C h l o r i d e / b r o m i d e ra t io s r a n g e o v e r a fa c t o r o f t w o f o r L i n e s E a n d A

( F ig . 5 ( c)); h o w e v e r , a ll b u t o n e a r e w i t h i n t h e r a n g e o f v a l u e s t h a t c o u l d b e

d e r i v e d f r o m r e c h a r g e o f s e a w a t e r - d e r i v e d c y c li c s a lt . T h e s i m i l a r i ty o f C 1 / B r

r a t io s f o r L i n e s A a n d E t o t h o s e f o u n d i n s e a w a t e r ( 5 5 0 -7 0 0) d e m o n s t r a t e

t h a t n o e v a p o r i t e d i s s o l u t i o n h a s ta k e n p la c e w h i c h w o u l d g e n e r a t e C 1 /B rm o l e r a ti o s m u c h g r e a t e r t h a n a p p r o x i m a t e l y 5 0 0- 70 0. T h e h i g h C 1 / B r r a ti o

m e a s u r e d a t w e l l 83 in d i c a t e s t h a t s o m e m i x i n g o f w a t e r s h a s o c c u r r e d

b e t w e e n w e ll s 8 2 a n d 8 3, p o s s ib l y b y u p w a r d l e a k a g e o f C l - r i c h w a t e r d e r i v e d

f r o m t h e L o w e r P a l a e o z o i c - P r o t e r o z o i c G e o r g i n a B a s in u n d e r l y i n g t h e G A B .

T h e e a s t e r n m a r g i n o f t h e G e o r g i n a B a s i n is l o c a t e d in t h e a re a , a n d a f au l t

s t r u c t u r e is p r e s e n t i n t h e G A B s e q u e n c e i n t h e r eg i o n . C h l o r i d e / b r o m i d e

r a ti o s o f g r o u n d w a t e r s f r o m t h e w e s t e rn m a r g i n a r e m u c h g r e a t e r th a n 1 000

d e m o n s t r a t i n g t h a t t h e y ar e d e r iv e d f r o m e v a p o r i te d i s so l u t io n .

S t r o n t i u m / c a l c i u m r a t io s ( F ig . 5 ( d )) s h o w a g e n e r a l i n c re a s e in L i n e s E a n dW w h i c h c o u l d b e c a u s e d b y l o ss o f C a v i a c a t io n e x c h a n g e . P r e c i p i ta t i o n o f

C a C O 3 is n o t p o s s ib l e b e c a u s e a ll b u t o n e o f t h e w a t e r s f r o m L i n e E a r e

u n d e r s a t u r a t e d w i t h r e s p e c t t o C a C O ~ ( F i g . 6 ) .

Mineral-solution interactions

T h e t y pe s o f m i n e r a l - s o l u t i o n r e a c t i o n s th a t m a y c o n t r o l t h e c o m p o s i t i o n

a n d t r e n d o f h y d r o c h e m i c a l s pe c i es i n o u r t r a n s e c ts A a n d E a r e c a t i o n

e x c h a n g e , d i s s o l u t i o n o f c a lc i te o r f e ld s p a r s o r r e a c t i o n s i n v o l v i n g c la y

m i n e r a ls . I t is i m p o r t a n t t o n o t e t h a t t h e t h r e e t r a n s e c t s d e s c r i b e d a b o v e a ll

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 12/21

23 6 A.L. HERCZEG ET AL.

s h o w d i ff e re n t c h a r a c te r i s ti c s a n d t h e r e f o r e t h e t y pe s o f c h e m i c a l r e a c t io n s

n e e d n o t o p e r a t e t o t h e s a m e e x t e n t in a ll p a r t s o f t h e b a s i n a n d t h e r e f o r e w i ll

b e d i s c u s s e d s e p a r a t e l y .

W e a s s u m e t h a t c h l o r id e io n s b e h a v e c o n s e r v a t iv e l y t h r o u g h o u t L i n e E ,

w i t h p e r h a p s t h e e x c e p t i o n o f so m e a d d i t i o n o f C l - r ic h w a t e r b e t w e e n w e l ls8 2 a n d 83 (s e e a b o v e ) . N o r m a l i s i n g a ll o t h e r c h e m i c a l s p ec i es t o c h l o r i d e a l l o w s

u s to e v a l u a t e t h e t y p e s o f c h e m i c a l p r o c e s s e s a ff e c t in g o t h e r d i s s o l v e d s p e c i e s

w i t h i n t h e G A B t h a t a r e n o t r e l a t e d t o p r o c e s s e s s u c h a s e v a p o t r a n s p i r a t i o n .

C h l o r i d e c o n c e n t r a t i o n s i n r a in f a ll i n r e g i o n s , w h i c h a r e m o r e t h a n 1 00 k m

f r o m t h e c o a s t, f a l l i n t o a n a r r o w r a n g e o f le ss t h a n 1 t o 5 p p m ( B l a c k b u r n a n d

M c L e o d , 1 9 83). T h e s e c o n c e n t r a t i o n s a re a n o r d e r o f m a g n i t u d e o r m o r e

l o w e r t h a n C 1 - c o n c e n t r a t io n s i n e v e n t h e m o r e d i lu t e re g i o n a l g r o u n d w a t e rs

w i t h in t h e G A B ( T a b l e 1). E l e v a t e d c h lo r i d e c o n c e n t r a t i o n s i n t h e g r o u n d

w a t e rs a r e p r o b a b l y c a u s e d b y e v a p o t r a n s p i r a t i o n d u r i n g r e c h a r g e a n d t h ise v a p o t r a n s p i r a t i o n a ffe c ts a ll i o n s e q u a ll y . C y c li c w e t t i n g a n d d r y i n g in t h e

u n s a t u r a t e d z o n e ( e .g . D r e v e r a n d S m i t h , 1 9 78) w i t h i n t h e r e c h a r g e a r e a s i s

n o t i m p o r t a n t b e c a u s e th e r e c h a r g e w a te r s d o n o t e v a p o r a t e t o d r y n e s s w i t h in

t h e s o il z o n e . T h i s p ro c e s s c a n o n l y f r a c t i o n a t e s o d i u m a n d c h l o r i d e i f h a l i t e

f o r m s in t h e so i l z o n e , a n d t h is d o e s n o t o c c u r i n th e G A B r e c h a r g e a r e a s .

T h e t y p e s o f re a c t i o n s p r o p o s e d f o r L i n e E m u s t s i m u l t a n e o u s l y s a ti sf y t h e

o b s e r v e d in c r e a s e s i n N a , a l k a li n i ty a n d D I C a n d a t t h e s a m e t i m e t h e d e c r ea s e

in C a a n d M g . F u r t h e r m o r e , t h e r e la t i ve ly c o n s e r v a t iv e b e h a v i o u r o f a q u e o u s

s il ic a m u s t b e a c c o u n t e d f o r i n a n y r e a c t i o n s i n v o l v i n g s i li c a te m i n e r a l s .T h e r e le a s e o f N a , t o t h e m o r e d i l u t e w a te r s n e a r e r t h e r e c h a r g e a r e a s m a y

b e a c c o m p l i s h e d b y t h e f o l l o w i n g : (i) d i s s o l u t i o n o f N a b e a r i n g m i n e r a l s

( e. g. p l a g i o c l a s e o r o r t h o c l a s e ) ; (ii) c a t i o n e x c h a n g e w h i c h r e l e as e s N a * f r o m

c l ay m i n e r a l s ; (iii) c o n v e r s i o n o f a N a - s m e c t i t e t o k a o l i n i te . I n c o n g r u e n t

d i s s o l u t i o n o f a l b it e re l ea s e s N a a n d H C O 3 i n t o s o l u t i o n in a n a p p r o x i m a t e l y

1 : 1 r a t io a c c o r d i n g t o t h e e q u a t i o n

2 N a A 1 S i 3 O s + l l H 2 0 + 2 C O 2 ~ A 1 2 S i2 O s( OH ) 4 + 2 N a

a l b i t e k a o l i n i t e+ 2 H C O 3 + 4 H 4 S I O 4 ( 1 )

o r

2 . 3 3 N a A 1 S i 3 0 8 + 8 . 6 4 H 2 0 + 2 C O 2 ~ N a 03 3A 1 2 3 3S i 36 7O t0 (O H ) 2

a l b i t e N a - m o n t m o r i l l o n i t e

+ 2 N a + 2 H C O 3 + 3 .3 2 H 4 S I O 4 ( 2)

w h i c h a l s o r e le a se s o n e e q u i v a l e n t o f a l k a li n i ty f o r e a c h e q u i v a l e n t o f N a b u t

a l so r e l e as e s s u b s t a n t i a l a m o u n t s o f d is s o l v e d s il ic a f o r e a c h m o l e o f N a

p r o d u c e d . S i l i c a d o e s n o t r e a c h e l ev a t e d c o n c e n t r a t i o n s a n y w h e r e in t h e G A B

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 13/21

GREAT ARTESIAN BASIN GEOCHEMISTRY 237

and the waters are well undersaturated with respect to amorphous silica.

Precipitation of a-quartz is not likely to be achieved even over the very long

water residence times within the deep aquifer. Fur the rmo re, the Na/SiO2 ratio

actually increases along the transects which is the opposite of that predicted

by the above equations.Exchan ge of cations between the solution an d clays (such as one Ca 2. for

two Na* ions) would increase Na relative to Ca but have no effect on

alkalinity. Therefore, alth ough cation exchange may be an im porta nt process,

it cannot be the sole process responsible for the increase in Na and HCO3.

Dissol ution of carb onate s (calcite or dolomite) can occur within the GAB

as the lower bicarbonate c oncentra tion waters are undersa turated with respect

to calcite (Fig. 6, Table 1). Dissolution may take place via the reaction.

CO 2 q- Ca CO 3 + H20 ~ 2H CO 3 q- Ca (3a)

o r :

2CO 2 + CaMg( CO3) 2 + 2H20 ~ 4HCO3 + Ca + Mg (3b)

which produces Ca, Mg and HC O 3. However, Ca a nd M g decrease mar ked ly

with increasing TDS c ontent and in fact never reach very high concent rati ons

except in waters from Line E near the eastern margin.

Ma ss -ba l a n c e c a l c u l a t io n s

We tested a model based on that proposed by Blake (1989) for the

generation of waters high in Na HC O 3 in the Ot way basin of southeast

Australia. The model hypothesises a three-stage process involving: (1) release

of Ca, Mg and HCO~ via carbonate dissolution; (2) cation exchange of Ca (and

TABLE 3

Thermodynamic data used in calculating mineral-solution equilibria in Fig. 7. H and Grepresent the enthalpy and free energy of formation for each mineral phase in units of

cal tool L. Log K is the equilibrium constant derived from free energy data at 25°C

Mineral H G log K Ref.(cal mol 1) (cal mol 1)

Albite -939.7 -886.3 2. 59 Helgeson t al., 1978Calcite -288.8 -270.1 -8.48 Parkhurst et al., 1980Na-beidellite - 1368.2 - 1277.8 - 7.9 Nesbitt, 1977Kaolinite - 982.2 - 905.6 Helgeson et al ., 1978Gibbsite -309.1 -276.2 10.38 Helgeson t al., 1978

Quartz -217.65 -204.65 -4.01 Helgeson t al., 1978Amorphous s il ica -214.57 -202.89 - Helgeson et al., 1978

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 14/21

2 3 8 A . L . H E R C Z E G E T A L .

12 • , . , • , • , •

10 . ~ l og (a Na /a H) v ' s l o g ( a S l 0 2 )

~ . ~ A l b i t e

Gibbsite

Kaolmfle

J i i i

-5 . 0 -4 .5 -4 .0 -3 .5 -3 .0 -25

l o g a S l 0 2 )

F ig . 7. A c t i v i t y - a c t iv i t y d i a g r a m d e p i c t i n g t h e s ta b i l it y fi el d o f N a m i n e r a l s . T h e r m o d y n a m i c d a t a f o r

c a l c u l a t i o n o f m i n e r a l s t a b i l i t y f ie l d s a r e g i v e n i n T a b l e 3 . T h e s t a b i l i t y fi e ld s a r e g i v e n a t 2 5 ° C w h i l e

a c t iv i ti e s fo r d i s s o l v e d sp e c i e s a r e a t i n s i tu g r o u n d w a t e r t e m p e r a t u r e s ( 3 0 - 9 5 ° C ) . W i t h i n t h i s t e m p e r a t u r e

r a n g e t h e m i n e r a l - w a t e r s t a b i li ty f ie l d s d o n o t c h a n g e s i g n if ic a n t ly f ro m t h o s e d e n o t e d h e r e . T h e w a t e r s

a p p e a r t o b e a t o r n e a r e q u i l i b r i u m w i t h r e s p e c t t o k a o l in i t e , a n d a N a - s m e c t i te . T h e y a r e u n d e r s a t u r a t e d

w i th r e s p e c t to a m o r p h o u s s i li ca a n d c a l c it e a n d s u p e r s a t u r a t e d w i th r e s p e c t to q u a r t z .

M g ) f o r N a o n c l a y m i n e r a l s ite s ; (3) b a c k r e a c t i o n o f N a w i t h k a o l i n i t e to

p r o d u c e a N a b e a r i n g s m e c t i t e . T h i s w o u l d r e s u l t i n a n i n c r e a se i n a lk a l in i t y

t h r o u g h t h e d i s s o l u t io n o f c a r b o n a t e s , e x c h a n g e o f N a f o r C a t o s u p p l y N a ,

a n d e q u i l i b r iu m c o n t r o l s o n N a a n d S i O 2 b y r e a c t io n o f N a w i t h k a o l in i t e t o

f o r m a N a - b e a r i n g s m e c t i t e .

T h e r e a c t io n b e t w e e n s o d i u m a n d k a o l in i t e m a y t a k e t h e g e n e r a l fo r m3 A 1 2 S i2 0 5( O H )4 + N a + + 4 H 4 S i O 4

k a o l i n i t e3Na0.33A12.33SiB67Ot0(OH)2 + H + + 1 1 . 5 H 2 0 ( 4 )

N a - s m e c t i t e

T h e s t o i c h i o m e t r y is s u c h t h a t o n e e q u i v a l e n t o f N a is c o n s u m e d f o r e a c h

e q u i v a le n t o f a l ka l in i ty c o n s u m e d . T h e a m o u n t o f H 4 S iO 4 c o n s u m e d d e p e n d s

s o m e w h a t o n t h e a m o u n t o f S i i n t h e re s pe c t i v e c la ys a n d n e e d n o t b e in t h e

p r o p o r t i o n g i v e n a b o v e b u t i s s o m e w h e r e b e t w e e n 1 a n d 4 m o l e s d e p e n d i n g

o n t h e s t o i c h i o m e t r y o f t h e c la y m i n e r a l s .

I n t h e a b o v e s c e n a r i o , n o e x t e r n a l s o u r c e o f C O2 is re q u i r e d t o d i s s o lv e

C a C O 3 b e c a u s e t h e p r o t o n s n e c e ss a ry fo r c a r b o n a t e d i s s o l u t i o n a re d e r iv e d

f r o m e q n . ( 4) a b o v e , p r o c e e d i n g t o t h e r i g h t . A c t iv i t ie s o f i o n s c a l c u l a te d f r o m

t h e c o m p u t e r p r o g r a m P H R E E Q E ( P a r k h u r s t e t a l. , 1 980) a r e p l o t t e d o n a

m i n e r a l s t a b i l i t y d i a g r a m f o r t h e N a - H - S i O 2 s y s te m in F ig . 7 u s i n g t h e r m o -

d y n a m i c d a t a i n T a b l e 3 . M o s t o f th e w a t e r s a r e e q u i l i b r a t e d w i t h r e s p e ct t o

k a o l i n i t e a n d a N a - m i x e d l a ye r c l a y r e p r e s e n t e d h e r e b y N a - b e i d e l li te . T h e N a

c o n c e n t r a t i o n i n t h e s e w a t e r s m a y t h e r e f o r e b e c o n t r o l l e d b y e q u i l i b r i u m

b e t w e e n k a o l in i t e a n d a N a - s m e c t i te . F u r t h e r m o r e , N a - s m e c t i te s a re p r e s e n t

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 15/21

GREAT ARTESIAN BASIN GEOCHEMISTRY 23 9

TABLE 4

Mass transfer (in mmol kg ~) of Ca, Mg, alkalinity and Na f rom upgrad ient to downgradient

wells as indicated. The calculations were done after normalising all data to chloride (see text).

Positive numbers indicate flux from solid to solution and negative numbers indicate removal

from the aqueous phase

ACa AMg AAIk ANa (mmol kg ~)

(mmolk g i) (mmolk g i) (meqkg i)Measured Calculated

78 --* 79 -0 .2 8 -0 .5 5 -0 . 8 +0.41 +0.86

79 -~ 81 --0.4 --0.85 +1.56 +3. 76 +4.06

81 ~ 82 --0.12 -0 .0 1 +0.4 8 +0.89 +0. 74

82 ~ 83 --0.07 0 -4 .6 5 - 4 . 7 -4. 51

82 ~ 84 -0.0 5 0 -0 .3 -0.1 -0 .2

84 --, 85 +0.01 0 - 3. 0 -2 . 8 - 3. 085 ~ 86 -0 .02 0 + 1.38 + 1.5 + 1.42

86 ~ 87 -0 .02 0 +1.11 +2.1 +1,1 5

87 --, 89 0 0 +4 .5 +4 .0 +4 .5

89 --* 91 0 0 - 3 . 6 - 4 . 0 - 3. 6

91 --, 92 0 0 -4 .0 -3 .0 -4 .0

i n m u c h l a r g e r a b u n d a n c e in t h e a q u i fe r t h a n p r i m a r y p l a g io c l a se ( se e a b o v e )

a n d a r e m u c h m o r e r e a c t iv e .

W e p e r f o r m e d m a s s - b a la n c e c a l c u l a ti o n s a l o n g L i n e E t o d e t e r m i n e t h e

r e la t iv e i m p o r t a n c e o f t h e a b o v e p r o c e s s e s i n c o n t r o l l i n g th e m a j o r i o n

c h e m i s t r y . T h e r e s u l ts a r e p r e s e n t e d i n T a b l e 4 a n d w e r e d o n e i n t h e f o l l o w i n g

s e q u e n c e t o c a l c u la t e t h e b u i l d - u p o f s o d i u m :

(1 ) N o r m a l i s e a l l d a t a i n d o w n g r a d i e n t b o r e t o C 1 c o n c e n t r a t i o n i n

u p g r a d i e n t w e l l .

(2 ) N e t N a g a i n v ia c a t i o n e x c h a n g e a n d u p t a k e o f N a b y N a - s m e c t i t e e q u a ls :

2 × ( A C a + A M g ) + A H C O 3

( 3) I f Y A l k l o s s is g r e a t e r t h a n ( 2 x ( C a + M g ) ) l o ss t h e n n e t N a l o s s t o

N a - s m e c t i t e e q u a l s A A l k .

(4 ) C o m p a r e c a l c u l a te d N a g a i n w i th n o r m a l i s e d N a g a i n d e t e r m i n e d f r o m

t h e a n a l y t ic a l d a t a . T h e r e s u lt s (T a b l e 4 ) s h o w t h a t t h e N a f l u xe s p r e d i c t e d b y

t h e m a s s - b a l a n c e c a l c u l a t i o n s a re g e n e r a l l y s i m i l a r t o t h a t a c t u a l l y m e a s u r e d

( a ft e r n o r m a l i s i n g t o C 1 ). T h i s su g g e s t s t h a t t h e m o d e l a d e q u a t e l y a c c o u n t s f o r

t h e d i s t r ib u t i o n o f th e d i s so l v e d m a j o r i o n s o b s e r v e d a s t h e G A B w a t e r s f r o m

L i n e E p r o g r e s s b a s i n w a r d s . P o s i t iv e fl u xe s a re t h e r e s u lt o f e x c h a n g e o f N a

f o r C a a n d M g w i t h s o m e re m o v a l o f N a v ia f o r m a t i o n o f a N a - sm e c t i te

( r e a c t io n (4 )). N e g a t i v e f l ux e s s u g g e s t th a t e i t h e r m o r e N a is r e m o v e d v i a t h e

c la y r e a c t io n t h a n b y c a t i o n e x c h a n g e o r t h a t n o c a t i o n e x c h a n g e o c c u r s a n d

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 16/21

240 A.L HERC ZEG ET AL.

t h a t o n l y e qn . (4 ) p r o c e e d s t o r e m o v e N a f r o m s o l u t i o n b y c o n v e r s i o n o f

k a o l i n i t e t o N a - s m e c t i t e .

F r o m t h e r e s u l t s p r e s e n t e d a b o v e , t h e r e i s n o a p r i o r i r e q u i r e m e n t f o r a n

e x t e r n a l s o u r c e o f C O 2 to d i s s o l v e s o l i d c a r b o n a t e o t h e r t h a n t h a t p r e s e n t in

t h e r e c h a r g i n g w a te r . I f n o a d d i t i o n a l C O o w e r e to b e a c q u i r e d b y t h e g r o u n dw a t e r d u r i n g i t s t r a v e r se a c r o s s t h e b a s i n , t h e n t h e p H w o u l d r i se t o v a l u e s in

e xc es s o f 8 o r 9 b e c a u s e o f c o n s u m p t i o n o f C O o . R e m o v a l o f H C O 3 v ia

c o n v e r s i o n o f k a o l in i t e to a c a t i o n - b e a r i n g c l a y s u c h a s s o d i u m - s m e c t i t e

i n v o lv e s tr a n s fe r o f h y d r o g e n i o n f r o m c la ys t o s o l u t io n w h i c h c o n s e r v e s D I C

i n t h e w a t e r s b u t d e c r e a s e s a l k a l i n i t y. A n e t i n c r e a s e in a l k a l i n i t y c a n t h e r e f o r e

o n l y b e a c c o m p l i s h e d b y c a r b o n a t e d i s s o lu t i o n b u t m a i n t a i n i n g h i g h p C O 2

v a l u e s m u s t i n v o l v e a n e x t e r n a l s o u r c e o f C O ~. E v i d e n c e f o r a n e x t e r n a l

s o u r c e o f C O 2 is p r e s e n t e d i n th e f o l l o w i n g s e c t io n .

Carbonate chemistry and ;-~C

T h e c o m p o n e n t s o f t h e c a r b o n a t e s y s t e m a n d t h e ' 3C / '2 C r a t io o f t o ta l

d i s s o l v e d C O 2 a r e i n f l u e n c e d b y s e v er a l p ro c e s s e s w i th i n g r o u n d w a t e r

s y s t e m s . T h o s e p r o c e s s e s w h i c h a r e l i k e l y t o b e m o s t i m p o r t a n t w i t h i n t h e

G A B i n c l u d e C O2 r e s p i r a t io n b y p l a n t m a t t e r w i t h i n t h e s oi l z o n e o f t h e

r e c h a r g e a r e a s , d i s s o l u t i o n o r p r e c i p i t a t i o n o f c a r b o n a t e m i n e r a l s s u c h a s

c a lc i t e o r d o l o m i t e , a d d i t i o n o f C O 2 fr o m d e g r a d a t i o n o f o r g a n i c m a t t e r

w i t h in t h e a qu i fe r , a n d m e t h a n e p r o d u c t i o n . A n y o t h e r p r o c e s s t h a t i n v o lv e st h e t r a n s f e r o f p r o t o n s , s u c h a s t h e h y d r o l y s i s r e a c t i o n s i n v o l v i n g c la y

m i n e r a l s , o r t h e t r a n s f e r o f e l e c t ro n s b y b a c t e r i a ll y m e d i a t e d r e d o x r e a c t i o n s

( e . g . , s u l p h a t e r e d u c t i o n ) w i l l i n d i r e c t l y a f f e c t t h e c a r b o n a t e s y s t e m b e c a u s e

a d d i t i o n o r r e m o v a l o f h y d r o g e n i o n s w il l p e r t u r b t h e C O 2 s y s t e m a n d

t h e r e f o r e i n d i r e c t l y p r o m o t e c a l c i t e d i s s o l u t i o n o r p r e c i p i t a t i o n . A l l

c o m p o n e n t s o f t h e c a r b o n a t e s ys te m , t a k e n t o g e t h e r w i t h t h e s ta b le c a r b o n

i s o t o p e d i s t r ib u t i o n , c a n p r o v i d e a c o n s t r a i n t o n t h e p o s s i b l e c h e m i c a l

p ro c e s se s o c c u r r i n g w i th i n t h e g r o u n d w a t e r s y s te m a n d d e t e r m i n e t h e r o le o f

C O 2 i n t h e s e r e a c t i o n s .T h e r e i s a g e n e r a l i n c r e a s e i n t h e a l k a l i n i t y , D I C a n d 6 ' 3 C D , c v a l u e s w i t h

d i s t a n c e a l o n g L i n e E ( F ig s . 4 ( g )- 4 ( i) ) i n d i c a t i n g a d d i t i o n o f is o t o p i c a ll y

e n r i c h e d D I C a l o n g L i n e E . C o n s i d e r th e c as e w h e r e C O2 d e r iv e d f r o m

o x i d a t i o n o f o r g a n i c m a t t e r o r p l a n t r o o t r e s p i r a t io n i n t h e r e c h a r g e a r e a s

r e a c ts w i t h C a C O 3 a c c o r d i n g t o e q n . ( 3a ) ( se e a b o v e ) t o p r o d u c e t w o e q u i v -

a l e n t s o f a l k a li n i ty f o r e a c h n e t m o l e o f D I C p r o d u c e d . I f e q n . ( 3a ) p r o c e e d s

i n s t r ic t s t o i c h i o m e t r i c p r o p o r t i o n s , t h e ~ '3C H co ~ c a n b e g i v e n b y t h e e x p r e s s i o n :

~ ~t~( ~1 3C ( f i C c 0 2 - ]- C a C 0 3) ( 5 )HCO; = 2

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 17/21

G R E A T A R T E S I A N B A S I N G E O C H E M I S T R Y 241

-4

aa . - 6

J

- 1 0

0 -12 • • • ~ ~ A

- 1 4 •

n

- 1 6 . 0 0 .1 0 . 2 0 , 3

1 / D I C

F ig . 8 . 0 ~C t ~ l ~ a s a f u n c t i o n o f t h e in v e r s e o f D 1 C f o r g r o u n d w a t e r s f r o m t h e G A B J u r a s s i c a q u i f e r. T h e

t r e n d o f d a t a r e p r e s e n te d b y t h e d i a g o n a l l i ne i n d ic a t e s a d d i t io n o f a ~ C e n r i c h e d s o u r c e o f D I C w i th a

~ l~ C gl C, c o m p o s i t i o n o f a b o u t 0 %0 .

If the 6~3C concentrat ion of CO~ derived from plant respiration and

Jegradation in the soil zone in semi-arid regions within the recharge areas of

the GAB is estimated to be between - 20 and - 24%0 (Salamons and Mook,

1986) and the 613C concentration of CaCO3 within the aquifer is between 0

and -6%o, which is the range for non-marine carbonates (Salamons and

Mook, 1986), then the resultant bicarbonate produced in a closed system

according to eqn. (5) would be approximately -12%o. Therefore, if only

carbonate dissolution via addition of CO 2 was involved in adding DIC to thewater, then the 613C concentrat ion would evolve to about - 12 + 2%0 given

enough time or a sufficient amount of material and water residence time. Such

a scenario could adequately explain the GAB 613C data for the first 600 km o f

the Line E transect and the data for Line W (Fig. 4(i)). However, this process

does not explain the enriched 6~3C values measured for the last 600 km o f Line

E nor the enriched values in Line A.

On a plot of 6~3C values vs. the inverse of DIC concen tra tion (Fig. 8) we

observe two trends for the data. One group of points appear to be independent

of DIC concentrati on at a 613C value of about - 12 to - 14%o. Another group

of points define a linear trend with increasing ~3C values as I/DIC decreases.

The latter linear trend indicates mixing of DIC derived from two end-

members; one derived from dissolution of carbonate minerals and the other

end-member having an isotopically enriched source with a 6~3C composit ion

of around - 2 to 0%0.

Processes which could provide DIC enriched in '-~C include:

(1) Exchange of carbon atoms between dissolved CO, and calcite which

may ul timately result in a 6~3C concen tra tion of dissolved HCO 3 which is

close to that of the solid material, that is, about 0%o. However, isotopic

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 18/21

24 2 A.L. HERC ZEG ET AL.

e x c h a n g e w o u l d i n c re a se 6 t3C c o n c e n t r a t i o n o f t h e D I C w i t h o u t a c o n -

c o m i t a n t i n c r e a s e i n D I C c o n c e n t r a t i o n , t h e r e f o r e t h i s p r o c e s s c a n n o t b e

i m p o r t a n t i n d e t e r m i n i n g th e o b s e r v e d t r e n d s .

( 2) P r e f e r e n t i a l m e t a b o l i s m o f ~3C e n r i c h e d c a r b o n b y b a c t e r i a d u r i n g

o x i d a t i o n o f o r g a n i c m a t t e r i n a g r o u n d w a t e r s y s te m ( e .g . C h a p p e l l e e t a l. ,19 88). T h e m a g n i t u d e o f th i s e n r i c h m e n t is o f t h e o r d e r o f - 1 0 t o - 1 5 % o

f o r C O2 r e la t iv e t o o r g a n i c m a t t e r w h i c h w o u l d r e s u lt i n a 6 ~3C e n d - m e m b e r

c o m p o s i t i o n o f a b o u t - 1 2% o; t o o l i g h t t o ex p la i n th e G A B d a t a .

(3 ) P r o d u c t i o n o f m e t h a n e v ia C O 2 r e d u c t io n :

C O , + 4 H ~ --* C H a + 2 H 2 0 ( 6 a )

o r b y a c e t a t e f e r m e n t a t i o n :

2 C H 2 0 ~ C H 4 + C O 2 ( 6 b)

B o t h o f t h e se p ro c e s se s in c r ea s e th e D I C c o n c e n t r a t i o n a n d e n r i c h t h e D I C

i n 13C ( G a m e s e t a l ., 1 9 78 ; W h i t i c a r e t a l. , 1 9 86 ). C a r b o n d i o x i d e r e d u c t i o n

a l s o r e s u l t s i n a n e t i n c r e a s e i n D I C b e c a u s e t h e m e t h a n e p r o d u c t i o n s t e p

a lw a y s a c c o m p a n i e s C O2 p r o d u c t i o n v ia o t h e r a n a e r o b i c o x i d a t i o n p r o ce s se s

( K la s s , 1 9 84 ). T h e a m o u n t o f C O 2 c o n s u m e d t o g i v e m e t h a n e is le ss t h a n t h a t

p r o d u c e d b y f e r m e n t a t i v e o x i d a t i o n r e s u l t i n g in a n e t b u i l d - u p o f C O 2 . In

a q u i fe r s w h e r e t h e o r g a n i c c a r b o n c o n t e n t i s l o w , t h e r e d u c t i o n s t e p te n d s t o

d o m i n a t e t h e p r o d u c t i o n o f m e t h a n e ( e .g . G r o s s m a n e t al . , 19 89 ).

D I C w i th 6 L3C c o m p o s i t i o n s o f m o r e t h a n 0%0 h a v e b e e n r e c o r d e d ing r o u n d w a t e r s y t e m s ( e. g. B a r k e r a n d F r i t z , 1 9 81 ; G r o s s m a n e t a l ., 1 9 89 )

w h i c h in d i c a te s t h e i m p o r t a n c e o f m e t h a n o g e n e s i s in t h e D I C m a s s - b a la n c e

o f m a n y c o n f i n e d a n d p h r e a ti c g r o u n d w a t e r s ys te m s . F re e h y d r o g e n , m e t h a n e

a n d o t h e r l ig h t h y d r o c a r b o n s a r e p r e se n t in m o s t p a r ts o f t h e G A B

( H a b e r m e h l , 1 986 ), t h e r e f o r e t h e s e r e a c t i o n s m u s t b e t a k i n g p l a c e . T h e l in e a r

r e l a t i o n s h i p s e e n in F i g . 8 th e n , c a n b e e x p l a in e d b y a d d i t i o n o f C O 2 w i t h a n

i s o to p i c c o m p o s i t i o n w h i c h i s c o n s i s te n t w i th a c o m b i n a t i o n o f a n a e r o b i c

f e r m e n t a t i o n a n d r e d u c t i o n o f C O2 t o p r o d u c e m e t h a n e .

T h e r e l a t i o n s h i p b e t w e e n a l k a l in i t y a n d D I C f o r th e t h r e e t r a n s e c t s ( Fi g . 9)

c a n i n d i c a t e th e e x t e n t o f o p e n - o r c l o s e d - s y s te m b e h a v i o u r w i t h i n t h e a q u i f e r

w i t h r e s p e ct t o C O 2 . E a c h o f th e t r a n s e c t s s h o w l i n e a r r e la t i o n s h i p s , a l t h o u g h

w i t h d i ff e r e n t g r a d i e n t s a n d f o r L i n e s A a n d E a t le a s t, m o r e t h a n 1 m o l e D I C

is p r o d u c e d p e r e q u i v a l e n t o f a l ka l in i ty p r o d u c e d . I f c a r b o n a t e d i s s o l u t io n

w a s t h e o n l y s o u r c e o f D I C t o t h e g r o u n d w a t e rs , t h e n t h e ra t i o o f

A A I k : A D I C w o u l d b e a b o u t 2 : 1. H o w e v e r i f s o m e a l k a l in i t y is r e m o v e d v i a

p r o d u c t i o n o f o n e p r o t o n d u r i n g t h e c o n v e r s i o n o f k a o l in i t e t o N a - s m e c t i t e

( e q n . (4 )) t h e n t h e r a t i o w o u l d a p p r o a c h 1 : 1. T h i s v a l u e c a n o n l y b e

a c h i ev e d i f t h e r e w a s n o n e t p r o d u c t i o n o f N a .

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 19/21

G R E A T A R T E S I A N B A S I N G E O C H E M I S T R Y 243

30

• Un e E ( s l ope = 0 .67)A

O Line A s l o p e = 0.78

O 20 t = L i ne W ( s l ope = 1 .0) o 0

oo~ 0

O

_~m 10 •

&

O 1'0 2'0 30

DIC (mmo l / kg )

F i g . 9 , A l k a l i n i t y v s . D I C f o r al l t h r e e t r a n s e c t s s h o w l in e a r r e l a t i o n s h i p s w i th g r a d i e n t s r a n g i n g f r o m l

t o 0. 6 7. L i n e s A a n d E h a v e m o r e D I C a d d e d p e r e q u i v a l e n t o f a l k a li n it y a d d e d i n d i c a t i n g a s o u r c e o f

a d d i t i o n a l C O , t h a t i s n o t a c c o m p a n i e d b y g e n e r a t i o n o f a l k al in i ty .

B e c a u s e a n a e r o b i c o x i d a t i o n o f c a r b o n c o u p l e d w i t h m e t h a n o g e n e s i s

p r o d u c e s C O 2 w i th l i tt le o r n o c o n c o m i t a n t i n c re a s e in a l k a l i n i ty , w e s h o u l d

s ee m o r e D I C t h a n a l k a li n i ty p r o d u c e d a s t h e w a t e rs e v o l v e v ia t h is p ro c e s s .

T h e a d d e d C O2 i n d u c e s th e d i s s o l u t io n o f c a r b o n a t e s w h i c h i n t u r n i n c r ea s es

a l k a li n i ty a n d D I C i n a 2 : 1 r a t i o . W e d o o b s e r v e t h a t a b o u t 5 0 % a n d 3 0 %

m o r e m o l e s o f D I C a r e p r o d u c e d t h a n e q u i v a l e n t o f a l ka l in i ty fo r L i n e s E a n d

A r e s p e c t iv e l y ( F ig . 9 ). T h e r e f o r e , a d d i t i o n o f C O ~ v i a f e r m e n t a t i v e b a c t e r i a l l y

m e d i a t e d r e a c t i o n s is m o r e i m p o r t a n t t h a n c a r b o n a t e d i s s o l u t i o n t h r o u g h o u t

m o s t o f t h e G A B . T h i s is p a r t ic u l a r l y n o t i c e a b l e t o w a r d t h e b a s i n w a r d w e llsw h e r e in s i t u m i c r o b i o l o g i ca l ly m e d i a t e d f e r m e n t a t i o n r e a c t io n s b e c o m e m o r e

d o m i n a n t in p r o d u c i n g th e a d d e d D I C t o th e G A B w a te rs .

C O N C L U S I O N S

T h e c h e m i c a l e v o l u t i o n o f t h e m a j o r d i s so l v e d sp ec ie s a n d c a r b o n i s o t o pe

d i s t r i b u t i o n i n t h e e a s te r n a n d c e n t r a l p a r t s o f t h e G A B c a n t h e n b e e n v i s a g e d

a s fo l lo w s . A n i n i t ia l le v e l o f p C O 2 u p t o t h r e e o r d e r s o f m a g n i t u d e a b o v e

a t m o s p h e r i c le v e l s o f p C O 2 is a c q u i r e d b y w a t e rs n e a r t h e r e c h a r g e a r e a o w i n g

t o p l a n t r e s p i r a t i o n a n d o x i d a t i o n o f o r g a n i c m a t t e r i n t h e s o il zo n e . I n i t i a ll y ,

s il ic a te a n d c a r b o n a t e m i n e r a l s m a y d i s so l v e , a t l e as t in s o m e p a r t s o f t h e

b a s i n , re s u l t in g i n i n c r e a s e d a lk a l in i t y , N a , C a a n d M g c o n c e n t r a t i o n s a n d

5~3C DIc v a l u e s a r o u n d - 1 2 % o . A s t h e w a t e r s p r o g r e s s b a s i n w a r d s , c a t i o n

e x c h a n g e o f N a f o r C a a n d M g a n d s u b s e q u e n t r e a c t io n i n v o l v in g N a a n d

k a o l i n i t e t o p r o d u c e N a - s m e c t i t e e x e r t s a n i m p o r t a n t c o n t r o l o n t h e d i s -

t r i b u t i o n o f d is s o l v e d s pe c ie s f o r a l a rg e p a r t o f t h e G r e a t A r t e s i a n B a s i n . C l a y

m i n e r a l r e a c t io n s b u f f er a q u e o u s s il i ca c o n c e n t r a t i o n s b e l o w a m o r p h o u s S iO ~

s a t u r a t i o n . C a t i o n e x c h a n g e a n d d i s s o lu t i o n o f c a r b o n a t e m i n e r a l s d o n o t

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 20/21

244 A L HERCZEG ET AL

a p p e a r t o b e i m p o r t a n t a s t h e g r o u n d w a t e r s a p p r o a c h t h e d i s c h a r g e a re a s a s

t h e r e i s n e t N a r e m o v a l f r o m t h e a q u e o u s p h a s e .

A d i s s o l v e d i n o r g a n i c c a r b o n i s o t o p e m a s s b a l a n c e i n d i c a t e s t h a t t h e

g r o u n d w a t e r s y s t em is o p e n t o C O 2 a n d t h a t a d d i t io n o f C O 2 is a c c o m p l i s h e d

b y f e r m e n t a t i o n p r o c e s s es o c c u r r i n g in s it u. S o m e o f t h e a d d e d C O , is ab y - p r o d u c t o f m e t h a n o g e n e s i s in d i c a t e d b y a t3C e n r ic h e d e n d - m e m b e r f o r th e

D I C . T h e a d d i t i o n o f C O2 d r iv e s t h e c a r b o n a t e d i s s o lu t io n r e a c t i o n , t h e r eb y

e x e rt in g a n i m p o r t a n t c o n t r o l o n t h e e v o l u t i o n o f t h e N a - H C O 3 w a t e rs w i t h in

t he G A B .

A C K N O W L E D G E M E N T S

W e t h a n k D . J . G r e g g , M . M a l i k i d e s a n d E . K i s s f o r a s s i s t a n c e w i t h f i e l d

s a m p l in g a n d l a b o r a t o r y a n a l y s is o f w a t e r s . R e v i e w s o f e a r l ie r v e r s io n s o f th i sp a p e r b y E . M a z o r , A . V e n g o s h a n d t h r ee a n o n y m o u s r ef er e es a r e a p pr e c i-

a te d . M . A . H a b e r m e h l p u b l i s h e s w i th t h e p e rm i s si o n o f th e D i r e c t o r , B u r e a u

o f M i n e r a l R e s o u r c e s , G e o l o g y a n d G e o p h y s ic s .

R E F E R E N C E S

A i r e y , P . L , C a l f , G . E . , C a m b e l l , B . L ., H a r t l e y , P . E . , R o m a n , D . a n d H a b e r m e h l , M . A . , 1 9 79 .

A s p e c t s o f th e i s o t o p e h y d r o l o g y o f t h e G r e a t A r t e s i a n B a sin . I n : I s o t o p e H y d r o l o g y ,

V o l . 1 , I A E A , V i e n n a , p p . 2 0 5 - 2 1 9 .

B a r k e r , J. F . a n d F r it z , P ., 1 9 8 1 . T h e o c c u r r e n c e a n d o r i g i n o f m e t h a n e i n so m e g r o u n d w a t e r

f low s ys tem s . C an . J . E a r t h S c i ., 18 : 1802-181 6 .

B e n t l e y , H . W . , P h il li ps , F . W . , D a v i s , S . N . , H a b e r m e h l , M . A . , A i r e y , P . L . , C a l f , G . E . , E l m o r e ,

D . , G o v e , H . E . a n d T o r g e r s e n , T . , 1 9 8 6 . C h l o r i n e - 3 6 d a t i n g o f v e r y o l d g r o u n d w a t e r 1 . T h e

G r e a t A r t e s i a n B a s i n . W a t e r R e s o u r . R e s . , 2 2 : 1 9 9 1 - 2 0 0 1 .

B l a c k b u r n , G . a n d M c L e o d , S . , 1 9 8 3 . S a l i n it y o f a t m o s p h e r i c p r e c i p i t a t io n i n t h e M u r r a y -

D a r l i n g d r a i n a g e d i v i si o n , A u s t r a l ia . A u s t . J . S oi l R e s ., 2 1 : 4 1 1 - 4 3 4 .

B l ak e, R . , 1 9 8 9 . T h e o r i g in o f h i g h s o d i u m b i c a r b o n a t e w a t e r s in t h e O t w a y B a si n, V i c t o r i a ,

A u s t r a li a . I n M i le s D . L . ( E d i to r ) , W a t e r - R o c k I n t e ra c t i o n . B a l k e m a , R o t t e r d a m , p p . 8 3 -8 5 .

C a l f, G . E . a n d H a b e r m e h l , M . A . , 1 9 8 4 . I s o t o p e h y d r o l o g y a n d h y d r o c h e m i s t r y o f th e G r e a t

A r t e s i a n B a si n, A u s t r a l i a . I n : I s o t o p e H y d r o l o g y I A E A , V i e n n a , p p. 3 9 7 - 4 1 3 .

C h a p p e l l e , F . H . , M o r r i s , J .T . , M c M a h o n , P .B . a n d Z e l i b o r , Jr ., J. L . , 1 9 8 8 . B a c t e r ia lm e t a b o l i s m a n d t h e 6 ~3C c o m p o s i t i o n o f g r o u n d w a t e r , F l o r i d a n a q u i f e r s ys t e m , S o u t h

C a r o l i n a . G e o l o g y , 1 6 : 1 1 7 - 1 2 1 .

D r e v e r , J .I . a n d S m i t h , C . I . , 1 9 7 8 . C y c l i c w e t t in g a n d d r y i n g o f t h e s o il z o n e a s a n i n f l u e n c e

o n t h e c h e m i s t r y o f g r o u n d w a t e r i n a r i d t e r r a i n s . A m . J. S c i. , 2 7 8: 1 4 4 8 - 1 4 5 4 .

G a m e s , L . M . , H a y e s , J . M . a n d G u n s a l a s , R . P . , 1 9 7 8 . M e t h a n e p r o d u c i n g b a c t e r i a : n a t u r a l

f r a c t i o n a t i o n s o f th e s ta b l e c a r b o n i s o t o p e s. G e o c h i m . C o s m o c h i m . A c t a , 4 2 : 1 2 9 5 -1 2 9 7 .

G r o s s m a n , E . L . , C o f f m a n , B . K . , F r i tz , S .J . a n d W a d a , H . , 1 9 8 9 . B a c t e r ia l p r o d u c t i o n o f

m e t h a n e a n d i t s i n f l u e n c e o n g r o u n d - w a t e r c h e m i s t r y i n e a s t - c e n t r a l T e x a s a q u i f e r s .

G e o l o g y , 1 7: 4 9 5 - 4 9 9 .

H a b e r m e h l , M . A . , 1 9 8 0 . T h e G r e a t A r t e s i a n B a sin , A u s t r a l ia , B M R J . A u s t . G e o l . G e o p h y s . ,

5 : 9-38.

8/13/2019 Geochemistry of Ground Waters From the Great Artesian Basin, Australia

http://slidepdf.com/reader/full/geochemistry-of-ground-waters-from-the-great-artesian-basin-australia 21/21

GREAT ARTESIANBASINGEOCHEMISTR~ 245

H a b e r m e h l , M . A . , 1 9 8 6. R e g i o n a l g r o u n d w a t e r m o v e m e n t , h y d r o c h e m i s t r y a n d h y d r o c a r b o n

m i g r a t i o n i n t h e E r o m a n g a B a s i n . G e o l . S o c . A u s t . S p e c . P u b l . N o . 1 2 , p p . 3 5 3 - 3 7 6 .

H e l g e s o n , H . C . , D e l a n e y , J . M . , N e s b i t t , H . W . a n d B i r d , D . K . , 1 9 7 8. S u m m a r y a n d c r i t iq u e o f

t h e t h e r m o d y n a m i c p r o p e r t i e s o f r o c k - f o r m i n g m i n e r a ls . A m . J . S ci ., 2 7 8 - A : 2 30 .

K i s s , E . , 1 98 2. D e t e r m i n a t i o n o f s i li c a i n g e o l o g i c a l m a t e r i a l s u s in g a t o m i c a b s o r p t i o n s p e c t r o -

p h o t o m e t r y . A n a l . C h i m . A c t a , 1 4 0 : 1 9 7 -2 04 .K l a s s , D . L . , 1 9 8 4 . M e t h a n e f r o m a n a e r o b i c f e r m e n t a t i o n . S c i e n c e , 2 2 3: 1 0 2 1 - 1 02 8 .

N e s b i t t , H . W . , 1 9 7 7 , E s t i m a t i o n o f th e t h e r m o d y n a m i c p r o p e r t i e s o f N a - , Ca-, a n d M g -

b e i d e l l i t e s . C a n . M i n e r a l . , 1 5 : 2 2 - 3 0 .

P a r k h u r s t , D . L . , P l u m m e t , L . N . a n d T h o r s t e n s o n , D.C. , 1 9 80 . P H R E E Q E - - A c o m p u t e r

p r o g r a m t b r g e o c h e m i c a l c a l c u l a ti o n s . U . S . G e o l . S u r v . W a t e r R e s o u r . I n v e st . 8 0- 9 6 ,

210 pp .

P l u m m e t , L . N . , P a r k h u r s t , D . L . a n d T h o r s l e n s o n , D . C , , 1 9 8 3 . D e v e l o p m e n t o f r e a c t i o n

m o d e l s f o r g r o u n d - w a t e r s y st e m s . G e o c h i m . C o s m o c h i m . A c t a , 4 7 : 6 6 5 - 6 8 5 .

S a l a m o n s , W . a n d M o o k , W . G . , 1 9 8 6 . I s o t o p e g e o c h e m i s t r y o f c a r b o n a t e s i n th e w e a t h e r i n g

z o n e . I n : P . F r i t z a n d J . C h . F o n t e s ( E d i t o r s ) , Han dboo k ~ [ Environm ental Isotope Geo-chemistt3' V o l . 2 , E l s e v i e r , N e w Y o r k , p p . 2 3 9 - 2 6 9 .

W h i t i c a r , M . J . , F a b e r , E . a n d S c h o e l l, M . , 1 9 8 6 . B i o g e n i c m e t h a n e f o r m a t i o n i n m a r i n e a n d

f r e s h w a t e r e n v i r o n m e n t s : C O z r e d u c t i o n v s. a c e t a t e f e r m e n t a t i o n - I s o t o p e e v i d e n c e .

G e o c h i m . C o s m o c h i m . A c t a , 5 0 : 6 9 3 - 7 0 9 .