GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003)...

14
103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS FIELD, CATALONIA, SPAIN PURA ALFONSO § and JOAN CARLES MELGAREJO Departament de Cristal•lografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona, C/ Martí Franquès s/n, E–08028 Barcelona, Spain IÑAKI YUSTA AND FRANCISCO VELASCO Departamento de Mineralogía y Petrología, Universidad del País Vasco, Apdo 644, E–48080 Bilbao, Spain ABSTRACT The Cap de Creus pegmatite field exhibits a well-defined regional zonation of four types of granitic pegmatite: barren K- feldspar-rich pegmatites (type I), beryl–columbite-subtype pegmatites (type II), beryl–columbite–phosphate-subtype pegmatites (type III) and albite-type pegmatites (type IV). There is an increase in the albite content, relative to K-feldspar, with increasing pegmatite evolution. Type-I microcline-rich pegmatites have low contents of albite, whereas in type IV, albite is the only feld- spar. The K/Rb value in K-feldspar decreases progressively from type-I to type-III pegmatites. In addition, there is a progressive enrichment in P, Rb, Cs, Y, Sr, Ga, Ce, W and Sn from type-I to type-IV pegmatites. Concentrations of Pb and Zr decrease in K- feldspar from type-I to type-III pegmatites. K-feldspar from the Cap de Creus pegmatites exhibits higher contents in Ba, Rb, Cs, Nb, Y, Sn, V and Cr than albite. Albite is richer in Sr, Zr, Cu, As, Ce and Ga. Pb, Zn, W, Co and Ni have similar affinity for K- feldspar and albite. Muscovite exhibits similar geochemical evolution to K-feldspar. These progressive trends suggest a common origin for all of the Cap de Creus pegmatites by fractionation of the same parental magma. The high P content of feldspars, up to 1.67 wt.% P 2 O 5 in K-feldspar and 1.75 wt.% in albite, indicates buildup in this element from the earliest stages of pegmatite crystallization. Trace-element variation in feldspars and muscovite reflects enrichments in the melt; a higher content correlates with characteristic minerals of these elements. In particular, the phosphorus content of albite is proposed as a useful mineralogical guide to niobium–tantalum-rich oxide mineralization. Keywords: K-feldspar, albite, muscovite, X-ray fluorescence, evolution, granitic pegmatite, Cap de Creus, Catalonia, Spain. SOMMAIRE La suite de pegmatites granitiques du Cap de Creus démontre bien une zonation régionale dans la disbtribution de quatre types de pegmatite: pegmatites stériles enrichies en feldspath potassique (type I), pegmatites du sous-type à béryl–columbite (type II), pegmatites du sous-type à béryl – columbite – phosphate (type III), et pegmatites à albite (type IV). Il y a une augmentation progressive de la teneur en albite par rapport à celle du feldspath potassique, avec le degré de fractionnement. Les pegmatites du type I, riches en microcline, ont une faible teneur en albite, tandis que dans les pegmatites de type IV, l’albite est le seul feldspath. La valeur de K/Rb du feldspath potassique diminue progressivement des pegmatites du type I à celles du type III. De plus, il y a un enrichissement progressif en P, Rb, Cs, Y, Sr, Ga, Ce, W et Sn du type I au type IV. Les concentrations de Pb et Zr diminuent dans le feldspath potassique des pegmatites du type I à celles du type III. Le feldspath potassique des pegmatites du Cap de Creus fait preuve de teneurs plus élevées en Ba, Rb, Cs, Nb, Y, Sn, V et Cr que l’albite. En revanche, l’albite est plus riche en Sr, Zr, Cu, As, Ce et Ga. Le Pb, Zn, W, Co et Ni ont un degré d’enrichissement semblable dans le feldspath potassique et l’albite. La muscovite fait preuve d’enrichissements semblables à ceux du feldspath potassique. Ces enrichissements progressifs témoigneraient d’une origine commune de toutes les venues pegmatitiques du Cap de Creus, à partir d’un même magma parental. La teneur élevée des feldspaths en P, jusqu’à 1.67% P 2 O 5 (poids) dans le feldspath potassique et 1.75% dans l’albite, témoigne d’une augmentation progressive de cet élément dans le magma depuis les stades précoces de la cristallisation. Les variations en éléments-traces dans les feldspaths et la muscovite sont le reflet d’enrichissements dans le bain fondu; une concentration accrue montre une corrélation avec les minéraux caractéristiques de ces éléments. En particulier, la teneur en phosphore de l’albite serait un indicateur utile d’une minéralisation en oxydes de niobium–tantale. (Traduit par la Rédaction) Mots-clés: feldspath potassique, albite, muscovite, fluorescence X, évolution, pegmatite granitique, Cap de Creus, Catalogne, Espagne. § E-mail address: [email protected]

Transcript of GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003)...

Page 1: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

103

The Canadian MineralogistVol. 41, pp. 103-116 (2003)

GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITEFROM THE CAP DE CREUS FIELD, CATALONIA, SPAIN

PURA ALFONSO§ and JOAN CARLES MELGAREJO

Departament de Cristal•lografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona,C/ Martí Franquès s/n, E–08028 Barcelona, Spain

IÑAKI YUSTA AND FRANCISCO VELASCO

Departamento de Mineralogía y Petrología, Universidad del País Vasco, Apdo 644, E–48080 Bilbao, Spain

ABSTRACT

The Cap de Creus pegmatite field exhibits a well-defined regional zonation of four types of granitic pegmatite: barren K-feldspar-rich pegmatites (type I), beryl–columbite-subtype pegmatites (type II), beryl–columbite–phosphate-subtype pegmatites(type III) and albite-type pegmatites (type IV). There is an increase in the albite content, relative to K-feldspar, with increasingpegmatite evolution. Type-I microcline-rich pegmatites have low contents of albite, whereas in type IV, albite is the only feld-spar. The K/Rb value in K-feldspar decreases progressively from type-I to type-III pegmatites. In addition, there is a progressiveenrichment in P, Rb, Cs, Y, Sr, Ga, Ce, W and Sn from type-I to type-IV pegmatites. Concentrations of Pb and Zr decrease in K-feldspar from type-I to type-III pegmatites. K-feldspar from the Cap de Creus pegmatites exhibits higher contents in Ba, Rb, Cs,Nb, Y, Sn, V and Cr than albite. Albite is richer in Sr, Zr, Cu, As, Ce and Ga. Pb, Zn, W, Co and Ni have similar affinity for K-feldspar and albite. Muscovite exhibits similar geochemical evolution to K-feldspar. These progressive trends suggest a commonorigin for all of the Cap de Creus pegmatites by fractionation of the same parental magma. The high P content of feldspars, up to1.67 wt.% P2O5 in K-feldspar and 1.75 wt.% in albite, indicates buildup in this element from the earliest stages of pegmatitecrystallization. Trace-element variation in feldspars and muscovite reflects enrichments in the melt; a higher content correlateswith characteristic minerals of these elements. In particular, the phosphorus content of albite is proposed as a useful mineralogicalguide to niobium–tantalum-rich oxide mineralization.

Keywords: K-feldspar, albite, muscovite, X-ray fluorescence, evolution, granitic pegmatite, Cap de Creus, Catalonia, Spain.

SOMMAIRE

La suite de pegmatites granitiques du Cap de Creus démontre bien une zonation régionale dans la disbtribution de quatre typesde pegmatite: pegmatites stériles enrichies en feldspath potassique (type I), pegmatites du sous-type à béryl–columbite (type II),pegmatites du sous-type à béryl – columbite – phosphate (type III), et pegmatites à albite (type IV). Il y a une augmentationprogressive de la teneur en albite par rapport à celle du feldspath potassique, avec le degré de fractionnement. Les pegmatites dutype I, riches en microcline, ont une faible teneur en albite, tandis que dans les pegmatites de type IV, l’albite est le seul feldspath.La valeur de K/Rb du feldspath potassique diminue progressivement des pegmatites du type I à celles du type III. De plus, il y aun enrichissement progressif en P, Rb, Cs, Y, Sr, Ga, Ce, W et Sn du type I au type IV. Les concentrations de Pb et Zr diminuentdans le feldspath potassique des pegmatites du type I à celles du type III. Le feldspath potassique des pegmatites du Cap de Creusfait preuve de teneurs plus élevées en Ba, Rb, Cs, Nb, Y, Sn, V et Cr que l’albite. En revanche, l’albite est plus riche en Sr, Zr, Cu,As, Ce et Ga. Le Pb, Zn, W, Co et Ni ont un degré d’enrichissement semblable dans le feldspath potassique et l’albite. Lamuscovite fait preuve d’enrichissements semblables à ceux du feldspath potassique. Ces enrichissements progressifstémoigneraient d’une origine commune de toutes les venues pegmatitiques du Cap de Creus, à partir d’un même magma parental.La teneur élevée des feldspaths en P, jusqu’à 1.67% P2O5 (poids) dans le feldspath potassique et 1.75% dans l’albite, témoigned’une augmentation progressive de cet élément dans le magma depuis les stades précoces de la cristallisation. Les variations enéléments-traces dans les feldspaths et la muscovite sont le reflet d’enrichissements dans le bain fondu; une concentration accruemontre une corrélation avec les minéraux caractéristiques de ces éléments. En particulier, la teneur en phosphore de l’albite seraitun indicateur utile d’une minéralisation en oxydes de niobium–tantale.

(Traduit par la Rédaction)

Mots-clés: feldspath potassique, albite, muscovite, fluorescence X, évolution, pegmatite granitique, Cap de Creus, Catalogne,Espagne.

§ E-mail address: [email protected]

103 vol 41#1 février 03 - 09 3/24/03, 10:42103

Page 2: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

104 THE CANADIAN MINERALOGIST

INTRODUCTION

The compositional attributes of feldspars and micascan provide valuable information on the petrogeneticevolution of granitic pegmatites (Trueman & Cerny1982, Legg & Namateba 1982, Cerny 1989, 1994). Inparticular, these attributes can help to determine thedegree of fractionation of the magma and the relation-ships among different pegmatites within a pegmatitefield (Shearer et al. 1985).Furthermore, the trace-ele-ment contents of feldspars and micas indicate economicpotential of pegmatites (Smeds 1992, Trumbull 1995).

In this paper, we present a geochemical study of feld-spar minerals and muscovite from representative bod-ies of pegmatites from the Cap de Creus pegmatite field,a typical regionally zoned suite that comprises four typesof pegmatite, three of which belong to the rare-elementclass of Cerny (1989). Our aim in this work is to assessthe degree of pegmatite evolution with focus upon thefeldspar minerals and muscovite.

SAMPLING AND ANALYTICAL METHODS

Samples of feldspars and muscovite were selectedin the different zones from all the pegmatite types. Theseminerals were separated manually under a binocularmicroscope (an average of 20 g per sample). They werethen crushed in a corundum mortar and treated with ni-tric, oxalic and sulfuric acids, to remove impurities suchas phosphates, Fe oxides and organic matter.

Feldspars and muscovite were analyzed by X-rayfluorescence at the “Servicio de Análisis de Mineralesy Rocas” of the Universidad del País Vasco, using anautomated Philips PW1480 sequential spectrometer.Sixty samples of K-feldspar, 58 samples of albite and76 samples of muscovite were analyzed.

Forty-two international reference samples (CertifiedReference Materials, CRM) were used to calibrate byregression the analytical lines. Correction factors wereapplied for line overlaps and matrix effects. Coefficientsof variation for major and minor elements are usuallybelow 1%, with a detection limit for most trace elementson the order of 2 to 5 ppm. Concentrations of the majorelements (Si, Al, Ti, Fe, Mg, Mn, Ca, K, and P) and themajority of trace elements were established using fusedbeads, whereas pressed powder pellets were used for Cs,Y and Nb determinations. Sample-preparation proce-dures were described by Yusta et al. (1994).

Owing to the low content of albite from microcline-rich pegmatites and to compare the composition of pairsof feldspars, some additional analyses of albite fromthese pegmatites were performed with an electron mi-croprobe. Albite – K-feldspar pairs were also analyzedto establish their trace-element content. We used aCAMECA SX50 electron microprobe from the ServeisCientifico Tècnics de la Universitat de Barcelona. Theanalyses were conducted at an accelerating voltage of

15 kV and an intensity of 10 nA. The following stan-dards and lines were used: orthoclase (SiK�, AlK�,KK�), rutile (TiK�), hematite (FeK�), rhodonite(MnK�), periclase (MgK�), wollastonite (CaK�), albite(NaK�), and apatite (PK�).

GEOLOGICAL SETTING

The Cap de Creus area of northeastern Spain consti-tutes the Hercynian basement at the eastern end of thePyrenees (Fig. 1). The Paleozoic series consists of a2000-m-thick pelitic sequence with minor limestone,felsic volcanic rocks and coarser sedimentary rocks.This sequence has been affected by two main phases ofHercynian deformation. Phase one produced the mainfoliation, and the succeeding episode of deformationinduced folding that ended with the development ofNW–SE-trending shear bands (Carreras & Casas 1987).A low-pressure, high-temperature regional metamor-phism, which increases from a chlorite–muscovite zonein the south to cordierite–andalusite, sillimanite–mus-covite and K-feldspar – sillimanite zones in the north,with isograds trending northwest, occurred between thetwo episodes of deformation.

The intrusive rocks in the Cap de Creus area consistof pre-Hercynian porphyritic granites and two types ofHercynian granitic rocks: (1) small bodies of syntectonicleucogranites to quartz gabbros related to the northernmigmatite zone (Carreras et al. 1975, Carreras &Druguet 1994), and (2) the late Roses and Rodes grano-diorites and quartz diorite stocks, emplaced withinlower-grade rocks in the south and southwest.

FOUR TYPES OF PEGMATITE

Four types of granitic pegmatites have been estab-lished according to internal structure and mineralogicalcriteria (Corbella 1990, Corbella & Melgarejo 1993).Detailed descriptions of their internal structure and min-eralogy are reported in Corbella & Melgarejo (1993) andAlfonso et al. (1995), and a synthesis of these featuresis presented in Table 1.

The pegmatites are syntectonic, and many of themare folded or display minor structures related to fold-ing, such as boudinage and a pinch-and-swell structure.In some pegmatites of type I, a late episode of crystalgrowth occurs in the necking zones associated with theboudins.

The distribution of the different types of pegmatitesand the mineralogical and geochemical data suggest thatall these pegmatites were formed by efficient fraction-ation operating from a single petrogenetic source(Corbella & Melgarejo 1993, Alfonso 1995). Moreover,in the Albera pegmatite field, 50 km to the northwest ofCap de Creus, similar types of pegmatite are zonallyarranged around a leucogranite intrusion (Malló et al.1995).

103 vol 41#1 février 03 - 09 3/24/03, 10:42104

Page 3: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE, CAP DE CREUS FIELD 105

The most striking geochemical variations from type-I to type-IV pegmatites are: (1) increase of albitizationand replacement phenomena, (2) increase in the con-centrations of P and Li minerals, and (3) increase in theratios Ta/(Ta + Nb) and Mn/(Fe + Mn) in columbite–tantalite minerals (Alfonso et al. 1995).

RESULTS

K-feldspar

The composition of K-feldspar from three types ofpegmatite is presented in Table 2 (K-feldspar is absentfrom type-IV pegmatites). Systematic chemical varia-tions among the feldspars from the different zones intoa pegmatite body are absent. Hence, we will only con-sider the variations among the different types of peg-matite. The orthoclase component of the bulk K-feldsparranges between Or63 and Or79 in type-I, Or71 to Or78 intype-II, and Or74 to Or98 in type-III pegmatites. In gen-eral, the K-feldspar from type-I and type-II pegmatiteshas a higher sodium content than that in type-IIIpegmatites (Fig. 2).

Some trace elements have long been used as indica-tors of the pegmatite evolution. Among them, those in-volving substitution in the alkali site (Rb, Cs, Sr, Ba,Pb) are the most thoroughly investigated.

The K/Rb in K-feldspar constitutes a good indicatorof a pegmatite body’s evolution (Cerny et al. 1985). TheK/Rb ratio ranges between 140 and 467 for type-Ipegmatites (the higher values were obtained in feldsparsfrom the late-necking zones), 88 to 264 for type-IIpegmatites, and 23 to 59 for type-III pegmatites (exclu-sive of two samples, in which the values are 177 and284). The content of most trace elements in K-feldsparfrom the Cap de Creus pegmatites correlates negativelywith this ratio.

K-feldspar from Cap de Creus pegmatites exhibits amarked Rb enrichment in the progression from type-Ito type-III pegmatites. The rubidium content in type-Iand type-II pegmatites is low, up to 667 and 1065 ppm,respectively, but up to 3729 ppm in type-III pegmatites.Those values are typical of K-feldspar from otherevolved pegmatite bodies (Cerny et al. 1985, Neiva1995).

The K/Rb versus Cs plot is commonly used as anindicator of the pegmatite evolution (Gordiyenko 1971,Cerny et al. 1985). At Cap de Creus, cesium increasesfrom type-I to type-III pegmatites (Fig. 3a), although itis not very abundant. Nevertheless, in type-IIIpegmatites, it attains a maximum of 125 ppm. Such Csvalues are typical of modestly evolved pegmatites(Cerny 1994). Similar Cs contents have been docu-mented by Kontak & Martin (1997) in pegmatites from

FIG. 1. Pegmatite distribution in the Cap de Creus Peninsula: 1) pegmatite bodies, 2) area with type-I barren pegmatites, 3) areawith type-II transitional pegmatites, beryl–columbite subtype, 4) area with type-III beryl–columbite–phosphate pegmatites,5) area with type-IV albite pegmatites. The metamorphic isograds are also shown. Modified from Carreras et al. (1975).

103 vol 41#1 février 03 - 09 3/24/03, 10:42105

Page 4: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

106 THE CANADIAN MINERALOGIST

TA

BL

E 1

.M

AIN

CH

AR

AC

TE

RIS

TIC

S O

F T

HE

FO

UR

TY

PES

OF

PEG

MA

TIT

E F

RO

M T

HE

CA

P D

E C

RE

US

FIE

LD

Sym

bols

: Qtz

: qua

rtz,

Kfs

: K-f

elds

par,

Ab:

alb

ite, P

l: pl

agio

clas

e, B

t: bi

otite

, Ms:

mus

covi

te, T

ur, t

ourm

alin

e, G

rt, g

arne

t.

103 vol 41#1 février 03 - 09 3/24/03, 10:42106

Page 5: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE, CAP DE CREUS FIELD 107

Nova Scotia, Canada, and by Tindle et al. (2002) inberyl-type and some complex-type pegmatites of theSeparation Lake area of northwestern Ontario.

Strontium exhibits the same behavior as Rb. Theratio Rb/Sr correlates negatively with K/Rb (Fig. 3b),except in some samples of type-III pegmatites, whichhave very high Sr content. These high values are usu-ally encountered in non-evolved granitic pegmatites. Forexample, in the pegmatitic granite of Cross Lake,Manitoba, K-feldspar contains between 10 and 290 ppmof Sr (Cerny et al. 1985), whereas in highly evolvedpegmatites, the Sr contents are lower, as in most samplesfrom the Cap de Creus pegmatites. In many other peg-matite fields, strontium in K-feldspar has a negative

correlation with rubidium (Abad Ortega et al. 1993,Kontak & Martin 1997).

Barium does not exhibit any meaningful variationrelated to the evolution. Barium content is commonlyused as indicator of the evolution in granites andpegmatites (Mehnert & Büsch 1981), and decreases withadvancing fractionation (Cerny et al. 1985, Roda et al.1999, Morteani et al. 2000). Nevertheless, in the Capde Creus pegmatites, Ba content does not seem relatedto the degree of evolution.

The Pb content in K-feldspar decreases with the evo-lution of the pegmatites (Fig. 3c). This trend is also re-ported in other pegmatite fields (Kontak & Martin1997), and even a single pegmatite body (Cerny & Burt1984).

103 vol 41#1 février 03 - 09 3/24/03, 10:42107

Page 6: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

108 THE CANADIAN MINERALOGIST

The role of other elements, such as zirconium, rare-earth elements, zinc and tin, is not clear. Zirconiumoccurs in small amounts; it is unclear if this elementoccur in the feldspar structure or as small inclusions ofzircon.

The Y content of K-feldspar shows a good correla-tion with the Rb content. Yttrium increases from type-Ito type-III pegmatites (Fig. 3d). This increase of yttriumis accompanied with the occurrence of Y-rich minerals,as aeschynite-(Y) and fergusonite-(Y) (Alfonso 1995).Cerium and lanthanum also increase with the pegmatiteevolution, in a way similar to Rb.

The zinc content increases with the degree of evolu-tion of the pegmatite. The tin content of K-feldspar fromthese pegmatites is uniform, although the richestsamples belong to the latest stages of the pegmatite crys-tallization, where cassiterite and other Sn-rich mineralsare formed (Alfonso 1995, Alfonso et al. 1995), andtherefore contamination by inclusions of these mineralscould be suspected.

Other possible substitutions in the K-feldspar in-volve the T sites: phosphorus and gallium, and prob-ably arsenic. Phosphorus is incorporated in feldspars in

tetrahedral coordination by substitution for Si (AlPSi–2:London et al. 1990). K-feldspar from Cap de Creuspegmatites has a high P content, up to 1.09 wt.% P2O5in type-I pegmatite. In type II, it is generally ≤0.85 wt.%,and in type III, from 0.13 to 1.67 wt.% P2O5. Thoughsomewhat erratic, the phosphorus content increases withpegmatite evolution (Fig. 3e). These are among thehighest contents in feldspars documented from anyknown pegmatite field. As a comparison, K-feldspar ofberyl–columbite pegmatites from Yellowknife containsup to 0.65 wt.% of P2O5 and up to 0.70 wt.% of P2O5 inberyl–columbite–phosphate pegmatites; K-feldsparfrom the Cross Lake (Manitoba) granitic pegmatitesreaches up to 1.2% (London et al. 1990).

The amount of gallium exhibits a negative correla-tion with K/Rb (Fig. 3f). A similar correlation has beenobserved in other pegmatite fields (Cerny et al. 1985).The amount of arsenic correlates positively with ru-bidium.

Plagioclase

The plagioclase present in the four types ofpegmatites is albite, except for one sample of oligoclase(An15) in type-I pegmatites. Usually, the anorthite com-ponent of the plagioclase decreases with the degree ofevolution of the pegmatite.

The chemical composition of plagioclase from theCap de Creus pegmatite in Tables 2 and 3 reveals thatP2O5 increases with the degree of evolution (up to 0.15wt.% in type-I pegmatites, up to 1.00 wt.% in type-II,

FIG. 2. Or–Ab–An diagram showing the composition of thefeldspars from the Cap de Creus pegmatites. Open dia-monds: type- I pegmatites, open squares: type-II peg-matites, and triangles: type-III pegmatites. Circles: ?

103 vol 41#1 février 03 - 09 3/24/03, 10:42108

Page 7: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE, CAP DE CREUS FIELD 109

1.39 wt.% in type-III and up to 1.75 wt.% in type-IVpegmatites). These values are significantly higher thanthose in the literature (Kontak et al. 1996). In type-Ipegmatites, apatite is rare, and the only phosphatepresent. The P2O5 – CaO plot indicates that these com-

ponents evolve in an opposite sense (London et al.1990). In the presence of Ca and P, apatite is formedpreferentially. In the presence of only one of these com-ponents, the other, Ca or P, goes to form part of the feld-spars.

FIG. 3. K/Rb versus a) Cs, b) Sr, c) Pb, d) Y, e) P2O5, and f) Ga in K-feldspar from the Cap de Creus pegmatites. Opendiamonds: type-I pegmatites, filled squares: type-II pegmatites. and open triangles: type-III pegmatites.

103 vol 41#1 février 03 - 09 3/24/03, 10:42109

Page 8: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

110 THE CANADIAN MINERALOGIST

Plagioclase contains only small amounts of the traceelements mentioned above, presumably because of thesmall size of the Na+ (Cerny 1994). In general, there isno direct relation between the trace-element content ofplagioclase and the type of pegmatite. Nevertheless, thecontent of Rb, Sr and Ba is higher in type-III and -IVpegmatites relative to type-I and -II pegmatites. The Rbcontent in albite is up to 42 ppm in type-I pegmatitesand up to 241 ppm in type-IV, and Sr is between 23 and107 ppm in type-I and type-II pegmatites, and up to204 ppm in type-III pegmatites. The barium content issimilar in all the pegmatite types, but the highest valuesare found in type-IV pegmatites (up to 91 ppm).

Other elements, such as Cs (up to 24 ppm), Ga (1–48 ppm) and Ce (1–102 ppm), do not exhibit a markedvariation with pegmatite type. Zirconium is mostly be-

low 190 ppm, and exceptionally can reach 400 ppm.These peaks may well be related to inclusions of zircon.

The contents of yttrium and tin are practically negli-gible in albite, in spite of the fact that in many cases thealbite is associated with cassiterite and REE-bearingminerals. Therefore, the higher yttrium and tin contentsin K-feldspar coexisting with albite suggest that theseelements can be accommodated in the K-feldspar struc-ture.

Muscovite

The chemical composition of the muscovite from theCap de Creus pegmatites is given in Table 4. Theinterlayer-cation (I-site) occupancy is not complete,with values between 1.57 and 2.00, median of 1.80,

103 vol 41#1 février 03 - 09 3/24/03, 10:42110

Page 9: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE, CAP DE CREUS FIELD 111

owing to a low K content. K2O usually is below 9.8wt.%, at least 1 wt.% lower than in muscovite from otherpegmatite occurrences (Jolliff et al. 1992, Roda et al.1995). The same result was reported in muscovite fromthe McAllister Sn–Ta-bearing pegmatite, Alabama, byFoord & Cook (1989), who attributed this content tonear-surface weathering and leaching.

Muscovite from all the Cap de Creus pegmatitesexhibits a relatively high proportion of the paragonitecomponent (Fig. 4), in comparison with that from otherpegmatites. Type-I and type-II pegmatites have similarparagonite contents, between 6.7 and 13.8 mol.%. Mus-covite from some of type-III pegmatites also exhibits asimilar range, but muscovite from the later episodes(quartz–muscovite veins) has higher values, up to22.9%. The muscovite in type-IV pegmatites has thehighest paragonite component, common values beingbetween 15.9 and 19.4%. This tendency for sodium en-richment in muscovite is consistent with the geochemi-cal trend in the pegmatite field, and correlates with theincrease in the albite content of the pegmatites. On theother hand, these contents are higher than those expectedfor pegmatites (Zane & Rizzo 1999). The paragonitecomponent of micas from Black Hills pegmatites islower; it ranges from 2.5 to 11 mol.% (Jolliff et al.1987). However, Cerny & Burt (1984) also indicatedsimilar high values in the paragonite component for themica pegmatites from the north of Karelia.

The celadonite component of the Cap de Creus mus-covite is very low, in agreement with the general com-position of muscovite in granite pegmatites (Zane &Rizzo 1999). There is a decreasing trend with advanc-ing pegmatite evolution.

Certain trace-element contents in muscovite exhibita progressive geochemical evolution from type-I totype-IV pegmatites. The K/Rb versus Cs in muscovite

is the best indicator of the pegmatite evolution (Cernyet al. 1985, Jolliff et al. 1987, Cerny 1991). In the Capde Creus pegmatites, there is a progressive enrichmentin rubidium from type-I (up to 4600 ppm) to type-IVpegmatites (up to 14000 ppm). Similarly, cesium in-creases, and is especially notable in type-IV pegmatites,with up to 1360 ppm (Fig. 5a).

Barium exhibits a broad range of values in thesepegmatites, without a strong correlation with pegmatitetype, although the less evolved pegmatites usually havehigher Ba contents, as expected according to Cerny &Burt (1984).

The Y content of muscovite shows a good negativecorrelation respect to the K/Rb (Fig. 5b). There is anincrease in Y in these pegmatites with degree of evolu-tion. This enrichment in yttrium is probably due to in-clusions of Y-rich rare-earth-bearing minerals.

The tin content of muscovite has a negative correla-tion with K/Rb; the highest values belong to the mostevolved pegmatites (Fig. 5c). In addition, type-IVpegmatites exhibit the highest tin contents in the quartz–muscovite veins relative to the zones formed earlier. Snreaches up to 1350 ppm. According to Smeds (1992),the tin content of micas is an indicator of cassiterite,with the upper limit in his study being 600 ppm. In thepresent case, the increase in tin content in the quartz–muscovite veins is accompanied by the occurrence ofhigher proportions of tin-rich minerals, such as cassiter-ite and nigerite. This tin content of 1350 ppm is one ofthe highest reported in literature for muscovite frompegmatites (Jolliff et al. 1992, Roda et al. 1995, Wise1995), and from the Panasqueira Sn–W deposits fromPortugal (Neiva 1987).

Tungsten shows a positive correlation with K/Rb(Fig. 6a), with muscovite in type-I pegmatites being therichest in W (10–132 ppm), whereas that in type-IV

FIG. 4. Muscovite – paragonite – celadonite diagram showing the composition of musco-vite from the Cap de Creus suite of pegmatites.

103 vol 41#1 février 03 - 09 3/24/03, 10:42111

Page 10: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

112 THE CANADIAN MINERALOGIST

pegmatites is the poorest (up to 22 ppm). The titaniumcontent also shows a positive correlation with the K/Rb(Fig. 6b). Zinc does not exhibit a strong correlation with

K/Rb, although the highest values belong to the mostevolved pegmatites.

According to the data of Corbella (1990), the lithiumcontents of muscovite are invariably lower than 300ppm, and the variation among the different types of peg-matite is not significant. Fluorine content has no directrelation with the pegmatite type, although the highestcontents are in type-III pegmatites. Lithium and fluo-rine can be incorporated in three different mineralassociations in pegmatites: anhydrous Al-silicates, phos-phates and Li- and F-rich micas. The incorporation inone or the other will depend on the absolute and relativeactivities of PO4

3–, F, H+, Na+ and K+ (Cerny et al.1985). In the Cap de Creus pegmatites, the PO4

3– activ-ity is very high, as demonstrated by the high content ofphosphate minerals (Corbella & Melgarejo 1993,Alfonso et al. 1996) and the high content in feldspars.In such specialized pegmatites, lithium is incorporated

FIG. 5. K/Rb versus a) Cs, b) Y, and c) Sn in muscovite fromthe Cap de Creus pegmatites.

FIG. 6. K/Rb versus a) W, and b) Ti in muscovite from theCap de Creus pegmatites.

103 vol 41#1 février 03 - 09 3/24/03, 10:42112

Page 11: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE, CAP DE CREUS FIELD 113

preferentially in phosphates (mainly of the amblygo-nite–montebrasite series) relative to lithium aluminosili-cates such as spodumene and petalite.

Niobium content shows no correlation with K/Rb;values are higher than data reported in other examplesof muscovite, as in lithian muscovite from spodumene-bearing pegmatites (Wise 1995).

FRACTIONATION OF COMPONENTS

K-feldspar – albite

K-feldspar from the Cap de Creus pegmatites exhib-its higher contents of Ba, Rb, Cs, Y, Sn, Nb, V and Crthan albite. Albite is richer in Sr, Cu, As, Ce and Ga(Table 2, Fig. 7). Other elements, usually present inlower concentrations, have a comparable affinity for K-feldspar and albite: Hf, Pb, Zn, W, Co and Ni. Theseresults are similar to those of Neiva (1995) in the gra-nitic aplites and pegmatites from Alijó–Sanfins, Portu-gal, except for Sr, Pb and Ga.

Phosphorus contents are similar in K-feldspar andin albite, contrary to the results of London et al. (1990).Nevertheless, where they coexist (Table 3), the amountof phosphorus generally is slightly higher in K-feldsparthan in albite.

K-feldspar – muscovite

Figure 8 shows the evolution of the content of theelements in muscovite and K-feldspar that best repre-sent the geochemical evolution among the differenttypes of pegmatite. These trace elements are more abun-dant in the structure of muscovite than in K-feldspar.Whereas the rubidium content in the K-feldspar of theCap de Creus pegmatites has a maximum of 3729 ppm,that in muscovite is much higher, up to 9587 ppm intype-III pegmatites and 13,996 ppm in type-IV peg-matites. Similarly, cesium, in the same type of pegma-tite, is about five times higher in muscovite than inK-feldspar. This trend is also followed by Y, Co, Cu,Nb, Zn and Sn. Similar results have been reported bymany authors, e.g., Cerny & Lenton (1995) in rare-ele-ment pegmatites of the complex type, petalite subtypein the Bernic Lake pegmatite group, Cat Lake –Winnipeg River field, Manitoba, and Morteani et al.(1995), in granitic pegmatites from the Achala graniticcomplex, Argentina.

Strontium is one of the few elements that exhibits agreater affinity for feldspar than for muscovite.

In some cases, these trace-element contents can bepartly justified by the later formation of muscovite withrespect to K-feldspar. The latest units to be formed, suchas the quartz–muscovite veins, lack K-feldspar, and arethe richest in Rb, Cs and Sn. Nevertheless, this fact can-not justify all the difference in the trace-element con-tents between K-feldspar and muscovite. The differentlevel of acceptance of trace elements between K-feld-

FIG. 7. Comparison of some trace-element contents betweenK-feldspar and albite from the Cap de Creus pegmatites.Filled diamonds: K-feldspar (from type I, II and IIIpegmatites), open circles: albite from type-I, -II and -IIIpegmatites, and crosses: albite from type-IV pegmatites.

103 vol 41#1 février 03 - 09 3/24/03, 10:42113

Page 12: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

114 THE CANADIAN MINERALOGIST

spar and muscovite may be related to the structure ofthese minerals. Cerny et al. (1985) advanced this inter-pretation to explain the higher content in some traceelements in white mica, and especially lepidolite, com-pared to K-feldspar.

For some elements, such as Rb, Cs, Ba and Sr, thepartition coefficients between feldspars and melt andmuscovite and melt are well known (Icenhower & Lon-don 1995, 1996). The partition coefficients betweenmuscovite and melt for Rb, Cs and Ba are higher thanthose between K-feldspar and melt, whereas those co-efficients for Sr are higher in K-feldspar than in musco-vite. These data are in accordance to the distribution ofthese elements observed in feldspars and muscovitefrom the Cap de Creus pegmatites.

CONCLUSIONS

The chemical composition of feldspars and micas israther homogeneous throughout all the zones of a singlebody of pegmatite. This fact may be a consequence ofsubsolidus re-equilibration phenomena.

There is a progressive increase in the level of P, Rb,Cs, Y, Sr, Ga, Ce, W and Sn in K-feldspar from type-Ito type-III pegmatites. Concentrations of Pb and Zr de-

crease in K-feldspar from type-I to type-III pegmatites.In albite, there is no correlation between the concentra-tion of most trace elements and pegmatite type. This factmay reflect the overlap among the different generationsof this mineral.

The high P content of feldspars indicates high levelsof concentration of this element in the melt from theearliest stages of pegmatite crystallization. This factagrees with the continuous crystallization of primaryphosphate minerals in the pegmatite sequence. The con-tent of the other trace elements in the feldspars reflectstheir buildup in the pegmatite-forming melt. A highercontent is usually correlated with the occurrence of char-acteristic minerals of these elements. Thus, the feldsparsare useful indicators for mineral exploration of com-modities such as tantalum and cesium. Moreover, thehigh P content in albite in phosphate-enrichedpegmatites is inherited from the replaced K-feldspar andcan be used as a criterion for late metasomatic processesin pegmatites. Since these processes are linked with Nb–Ta enrichment, the P content in albite can be used as anadditional criterion for rare-element mineral explora-tion.

Muscovite from the Cap de Creus pegmatites exhib-its a progressive geochemical evolution from type-I to

FIG. 8. Distribution of K/Rb, Cs (ppm), Y (ppm) and P2O5 (wt.%) in K-feldspar and muscovite from the Cap de Creus suite ofpegmatites. In each plot, the central box depicts data between the 25th (Q1) and 75th (Q3) percentiles; the stars stand forextreme outliers (values ≥ Q3 + 3 IQR), and the dots, for mild outliers (Q3 + 1.5 IQR ≤ xi ≤ Q3 + 3 IQR); IQR = InterQuartileRange.

103 vol 41#1 février 03 - 09 3/24/03, 10:42114

Page 13: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE, CAP DE CREUS FIELD 115

type-IV pegmatites. There is a progressive enrichmentin Rb, Cs and Y from type-I to type-IV pegmatites. Thehighest Zn and Sn contents in muscovite belong topegmatites of type III and type IV. The content of Whas a positive correlation with the K/Rb ratio.

The paragonite component (9.3–22.0%) increaseswith the evolution, and correlates with the increase inthe albite content of the pegmatites. The celadonite com-ponent is very low.

The progressive geochemical trend in feldspars andmuscovite from the Cap de Creus pegmatites suggests agenetic linkage by fractionation of a common parentalmagma.

ACKNOWLEDGEMENTS

This work was sponsored by the CICYT Spanishproject GEO89–0830. J. García-Veigas and X. Llovetperformed the electron-microprobe analyses. We ac-knowledge the reviews of F.J. Breaks, an anonymousreferee and Associate Editor D.J. Kontak, which helpedto improve the manuscript.

REFERENCES

ABAD ORTEGA, M.M., FENOLL HACH-ALÍ, P., MARTÍN RAMOS,J.D. & ORTEGA HUERTAS, M. (1993): The feldspars fromSierra Albarrana granitic pegmatites, Córdoba, Spain. Can.Mineral. 31, 185-202.

ALFONSO, P. (1995): Aproximación a la petrogénesis de laspegmatitas del Cap de Creus. Ph.D. thesis, Universitat deBarcelona, Barcelona, Spain.

________, CORBELLA, M. & MELGAREJO, J.C. (1995): Nb–Ta-minerals from the Cap de Creus pegmatite field, easternPyrenees: distribution and geochemical trends. Mineral.Petrol. 55, 53-69.

________, VELASCO, F., YUSTA, I. & MELGAREJO, J.C. (1996):Geoquímica de feldespatos y moscovita del Cap de Creus.Geogaceta 20, 700-702.

CARRERAS, J. & CASAS, J.M. (1987): On folding and shear zonedevelopment: a mesoscale structural study on the transitionbetween two different tectonic styles. Tectonophys. 135,87-98.

________ & DRUGUET, E. (1994): Structural zonation as a re-sult of inhomogeneous non-coaxial deformation and itscontrol on syntectonic intrusions: an example from the Capde Creus area (eastern-Pyrenees). J. Struct. Geol. 16, 1525-1534.

________, ORTA, J.M. & SAN MIGUEL, A. (1975): El áreapegmatítica del litoral N. de la península del Cap de Creusy su contexto metamórfico y estructural. Inst. Invest. Geol.,Univ. Barcelona 30, 11-34.

CERNY, P. (1989): Characteristics of pegmatite deposits of tan-talum. In Lanthanides, Tantalum and Niobium (P. Möller,

P. Cerny, P. & F. Saupé, eds.). Springer Verlag, Berlin,Germany (195-239).

________ (1991): Rare-element granitic pegmatites. I.Anatomy and internal evolution of pegmatite deposits.Geosci. Canada 18, 49-67.

________ (1994): Evolution of feldspars in granitic pegmatites.In Feldspars and their Reactions (I. Parsons, ed.). Kluwer,Dordrecht, The Netherlands (501-540).

________ & BURT, D.M. (1984): Paragenesis, crystallo-chemical characteristics, and geochemical evolution ofmicas in granitic pegmatites. In Micas (S.W. Bailey, ed.).Rev. Mineral. 13, 257-297.

________ & LENTON, P.G. (1995): The Buck and Pegli lithiumdeposits, southeastern Manitoba; the problem of updipfractionation in subhorizontal pegmatite sheets. Econ.Geol. 90, 658-675.

________, MEINTZER, R.E. & ANDERSON, A.J. (1985): Extremefractionation in rare-element granitic pegmatites: selectedexamples of data and mechanisms. Can. Mineral. 23, 381-421.

CORBELLA, M. (1990): Estudi metal•logenètic del camppegmatític del Cap de Creus. Grad. thesis, Univ. Barce-lona, Barcelona, Spain.

________ & MELGAREJO, J.C. (1993): Rare-element pegma-tites of the Cap de Creus Peninsula, northeast Spain: a newfield of the beryl–phosphate subtype. Proc. 8th IAGODSymp. Schweizerbart’sche Verlagsbuchhandlung, Stutt-gart, Germany (295-302).

FOORD, E.E. & COOK, R.B. (1989): Mineralogy and paragenesisof the McAllister Sn–Ta-bearing pegmatite, Coosa Coun-try, Alabama. Can. Mineral. 27, 93-105.

GORDIYENKO, V.V. (1971): Concentration of Li, Rb and Cs inpotash feldspar and muscovite as criteria for assessing therare metal mineralization in granite pegmatites. Int. Geol.Rev. 13, 134-142.

ICENHOWER, J. & LONDON, D. (1995): An experimental studyof element partitioning among biotite, muscovite, and co-existing peraluminous silicic melt at 200 MPa (H2O). Am.Mineral. 80, 1229-1251.

________ & ________ (1996): Experimental partitioning ofRb, Cs, Sr and Ba between alkali feldspar and peraluminousmelt. Am. Mineral. 81, 719-734.

JOLLIFF, B.L., PAPIKE, J.J. & SHEARER, C.K. (1987): Fraction-ation trends in mica and tourmaline as indicators of pegma-tite internal evolution: Bob Ingersoll pegmatite, Black Hills,South Dakota. Geochim. Cosmochim. Acta 51, 519-534.

________, ________ & ________ (1992): Petrogenetic rela-tionships between pegmatite and granite based ongeochemistry of muscovite in pegmatite wall zones, BlackHills, South Dakota, USA. Geochim. Cosmochim. Acta 56,1915-1939.

103 vol 41#1 février 03 - 09 3/24/03, 10:42115

Page 14: GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE …103 The Canadian Mineralogist Vol. 41, pp. 103-116 (2003) GEOCHEMISTRY OF FELDSPARS AND MUSCOVITE IN GRANITIC PEGMATITE FROM THE CAP DE CREUS

116 THE CANADIAN MINERALOGIST

KONTAK, D.J. & MARTIN, R.F. (1997): Alkali feldspar in theperaluminous South Mountain batholith, Nova Scotia: traceelement data. Can. Mineral. 35, 959-977.

________, ________ & RICHARD, L. (1996): Patterns of phos-phorus enrichment in alkali feldspar, South Mountainbatholith, Nova Scotia, Canada. Eur. J. Mineral. 8, 805-824.

LEGG, C.A. & NAMATEBA, C. (1982): Regional zoning of tin–tantalum–niobium pegmatites in the Musuku area, South-ern province, Zambia. In Metallization Associated withAcid Magmatism (A.M. Evans, ed.). John Wiley & Sons,Chichester, England (181-190).

LONDON, D., CERNY, P., LOOMIS, J.L. & PAN, J.J. (1990): Phos-phorus in alkali feldspars of rare-element granitic pegma-tites. Can. Mineral. 28, 771-786.

MALLÓ, A., FONTAN, F., MELGAREJO, J.C. & MATA, J.M.(1995): The Albera zoned pegmatite field, easthernPyrenées, France. Mineral. Petrol. 55, 103-116.

MEHNERT, K.R. & BÜSCH, W. (1981): The Ba content of K-feldspar megacrysts in granites, a criterion for their forma-tion. Neues Jahrb. Mineral., Abh. 140, 221-252.

MORTEANI, G., PREINFALK, C. & HORN, A.H. (2000): Classifi-cation and mineralization potential of the pegmatites of theEastern Brazilian pegmatite province. Mineral. Deposita35, 638-655.

________, ________, SPIEGEL, W. & BONALUMI, A. (1995):The Achala granitic complex and the pegmatites of the Si-erras Panpeanas (northwest Argentina): a study of differ-entiation. Econ. Geol. 90, 636-647.

NEIVA, A.M.R. (1987): Geochemistry of white micas fromPortuguese tin and tungsten deposits. Chem. Geol. 63, 299-317.

________ (1995): Distribution of trace elements in feldsparsof granitic aplites and pegmatites from Alijo–Sanfins,northern Portugal. Mineral. Mag. 59, 35-45.

RODA, E., PESQUERA, A. & VELASCO, F. (1995): Micas of themuscovite–lepidolite series from Fregeneda pegmatites(Salamanca, Spain). Mineral. Petrol. 55, 145-157.

________, ________, ________ & FONTAN, F. (1999): Thegranitic pegmatites of the Fregeneda area (Salamanca,Spain): characteristics and petrogenesis. Mineral. Mag. 63,535-558.

SHEARER, C.K., PAPIKE, J.J. & LAUL, J.C. (1985): Chemistry ofpotassium feldspars from three zoned pegmatites, BlackHills, South Dakota: implications concerning pegmatiteevolution. Geochim. Cosmochim. Acta 49, 663-673.

SMEDS, S.A. (1992): Trace elements in potassium-feldspar andmuscovite as a guide in the prospecting for lithium- andtin-bearing pegmatites in Sweden. J. Geochem. Explor. 42,351-369.

TINDLE, A.G., BREAKS, F.W. & SELWAY, J.B. (2002): Tourma-line in petalite-subtype granitic pegmatites: evidence offractionation and contamination from Pakeagama Lake andSeparation Lake areas of northwestern Ontario, Canada.Can. Mineral. 40, 753-788.

TRUEMAN, D.L. & CERNY, P. (1982): Exploration for rare-ele-ment granitic pegmatites. In Granitic Pegmatites in Scienceand Industry (P. CERNY, ed.). Mineral. Assoc. Can., ShortCourse Handbook 8, 463-493.

TRUMBULL, R.B. (1995): Tin mineralization in the ArcheanSinceni rare element pegmatite field, Kaapvaal Craton,Swaziland. Econ. Geol. 90, 648-657.

WISE, M.A. (1995): Trace element chemistry of lithium-richmicas from rare-element granitic pegmatites. Mineral. Pet-rol. 55, 203-215.

YUSTA, I., VELASCO, F. & HERRERO, J.M. (1994): The determi-nation of major oxide and ten trace element concentrationsin fifty-eight geochemical reference samples by X-rayspectrometry (WD–FRX). Bol. Soc. Esp. Mineral. 17, 39-50.

ZANE, A. & RIZZO, G. (1999): The compositional space ofmuscovite in granitic rocks. Can. Mineral. 37, 1229-1238.

Received February 1, 2002, revised manuscript accepted De-cember 4, 2002.

103 vol 41#1 février 03 - 09 3/24/03, 10:42116