Genetic approaches to crop improvement

download Genetic approaches to crop improvement

of 14

Transcript of Genetic approaches to crop improvement

  • 8/7/2019 Genetic approaches to crop improvement

    1/14

    I dditi t icsig wld pplti, th ms ss f sis cc bt sfficitft glbl pdcti f fd fm cp plts14.Fist, th ilbility f bl ld is dcsig bcsf -sstibl fmig, sil si d dgd-ti2. Scd, th ilbility f wt f giclt willdcli1. Thid, glbl climt chgs will t ly si-sly ffct cp gwth bt will ls tht th c-sti f cltitd ld5,6. Dghts, stms, flds,ht ws d iss i s-ll pdictd t ccm fqtly, d sliity d th sil txicitis likly t b mch m pblmtic i sm s.I smi-id gis, dctis i yilds f pimycps, icldig miz, wht d ic, pdictd ith xt tw dcds7. Lstly, dmds f bi-fls ssbstitti gy scs will b icsd, dcigth ld ilbl f cltitig fd cps4.

    T cm ths pblms, w gicltl tch-lgis will b dd t s glbl fd scity,i dditi t ffts t cs wt d lds. Ipticl, cp impmts tht cf tlct imtl stsss d sil txicity, s wll shigh yild d bimss, will b qid. T chithis gl, th lci tht iflc ths tits d tb idtifid t pid dstdig f thimlcl mchisms. M, gmplsm scscyig tit-hcig llls mst b idtifid, dthi bhi i pppit gtic bckgdsd imts dcmtd. H, w fist discssstblishd d mgig ppchs tht c b sd

    t idtify th gtic cmpts ctllig dt-gs tits d th pssibility f sig ths cmp-ts f cp impmt. W th iw ctpgss th idtificti f gs lci ildi imptt qtitti tits f tw mi ctgis.Th fist f ths cs ctly idtifid gs thtctl yild. Th scd mi tht w fcs isth gtic chitct f tits ild i tlc tbitic stsss, spcilly t wt stss d sil stss.Ths stsss icld sbmgc, dght, sliityd th sil txicitis, sch s b d lmiimtxicity, ll f which xpctd t b m pblmtici th ft. W iw hw ths stdis h c-tibtd t dstdig f th dlyig bilgy,d ddss th pssibl pplicti f sch kwldgt cp impmt, icldig bdig sttgis dgtic mdificti.Th im f this riw is t p-

    id citicl iw f th ppchs ilbl dtli th ppchs tht pmis t ics ftchcs f sccss.

    Identifying useful genetic components

    Established approaches molecular genetic approaches

    and QTL mapping.Th idtificti f gs tht spsibl f imptt gicltl tits hs bmstly cdctd by tditil mlcl gtics(fwd d s gtic scs) f disct titsd byquanttatve trat lcus (QTL) mppig f cmplxtits810 (Box 1). I gl, th tditil mthds pwfl gh t l th gs tht ild

    *Laboratory of Plant CellFunction, Bioscience

    and Biotechnology Center,

    Nagoya University, Chikusa,

    Nagoya 4648601, Japan.Laboratory of Plant

    Molecular Breeding,

    Bioscience and Biotechnology

    Center, Nagoya University,

    Chikusa, Nagoya 4648601,

    Japan.

    emails:

    [email protected];

    [email protected]

    d:10.1038/nr2342

    Publshed nlne 13 May 2008

    Quantitative trait locus

    (QTL). A enetc lcus

    cntrlln a cmple trat

    (such as plant heht r ran

    yeld), whch s typcally

    affected by mre than ne

    ene and als by the

    envrnment.

    Genetic approaches to cropimprovement: responding toenvironmental and population changesShin Takeda*and Makoto Matsuoka

    Abstract | Crop production is threatened by global climate change, and recent demands

    for crops to produce bio-fuels have started to affect the worldwide supply of some of

    the most important foods. How can we support a growing human population in suchcircumstances? One potential solution is the improvement of crops to increase yield

    from both irrigated and non-irrigated lands, and to create novel varieties that are more

    tolerant to environmental stresses. Recent progress has been made in the isolation and

    functional analyses of genes controlling yield and tolerance to abiotic stresses. In

    addition, promising new methods are being developed for identifying additional genes

    and variants of interest and putting these to practical use in crop improvement.

    R E V I E W S

    444 | June 2008 | voLuMe 9 www.atur.m/rws/ts

    R E V I E W S

    mailto:[email protected]:[email protected]:[email protected]:[email protected]
  • 8/7/2019 Genetic approaches to crop improvement

    2/14

    Box 1 | Methods for identifying genes involved in specific traits

    QTL ma

    QTL mapping relies on statistical linkage analyses among quantitative

    traits of interest and genetic markers, using a population that carries

    genetic mosaics derived from parental varieties, such as second

    generation (F2) plants or recombinant inbred lines (RILs). In part a of the

    figure, parental varieties (A and B) are used for the preparation of RILsfor mapping. Segments derived from parental chromosome are

    represented by two colours (light blue and red). At each genetic locus

    (indicated by arrowheads), phenotypic variance for plants with the

    genotypes AA or BB, is scored. At a QTL, indicated by the red arrowhead,

    graphs representing phenotypic variations for AA and BB are separated,

    as shown in the bottom section of part a. It should be noted thatRILs, rather than the F2 or F3 population, are needed to evaluate

    genotype-by-environment interactions.

    Assat ma

    Association mapping, also called linkage disequilibrium (LD) mapping,

    relies on correlation between a genetic marker and a phenotype among

    collections of diverse germplasm. In part b of the figure, the principle ofassociation mapping is illustrated. Phenotypes are scored for plants that

    have also been genotyped (SNP genotypes are represented by coloured

    circles). For simplification, the plant variants shown here are homozygous

    at each locus. Association scanning is performed by comparing

    phenotypic scores respective to each haplotype. Data sets are analysed

    using statistical methods, which have been designed to deal with the

    population structure.Slt srSelection screening identifies genes that show signatures of selection.

    This approach is based on the theory th at target loci of selection show

    decreased nucleotide diversity and increased LD after strong selection,

    such as during domestication and subsequent crop improvement.

    Whereas association mapping is a trait-oriented method, selection

    screening is primarily dependent on DNA sequence polymorphism.

    In part of the figure, loci for monitoring polymorphisms arerepresented by circles, rectangles, and stars with different colours over

    a genomic region. A selected gene locus is expected to undergo loss of

    diversity after selection (arrow), whereas other loci are supposed to be

    neutral and retain high nucleotide-sequence diversity in the

    population.

    Nucleotide diversity

    Numberofplants

    AA BBSelection

    Phenotype

    Markers

    Comparison of SNP allele frequencies

    a QTL mapping

    Stress tolerant

    Stress sensitive

    SNP

    Phenotyping

    Nucleotide diversity

    c Selection screening

    b Association mapping

    F1

    RILs

    F2

    Self pollination(x 6 or more)

    A B

    R E V I E W S

    naTure revIeWS |geneTicS voLuMe 9 | June 2008 |445

    f oc uS on g loba l c h a llE n g E S

  • 8/7/2019 Genetic approaches to crop improvement

    3/14

    i pticl fcti, whs QTL mppig lsth ffcts f gtic its cmplx tits, whichicld mst gmic tits.

    Mlcl gtic ppchs ltily stight-fwd i mdl plts sch sArabidoi thalianad ic, i which gmic sqc ifmtiis ilbl d tsfmti tchiqs wll

    stblishd11,12. Miz is ls sfl f gtic stdiss pltifl scs d tls h b dlpd,icldig lg-scl cllctis f mtts (bsd chmicl mtgsis d tsps istis) fbth fwd d s gtic scs13, d sqc-ig f th ti gm hs jst b cmpltd (sblw). IA. thaliana d ic, isti lis gtd

    NIL 1 NIL 2

    Trait A > B Trait C > D Trait A > BC > D

    MAS

    F1

    a

    P1 P2

    QTL 1 QTL 1

    QTL 2QTL 2

    Elite variety

    1 3 4 5 6 7 8 9 10

    NIL-B1

    NIL-B2

    NIL-D2

    NIL-D1

    NIL-A3

    NIL-A2

    NIL-A1 NIL-C2

    NIL-C1

    2 11 122 11 12

    MAS

    Backcross

    Grain size

    Soil stress tolerance Salt tolerance

    b Grain number

    QTL analysis

    RILs

    Figure 1 | QTL yramd. a | A nearly isogenic line (NIL), carrying a QTL responsible for an advantageous trait (QTL 1)

    from parental line 1 (P1) is obtained by marker assisted selection (MAS) after backcrossing using parental line 2 (P2)

    as a recurrent parent of the first generation (F1) progeny of the parental lines. The resulting NIL (NIL 1) has a

    chromosome segment that includes QTL 1 but is otherwise identical to the P2 genetic background. QTL pyramiding is

    achieved by hybridization to another NIL (NIL 2) carrying a different advantageous QTL (QTL 2) and by subsequent

    MAS, generating a line with a combination of beneficial traits. b | Ultimate QTL pyramiding, which involves the

    introduction of multiple advantageous traits from a range of different varieties into an elite variety for which

    improvement is desirable. The map positions of loci involved in advantageous traits must be determined; this can be

    achieved by QTL analysis using different populations of recombinant inbred lines (RILs) or second generation (F2)

    variants, each of which can be derived from an elite variety crossed to another variety with the trait of interest.

    R E V I E W S

    446 | June 2008 | voLuMe 9 www.atur.m/rws/ts

    R E V I E W S

  • 8/7/2019 Genetic approaches to crop improvement

    4/14

    by th s f T-Dna (th mdifid, tsfbl Dnaf sm spcis f bcti) ilbl, i dditi tmtt libis ppd by chmicl mtgsis dtsps istis. M, systmtic tsgicppchs sig ms cDna cllctis hb bld ctly iA. thaliana d ic. F xm-pl, th fll-lgth cDna xpss (FoX)-htigsystm14,15 ils scig cllcti f tsgiclis i which fll-lgth cDnas xpssdt dm. Hw, tsgic ppchs f bthfwd gtic scs d s gtic stdis t yt pcticl i my cp spcis (sch s wht,bly d sghm), i which g miplti tch-lgis ifficit t ilbl. ath limit-ti is libl phtypig, which is still lbis,tim-csmig tsk; itis i this will bimptt f ft pgss.

    Idtifyig xistig gtic iti by QTLmppig (Box 1; Fig. 1) is imptt bcs, likmlcl gtic ppchs, this c pid bsisf cp impmt thgh ctil bdig

    ppchs810. Th fsibility f QTL mppig dpds th ilbility f gtic mks d ppltis fsggtig idiidls shwig msbl phtypic

    iti, whs psitil clig f QTL gs isfcilittd by sqc ifmti d/ physiclmp f th gm. By ths citi, ic is th ld-ig spcis mg cl cps, bcs its cmpltgm sqc is ilbl16. as th gm stctis csd btw ic d th cls, sch smiz, bly, wht d sghm17, sqc ifm-ti fm th ic gm is ls sfl f cmptimppig i ths mctylds (mct) cps.owig t ct dcs i sqcig tchlgy dgig gm sqcig pjcts, th ilbilityf fdmtl ifmti f mppig d cligis big icsd f wid g f cp plts 18,19.rctly, dft sqcig f th gm f sghmd miz hs b cmpltd (s th Phytzm, uSdptmt f egy (Doe) Jit Gm Istitt(JGI), Mizsqc, d Mizgm wb sits fdtils). Hw, g idtificti by QTL mppigi cp spcis is still chllgig, spcilly f lci c-tllig bitic stss tlc. This is ptly d t dif-ficltis i ctllig gwth cditis f my cpsi th fild. F xmpl, bcs plt spss tslt d dght stss lp with spss t lw-d high-tmpt stss20,21, chgs i hmid-

    ity d tmpt might sily ffct ths stssspss, csig isy bckgds f phtypiclti d slts tht t pdcibl.Ths, ptd lti f ch tit sig ibdlis, which is m lbis d tim csmig, isqid t bti cicig slts.

    Emerging approaches association mapping and selec-tion screens. I dditi t ths wll stblishd mp-pig mthds, tw dditil ppchs tht bsd pplti gtics d tht mk s f gticdisity h ctly mgd: ssciti mppigd slcti scs (Box 1).

    I bif, ssciti mppig lis cltibtw gtic mk d phtyp f itstmg plts tht did fm cllctis f disgmplsm9,22. Ths, lg mbs f llls c b tstd this is i ctst t QTL mppig, i which lyptl llls tstd. assciti mppig thti-clly ls llws si fi mppig th th clssiclbiptl-css ppchs, i which lg mb fsggts ft dd. This is bcs hdds thsds f gtis likly t h pssd sicth stblishmt f ssciti btw mk d likd csti lll, llwig tim f lg mbsf cmbiti ts dig misis. Sch tsbk dw ssciti btw csl it d gtic mk tht is t tightly likd t it. I ss-citi mppig, th mk dsity d xpimtldsig dtmid by likg disqilibim (LD)ptts23,24, which flct cmbiti histy ddmgphic fcts, icldig pplti histyd ibdig. usig lg mk sts, sscitimppig c pttilly b pfmd css th whl

    gm, ppch tht is ctly big widly ptt s i hm gtics25(Box 1).

    Th fsibility f gm-wid ssciti mp-pig iA. thaliana ws ctly tstd sig 95 ccs-sis26,27 i sch f sscitis with flwig timd pthg sistc, d kw gs with mjffcts ths tits (FRI,Rpm1, Rps2 dRps5) wsccssflly idtifid. Ths, whl-gm sscitimppig iA. thaliana is pwfl gh t gt list f cdidt QTLs, lthgh pplti stcti this spcis is imptt chllg i tms flimitig fls psiti slts27,28. amg cl cps,miz is mst sitbl f ssciti lysis bcs itis tcssig spcis xhibitig high cmbitit d pid dcy f LD (

  • 8/7/2019 Genetic approaches to crop improvement

    5/14

    Nearly isogenic line

    (NiL). A lne carryn an

    slated hmzyus sement

    that cntans a taret QTL f a

    parental chrmsme; ther

    than ths QTL, the lne has the

    ther parental enetc

    backrund.

    likly t s bcm m pwfl i miz (s thPz wb sit) d i ic (s th ricHpMp wbsit). Spptig this, hpltyps t th lycoene eiloncyclae (lycE) lcs h ctly b ld t bspsibl f itis i th ctt f itmi apcss i miz gis, by ssciti stdy fth cdidt gs cmbid with QTL lysis dchmicl mtgsis33.

    ath ctly dlpd mthd idtifis gsf itst by lkig f sigts f slcti3436. Thistyp f sc is bsd th thy tht lci tht hb tgts f slcti shw dcs i cltiddisity d icsd LD ft stg slcti, schs dig dmsticti d sbsqt cp imp-mt37(Box 1).Dmsticti gs c b idtifidby cmpig cltid sqc disity btw cp spcis d xtt ppltis f wild ltis s pxy f th cst spcis. F xmpl, i lg-scl slcti sc, ight gs with is fctisw idtifid s cdidts f gs tht sbjct tslcti dig dmsticti i miz35. Hw,

    t s th kwldg gid fm ths scs f cpimpmt, th tits tht ffctd by th slctdg d t b stblishd, lg with dstd-ig f th dlyig bilgy d sbsqt likglysis. M, this mthd might t b sitblf ll cp spcis. F xmpl, i slcti sci sghm, cmpllig idc f slcti wsfd f 371 lci tht hd b xmid38. I dditi,it hs b sggstd tht -tl ptts f di-sity c b csd by dmgphic fcts s wll s byslcti. Ths, th sflss f this ppch might blimitd t spcific spcis ppltis f which thdmgphic histy hs b stdid d c b tkit cct, sch s miz d A. thaliana. Filly,this mthd lis slcti hig tk plc fgh i th pst f sfficit gtic chgs t hccmltd.

    Transferring useful traits for crop improvement

    T tsf gtic ifmti cfig dtgstits t clti f pfc, bth tsgic (gticmdificti) d -tsgic ppchs c bsd. Th -tsgic ppch is bsd hybidi-zti f tw itis cyig dtgs QTLs sfl g llls, d sbsqt mk-ssistd slc-ti f ths gtic cmpts (Fig. 1). Th ltimtslcti f highly dtgs cmbitis f QTLs

    is clld QTL pymidig10. This ppch ds t c-ssily qi th idtificti f th csl gs btc b cid t sig smll chmsm sgmts,ch f which cis ly QTL. Thticlly,spi llls fm sl m difft ptl

    itis c b itdcd it lit ity f it-st (Fig. 1b). Disdtgs tht this mthd is lbitsi d tim csmig, d tht th tsff lt llls by hybidizti is stictd t thsm spcis.M impttly, th ffctiss f thisppch dpds th gtic chitct f th tit.This is spcilly imptt bcs, if th ttl itif tit ws bsd my gs f smll ffct, this

    sttgy wld t b stightfwd, mstly bcsf cmplxitis tht is wig t gtic d/ g-typ-by-imt itctis. I sch cs, QTLsc b mppd, bt it ds t m tht ths lci dy t b sd f bdig. Th pblm is tht it isft hd t tck ths lci i sbstitti lis inearly senc lnes (nILs), pbbly bcs th ltgtic itctis lst. oly wh th ffcts fQTLs sigifict gh i nILs thy llyilbl f bdig d ls f g clig. Thsm is t wh QTL is tsfd it itywith difft gtic bckgd.

    By ctst, th tsgic ppch ds t qihybidizti, bt ds qi idtificti f th gspsibl f dtgs tit. e gs fm-plt spcis c pttilly b sd. I picipl,cmbitis f sl bficil gs c b ts-fd it th sm plt. Hw, t ll cp sp-cis cltis sily tsfmd. I cl cpsth th ic, tsfmti mthds h ith tb stblishd (f xmpl, i sghm) xistigmthds h ly lw fficicy (f xmpl, i whtd bly). e i ic, sm cltis tsfmdly t lw lls. Ths, tchicl dcs i gmiplti will b qid f impmt f thsplts i th ft. ath pttil limitti is thtth fcti f hmlgs gs is ft t xctly thsm mg plt spcis (, idd, mg plt d-plt spcis), which might cs xpctdd wtd sid-ffcts. F pcticl pplicti,mk-ssistd bckcssig f tsg it cm-mcilly ibl ity is ft dd. Th is ls thiss f th pblic ccptc f gticlly mdifidcps, which is byd th scp f this riw.

    Yield improvement

    amg th tits ffctig cp yilds, w fcs thstht likd t gtic pgmms ctllig thsiz d mb f pdcti gs th thtits tht idictly ild i yild stbility, schs th smi-dwf tit. Hw, it shld b tdtht mdt dcti f plt hight i cl cpsis imptt t id ldgig d thby t icsyilds, s pstd by th G rlti tit.Gs ild i this fm f yild impmt iwht ic kw t cd fct tht it-fs with th sigl tsdcti pthwy f th gwthhm gibblli (Ga) with pdcti f Ga,

    s iwd pisly39. I tms f dlpmtlspcts, tmil-bchig ptt d fit-sizctl sm t b th pdmit dtmits fth yild impmt f fits d gis. I ic,f xmpl, tw bsic tits lgly ffct gi yild: thmb f gis p picl d th siz f th gis.Th mb f gis mstly dpds th bchigptt f picls, whichis dtmid by th ctiityd siz f th sht mistm s wll s th timig ftsiti fm sht t flw4042, whs th sizf th gis flcts cll-diisi ctiity. Stdis thgtic ctl f iflscc stct i miz dth gsss h ctly b iwd43,44.

    R E V I E W S

    448 | June 2008 | voLuMe 9 www.atur.m/rws/ts

    R E V I E W S

    http://www.panzea.org/http://www.ricehapmap.org/http://www.ricehapmap.org/http://www.panzea.org/
  • 8/7/2019 Genetic approaches to crop improvement

    6/14

    a piig stdy f cp yild ws th idtific-ti f g ctllig fit siz i tmt by QTLmppig45. This g fw2.2, th fist QTL g t bpsitilly cld i plts is spsibl f 30% fth diffc i fit mss btw wild d cltdtmt.fw2.2 cds pti with ptil hmlgyt th hm raS cpti, d cts s gtiglt f cll diisi45. Sbsqt stdis shwdtht th ccmlti ffw2.2 tscipts id i tmsf timig d qtity btw th tw ccssis46, dtht xpssi lls gtily cltd t fitmss i tificil g dsg sis47.

    I cl cps, my QTLs ffctig yild d thimp psitis h b listd i thGm dtbs.rctly, ic gs ctllig gi mss h bidtifid by QTL mppig.g3 ws idtifid s mjQTL f gi lgth d mi QTL f gi widthd thickss48.g3 cds ptti tsmmbpti, which might fcti s gti gltf th gwth f gis. ath QTL ctllig giwidth d wight,gw2, hs ls b idtifid49,50.gw2

    cds rInG-typ biqiti e3 ligs, sggstig thtit fctis thgh dgdti f kw tgtpti by th 26S ptsm. Th cdd pti issggstd t b gti glt f cll diisi ispiklt hlls, s lss f fcti icss cll diisid thby gi mss.

    I tms f bch mbs, Gn1a hs b idti-fid s mj QTL ffctig th mb f scdyd ttiy bchs i ic, d thby gi mbsp picl51. Gn1a cds cytkii xids/dhyd-gs (osCKX2), zym tht dgds cytkii,th phythm tht pmts cll diisi. a ic

    ity with high gi yild, Hbtki, hs ptillss-f-fcti lll f ckx2, th g cdigosCKX2, which is xpssd t lw lls th iKshihiki, ity with lw gi yild (Box 2).Th dcd xpssi css cytkii ccmltii iflscc mistms d icss th mbf pdcti gs, cctig f th ics iyild. M, Chis ity, 5150, which hs mgis p picl th Hbtki, ws shw t h ll lll fckx2. Th lw ll xpssi fck2 i5150 is ls cltd with high lls f cytkiii th iflscc mistm. ashiki et al. chidsccssfl QTL pymidig f yild impmtby itdcig th ic G rlti g, d1,which dcs plt hight i th Kshiki gtic

    bckgd, thby gtig ity cyig twbficil tits: high yild d ldgig sistc. Thisw ity is w big ltd ifth fild tilsf fd pdctii Jp.

    QTL-mppig stdis f gi siz d f scd-y d ttiy bchig h ld tht ctlf th cll-diisi cycl is cmm ky gltymchism tht iflcs tw spcts f cp yild.Hw, it is still kw hw th fcts tht hb idtifid glt cll diisi i ch dlp-mtl stg. It ls mis t b lcidtd whthth sm glty mchism pts i th cpspcis, d whth th kwldg gid c thf

    b pt t s i yild impmt css difftspcis. rct wks h shw tht th mbf pimy bchs i picls is pbbly d thctl f fw mj QTLs (M.M., pblishd bs-

    tis), d it will b itstig t s whth thsQTLs ls ild i th cll cycl. F fth yildimpmt i ic, th itdcti f cmbitif th mj QTLs f th difft bt ltd tits sch sg3, Gn1a, d QTLs f pimy bch-ig dditil tits ffctig yild tht likly tb idtifid s52 will b pmisig ppch.Fth impmt shld ls b pssibl, if sp-i g llls cld b fd d itdcd sig lll-miig ppch (Box 2).

    Improving stress tolerance

    Drought tolerance. Dght, tgth with sil sliity, is f th stsss tht tht wldwid cp pdc-tiity mst sly. I tms f physilgy, bth dghtd slt stsss, s wll s ht cld stss, pdclppig spss i plts, icldig ccml-

    ti f smptctts d ht shck ptis, smf which mditd by th ctis f th phyth-m bscisic cid (aBa)20,21,5356. extsi stdis itth sigl tsdcti d tsciptil gltiild i ths spss, mily iA. thaliana, hb iwd ctly21,55,56, d ths t dscibdh. ehcmt f ths spss by g mip-lti ft slts i impd tlc t biticstss, bt th sigificc f my f th gs idti-fid by ths stdis hs t yt b ifid i cpplts i tms f ilbility f bdig. a xcp-ti is nFYB2, tscipti fct f miz, whichcfs dght tlc, ldig t yild impmtd wt-limitd cditis i fild fficcy tils57.This fct ws idtifid s big thlgs t thA. thaliana tscipti fctnFYB1, which ws igi-lly isltd by systmtic tsgic ppch i sc f m th 1,500 tscipti fcts tht wxpssd cstittily iA. thaliana.

    amg cp spcis, sghm hs b stdid s mdl f dght sistc bcs f its dptti tht d dy imts. a pticlly lt titcfig dght tlc twds impmt fsghm is th sty g tit. This is chctizdby dlyd lf sscc dig gi ipig dwt-limitd cditis, which ss btt gifillig d is ft sscitd with sistc t chcl

    t d ldgig58. Physilgiclly, this tit hs bsggstd t clt with sg ctt f stms dwith lls f cytkiis58. Csistt with this, dghttlc is hcd by dlyig lf sscc wh isptyltsfs g f cytkii sythsis isxpssd d th ctl f stss- d mtti-idcd pmt59. Sl QTL-mppig stdis fsty g idtifid f mj QTLs, dsigtd stg1,stg2, stg3, d stg4, which cct f ppximtly20%, 30%, 16% d 10% f th phtypic ic,spctily60. althgh th gs spsibl f thsmj QTLs h t yt b idtifid, it is xpctdtht ct pgss i th sghm gm sqc

    R E V I E W S

    naTure revIeWS |geneTicS voLuMe 9 | June 2008 |449

    f oc uS on g loba l c h a llE n g E S

    http://www.gramene.org/http://www.gramene.org/http://www.gramene.org/db/qtl/qtl_display?qtl_id=3386http://www.gramene.org/db/qtl/qtl_display?qtl_id=3919http://www.gramene.org/db/qtl/qtl_display?qtl_id=3919http://www.gramene.org/db/qtl/qtl_display?qtl_id=10693http://www.gramene.org/db/protein/protein_search?gene_product_id=156175http://www.gramene.org/db/genes/search_gene?acc=GR:0020051http://www.gramene.org/db/genes/search_gene?acc=GR:0060842http://www.expasy.org/uniprot/Q9SLG0http://www.expasy.org/uniprot/Q9SLG0http://www.expasy.org/uniprot/Q9SLG0http://www.gramene.org/db/genes/search_gene?acc=GR:0060842http://www.gramene.org/db/genes/search_gene?acc=GR:0020051http://www.gramene.org/db/protein/protein_search?gene_product_id=156175http://www.gramene.org/db/qtl/qtl_display?qtl_id=10693http://www.gramene.org/db/qtl/qtl_display?qtl_id=3919http://www.gramene.org/db/qtl/qtl_display?qtl_id=3386http://www.gramene.org/
  • 8/7/2019 Genetic approaches to crop improvement

    7/14

    pjct (s th Phytzm wb sit) will fcilitt fimppig f QTLs d sbsqt g idtificti.

    I miz, mj QTL dsigtd root-ABA1 isild i t chitct, aBa cctti dth tits ccdig t wt ilbility61. This QTLccts f 32% f th phtypic iti i aBacctti i th lf. oth QTL stdis i slcps f dght tlc dght-ltd tits hb smmizd i ct iws58,62. M ctly,mj QTLs with lg ffcts (cctig f 3233%f th gtic iti) f gi yild d dght

    stss cditis i pld d lwld ic h bptd63,64. Hw, th gs spsibl h tyt b idtifid i y f ths stdis. Whthth gs dlyig ths QTLs p t b l idticl t pisly idtifid gs, thy pm-isig pptitis f impig dght tlc i

    is cps.

    Submergence tolerance. Sbmgc stss wig tflsh fldig is mj cstit t ic pdctii sth d sthst asi. It css dcd xyg

    Box 2 | Allele mining of natural variation and the design of artificial variants

    After identification of genes

    that are responsible for

    quantitative traits, allele

    mining can be performed.

    This compares the level of

    function of a particular gene,

    and its availability for

    breeding, in two parentalvarieties.

    For example, in the case of

    ckx2 alleles, which encode

    a cytokinin oxidase/

    dehydrogenase (part A in thefigure) the variety with higher

    grain yield, Habataki, has

    lower levels of expression

    than one of the standard

    varieties, Koshihikari,

    although both alleles encode

    functional cytokinin oxidase/

    dehydrogenase. In Habataki,

    the lower expression results in lower levels of cytokinin-degrading enzymes in the inflorescence meristem, leading to

    an increase in the number of grains. Hence, a partial loss-of-function allele of ckx2 in Habataki has been selected in theprocess of breeding, whereas Koshihikari contains a gain-of-function allele. The expected direction for finding a

    superior allele leading to better yield is mining of a gene allele with less function. The predicted direction of suitability

    (indicated by the arrow at the bottom of the graph) was verified by the finding that a high-yielding variety, 5150, with

    much higher grain yield than Habataki carries a null allele of ckx2, this being the most suitable allele for high yield.

    In general in contrast to the simple case as described above to find the most suitable function among gene

    alleles, other gene variants with different levels of gene function should be tested in terms of availability for breeding.

    Possible situations in which conflicts between gene function and availability for breeding affect the overall suitability of

    an allele are illustrated in part B of the figure, which is based on the effects of two initial gene alleles. In the case ofpattern a, in which two additional gene variants with increased function exist among naturally occurring variation(indicated by brown circles), one has a more advantageous effect on availability for breeding, but a second additional

    allele with an even greater gain-of-function causes detrimental side-effects with respect to this attribute. Consequently,

    the former is the most suitable allele, as any artificially designed alleles with increased function are also likely to have

    negative effects on suitability for breeding (dashed brown line). By contrast, in patterns b and , increased gene functionamong variants that occur within naturally existing variation (alleles represented as yellow and blue circles) does not

    have a negative effect on availability for breeding. In such cases, artificial design of new variants (indicated bytriangles) and introduction of these variants by transgenic approaches should be useful for finding the most suitable

    alleles, which might lie beyond the limits of natural variation. In pattern b, optimal gene function is found amongartificially designed alleles. In the case of pattern , the generation of additional gain-of-function alleles is required foroptimization (dashed blue line).

    This advanced allele mining strategy, which is extended by the artificial design of genes, is potentially powerful for

    crop improvement. Using this strategy, the limitations of plant species for allele mining by crossing using traditional

    breeding approaches could also be overcome, for example, by introducing a corresponding gene with a more relevant

    function from other species, such as a transgene. Such a new allele might be found, for example, by carrying out an

    in vitro assay of the activity of the encoded proteins so that the effects of artificial mutations could be examined more

    efficiently. Alternatively, advantageous gene variants might be found in wild relatives or other species, the habitats of

    which feature stressful environments. Once such a superior gene allele is found, homologous recombination might also

    be useful to introduce small mutations at the specific loci107. Thus, a combination of QTL mapping and the transgenic

    approach is likely to become increasingly important in the near future.

    Function ofckx2

    Yield

    Availabilityforbreed

    ing

    Function of gene

    c

    b

    a

    QTLQTL

    ?

    A B

    Suitability Suitability

    Natural variation Natural variation Artificial design

    5150Null allele

    Allele 1

    Allele 2

    Habataki

    Partial loss-of-function allele

    KoshihikariGain-of-function allele

    Most suitablefunction

    Most suitablefunction

    R E V I E W S

    450 | June 2008 | voLuMe 9 www.atur.m/rws/ts

    R E V I E W S

  • 8/7/2019 Genetic approaches to crop improvement

    8/14

    Ethylene response factor

    (ERF). Refers t members

    f a subfamly f the AP2

    transcrptn factr famly,whch s unque t the plant

    lneae. ERF subfamly

    prtens carry a dman

    that s cnserved n ethylene-

    respnsve element-bndn

    prtens.

    Major intrinsic proteins

    (MiPs). A lare prten famly,

    the members f whch act as

    channels n membranes t

    facltate passve transprt f

    small plar mlecules such

    as water, lycerl and urea

    acrss the membrane.

    spply d thby ihibiti f spiti. ric, whichhs itcctd gs spcs clld chym, is th f th fw cps spcis tht hs bility t g-mit d gw i wtlggd sils. Hw, dcmplt sbmgc cditis mst ic cltisct si f m th wk, bt fw clti-

    s, sch s Fr13a f th indica clti, c sip t tw wks. a mj QTL, subergence1 (sub1),is likd t th sbmgc tlc f Fr13a65. Thislcs ctis clst f th gs (sub1A, sub1B,d sub1C) thtcd ptti ethylene respnse fac-trs (erFs)66. Th spsibl g f sbmgctlc hs b idtifid s sub1A67. amg sub1lcs hpltyps i 17 indica d 4jaonica itis, thtlc is cltd withth spcific lll sub1A-1,with SnP btw this d th itlt lll. ectpicxpssi fsub1A-1 i itlt ity icsssil dig sbmgc. M, itgssif th sub1 gs it th widly gw Idi itySw, which lcks sub1A, cfs stg sbmgctlc witht ffctig yild, plt hight, hst

    idx, gi qlity idictd by myls ctt.Dlpmt f sbmgc-tlt itis sigth sm bdig pcd is t dcd stgf sth asi ctis, d hs ls b ptdi Thild68.

    I tms f mchism, th t f sbmgctlc mis cl. SuB1a hs b ppsdt sppss cbhydt csmpti d thbycmpmis gy dficit d sbmgc by ihi-biti f cti f SuB1C, thyl d Ga69. Hw,th hs t b s mch pgss sbmgctlc by gtic lyss th th sub1 stdis.M, difft mchisms might ctl sbm-gc tlc i cps th th ic. Csidigtht my cps ssiti t sil dmpss, fthistigti is dd t dstd th mchismsf sbmgc tlc i ths spcis.

    Aluminium tolerance.I highly cidic sils, whichcstitt p t hlf f th wlds bl lds, l-miim (al) txicity css sigifict dcti icp pdcti70. at lw pH lls (

  • 8/7/2019 Genetic approaches to crop improvement

    9/14

    t-t-sht tspt f b by xylm ldig.Bor1 hs t ptti tsmmb dmis, is sim-il t iml bicbt tspts d its xps-si i yst slts i dcsd b ccttis,idictig tht Bor1 is fflx-typ t spt.Bor1 is spcificlly lclizd i th picycl f ts iA. thaliana, d mdits b xpt fm picyclclls it th t stl pplsm gist cct-ti gdit. ud b-limitig cditis, -xpssi f Bor1 icss bth b tslctit th sht px d its t-t-sht tslcti82.ud cditis f high b cctti, Bor1is tsfd fm th plsm mmb i thdsms t th cl d th dgdd83. This is mchism t id ccmlti f txic lls fb i shts.rctly, th ic thlg f Bor1hs b shw t h l i b ptk dxylm pldig84. It will b itstig t dtmiwhth th gtic miplti f tspts icp spcis will pid pcticl ms f ptctifm b dficicy.

    By ctst, i stdis f plt sistc t btxicity, b-tlt clti f bly Sh ccmltd lw lls f b ccmlti ibth sht d t85. It ws sggstd tht this wsmditd by cti fflx pmpig fm t clls.Csistt with this, high xpssi lls fBOR2, bly hmlg fBOR1 lctd t chmsm4H, cltd with dcti i b cct-ti i ts wh sig lis tht w gtd bybckcssig Sh with b-ssiti clti,Slp86. QTLs spsibl f tlc t b tx-icity hd ls b idtifid i css f Sh dth ssiti ity, Clipp87. Th mj lcs

    ffcts b ccmlti d lf symptms db-txic cditis88. By high-slti mppigf this lcs, Bot1, BOR1 thlg cdig fctil b fflx tspt, ws idtifid sth g spsibl f th b-txicity tlc88.Cmpd with Clipp, Sh ctis f timsm Bot1 cpis, d 160-fld d 18-fld high llsfBot1 tscipts i ts d lf blds, spctily.Th imptc f Bor1-ltd fflx tsptsws fth dmsttd by fctil lyss fA. thaliana Bor4 (REF. 89). I ctst t Bor1, Bor4is t dgdd bt is ccmltd t icsd lls ihigh-b cditis. M, B or4 is lclizdi th plsm mmb f th distl sits f pidmlclls i th lgti z f ts, pbbly -blig th dictil xpt f b t th sil (Fig. 2).Fthm, xpssi f Bor4 css stgtlc t txic ccttis f b, ccmittwith lw lls f b ccmlti i ts dshts cmpd with wild-typ plts.

    Bth th QTL stdis i mct cps d th

    mlcl lyss iA. thaliana sggst tht imp-mt f cp pdctiity i b-txic sils shldb chibl by th itdcti f b fflx ts-pt gs with hcd xpssi. Ths sltsls sggst tht cll typ-spcific glti f ts-pt gs is imptt f ffcti b tspt.Csidig tht th mchism cfig b tl-c is s csd css spcis, it might b pssibl tmiplt BOR gs i my difft cp spcist chi th sm ffct, phps sig th smtsg i difft spcis, if di by sitbl p-mts. This hypthsis will qi cfl xmitid fild cditis.

    Salt tolerance.Th h b ms mlclgtic d physilgicl stdis slt tlc,mstly iA. thaliana20,53,54,90(Fig. 3a). Bcs high c-cttis f cytslic n+ txic, it is impttt limit n+ fm th cytsl by tspts. Thn+H+ xchg SoS1 fcilitts fflx f n+ cssth plsm mmb, whs th cl n +H+tiptnHX1 tspts cytslic n+ it c-ls20,53,54,90. oxpssi f SoS1, nHX1 d thihmlgs cfs hcd slt tlc i myplt spcis, icldig ic d miz54. Th sm ist f avP1, H+-pyphsphts; itstigly,xpssi f AVp1 lll tht cis gi-f-

    fcti mtti slts i t ly hcd tlct slt d dght, bt ls icsd t bimssd phsphs titi9193.

    at whl-plt lls, it is thght tht th blcf n+ d K+ is (th clll n+/K+ ti) is lsimptt f slt tlc, spcilly i clcps94,95. Spptig this thy, th Kna1 lcs wsidtifid s ctibtig t lw n+/K+ ti d thigh slt tlc i bd wht94 d, i wild l-tis f bly with stg slt tlc, ccmltif n+ i lf blds fllwig slt stss w t stik-igly lw lls cmpd with th cltitd bly96.I ic, sl sch gps h dissctd th QTLs

    CoEp En Pc Xy

    Root

    B

    Cs

    B

    B

    BOR4BOR1 NIP5-1

    B

    Figure 2 | Br trasrtrs. Transport of boric acid (B)

    across membranes inArabidopsis thaliana is facilitated by

    a plasma membrane-located channel protein, NIP5-1, and

    by cell-type specific efflux transporters (BOR1 and BOR4).

    NIP5-1 and BOR1 are involved in boron uptake under

    boron-deficient conditions, whereas the boron-exclusion

    activity of BOR4 confers tolerance to toxic concentrations

    of boron. Boron that is taken up into root cells from the

    soil is moved through a symplastic pathway by

    plasmodesmata (dashed arrows), whereas apoplastic

    movement is hindered by the casparian strip (Cs). Co,cortex; En, endodermis; Ep, epidermis; Pc, pericycle;

    Xy, xylem. This figure is modified, with permission, from

    REF. 84 (2007) American Society of Plant Biologists.

    R E V I E W S

    452 | June 2008 | voLuMe 9 www.atur.m/rws/ts

    R E V I E W S

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=100127239&ordinalpos=3&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.expasy.org/uniprot/Q9LKW9http://www.expasy.org/uniprot/Q68KI4http://www.expasy.org/uniprot/P31414http://www.expasy.org/uniprot/P31414http://www.expasy.org/uniprot/Q68KI4http://www.expasy.org/uniprot/Q9LKW9http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=100127239&ordinalpos=3&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 8/7/2019 Genetic approaches to crop improvement

    10/14

    Vacuole

    SOS1 NHX1 AVP1

    PPi 2Pi

    Osmoprotectants CoEp Ex Sc En St

    Root

    Shoot

    Cs Cs

    ?

    H+

    H+

    H+

    H+ H+

    ATP

    ADP

    ATP

    ADP

    Plasma membrane

    HSPs

    NSCC

    Xp

    ?

    Xp

    Cytosol

    ?

    Na+

    Na+Na+

    Na

    + Na+ Na+

    Na+

    Na+

    Na+

    Na+

    Xylemvessel

    SKC1

    HKT1

    NSCC

    a b

    spsibl f itis i n+ d K+ ctt97. usigth slt tlt indica ic ity n Bk d thslt ssitijaonica ity Kshihiki, Li et al.mppd mj QTL f sht K+ ctt i sdligs,skc1, which ws ld t cd HKT-typ ts-pt, SKC1 (ls kw s HKT8 d lt dsigtds HKT1;5)98100. SKC1is th slcti tspt fn+, which is lclizd t th plsm mmb d ispftilly xpssd i th pchym clls s-dig th xylm ssls (Fig. 3b). Th ly isgicli NIL(sKC1), which ctis th slt-tlt sKC1lll f n Bk withi th gtic bckgd fslt-ssiti Kshihiki, ws dmsttd t cfslt tlc t th sdlig stg. ud slt stss,NIL(sKC1) xhibits high K+ ctt d lw n+

    ctt i th sht th th Kshihiki ity. Its, bth n+ d K+ ctt th sm i thtw lis d bth ml d stss cditis,lthgh xpssi fsKC1 is pgltd by sltstss i ts bt t i shts. I xylm sps btt phlm sps, NIL(sKC1) hs m K+ d lss

    n+ th i Kshihiki d slt stss, lthgh diffc ws bsd d ml cditis.

    Bsd ths slts, it is sggstd tht SKC1 c-tibts t n+ d K+ tslcti btw ts dshts, pssibly by n+ ldig fm xylm, thbyffctig th n+/K+ ti i th shts. Th sbsttil diffcs i th xpssi ptt btwNIL(sKC1) d Kshihiki. Hw, wh xpssdi thXenou laevi cyts, SKC1 fm n Bkxhibits high sdim-tsptig ctiity th SKC1fm Kshihiki. Ths, th f-mi-cid diffcbtw th cdd SKC1 ptis, which is lctd ith lps btw th ptti tsmmb dmis,is likly t b spsibl f th fctil diffcbtw th tw itis.

    I dm wht, th QTL Nax1 hs b stdid s gtic cmpt tht cfs lw n+ d high K+ccttis i th lf bld101. usig nILs, Nax1 wsshw t h l cfig slt tlc thghhigh lls f n+ xclsi fm th xylm i th tsd lf shth, thby dcig n+ cctti

    Figure 3 | Mast mdls salt tlra. a | Cellular responses to Na+ toxicity. It is thought that Na+ is

    passively transported into the cytosol by non-selective cation channels (NSCCs)108.To decrease cytosolic Na+

    concentration, two mechanisms operate. One is to exclude Na+ across the plasma membrane. SOS1, a Na+H+

    exchanger located at the plasma membrane, is the only transporter identified in plants that carries out this function.

    Another mechanism is to compartmentalize Na+ into vacuoles, where Na+ is less toxic. This is performed by the

    vacuolar Na+H+ antiporter, NHX1. Both transporter activities require an H+ gradient across the membranes, which is

    generated either by a plasma membrane H+-ATPase or by a vacuolar H+-ATPase (yellow ovals), and by vacuolar H+-

    pyrophosphatase (AVP1). Accumulation of osmoprotectants (for example, betaine, proline and sugar alcohols) and

    heat shock proteins (HSPs) are also induced by salt stress. Overexpression of SOS1, NHX1, and AVP1, as well as HSPs

    or proteins for the biosynthesis of osmoprotectants, has been reported to enhance salt tolerance in several plant

    species. For more details, see REFS 53,54 for reviews. b | Transport of sodium ions in rice. Na+, which is taken up intoroot cells from soils, presumably by NSCCs, is moved by the symplastic pathway through plasmodesmata, whereas

    apoplastic movement of Na+ is hindered by the casparian strip (Cs). For long-distance movement through xylem vessels

    in an apoplastic manner, Na+ is uploaded from root xylem parenchyma cells (Xp) and unloaded by leaf xylem

    parenchyma cells. SKC1, a rice HKT transporter (also known as OsHKT1;5 and previously named OsHKT8), is proposed

    to take up Na+ from xylem vessels into xylem parenchyma. The role of this HKT transporter is also supported by recent

    studies of anArabidopsis thaliana homologue, HKT1;1. Another HKT-type transporter, HKT1 (also known as

    OsHKT2;1)109 is involved in Na+ uptake in the epidermis (Ep) and cortex (Co) in roots only in soil conditions with low

    concentrations of K+ and Na+. This uptake is downregulated in the presence of K+ and Na+, thus it is negligible in stress

    conditions involving salinity. Export of Na+ from epidermal cells and xylem parenchyma is mediated by SOS1 in

    A. thaliana, and possibly by the SOS1 homologue in rice. For more detailed information, see REF. 90 for a review.

    Ex, exodermis; Sc; sclerenchyma cells; En, endodermis; St, stele. Dashed line, breakage of cortex cells generating

    aerenchyma. Part a is modified, with permission, from REF. 54 (2005) Cell Press. Part b is modified, with permission,

    from NatureGeneticsREF. 110 (2005) Macmillan Publishers Ltd.

    R E V I E W S

    naTure revIeWS |geneTicS voLuMe 9 | June 2008 |453

    f oc uS on g loba l c h a llE n g E S

    http://www.expasy.org/uniprot/Q0JNB6http://www.nature.com/ng/index.htmlhttp://www.nature.com/ng/index.htmlhttp://www.nature.com/ng/index.htmlhttp://www.nature.com/ng/index.htmlhttp://www.expasy.org/uniprot/Q0JNB6
  • 8/7/2019 Genetic approaches to crop improvement

    11/14

    Recombinant inbred line

    (RiL). A preny lne carryn

    dspersed hmzyus

    sements f a parental

    chrmsme, frmed after

    several selfed eneratns

    f an F2lne.

    i th lf blds102. By cmpti mppig f whtd ic chmsms, HKT7-A2, cdig sdimtspt, ws sggstd t b stg cdidtg f Nax1 (REF. 103). HKT7-A2 is xpssd ibth ts d lf shths, bt t i lf blds, fslt-tlt wht li 149 d Triticu onococcuC68-101, whs tscipts dtctd i th slt-ssiti Tmi it. This pssibly ccts f thdcsd lls f n+ i lf blds i th tlt lis,by mchism simil t tht ppsd fm th stdyf SKC1 i ic.

    It is still mbigs, hw, t wht xtt SKC1-ltd tspts cct f slt tlc i gl,gi tht th mj QTLs th th sKC1 ctibtt sdlig sibility d slt stss i ic98. echf ths QTLs ccts f 14% t 18% f th ttl ph-typic ic. Ths, idtificti f th gs fsch QTLs d m gtic stdis i mct cpsshld b imptt f btt dstdig f thslt-tlc mchism t th sdlig stg.

    as i th cs f b fflx tspts, mip-lti f th n+ tspt g i cll typ-spcificm shld b ffcti t cf slt tlc imy cps. Sch fi glti wld ls b bfi-

    cil t miimiz pttil sid-ffcts. usig stss-idcd pmt is ltti wy t chi thispps, s xmplifid pisly104. T tsf thbtid kwldg t m pcticl pplicti,it is imptt t csid gtic itctis dgtyp-by-imt itctis. It will b ss-til t dictly cmp th bility f is gs tcf slt tlc, sig th cltis gildmds thgh ith itgssi f th mjQTLs thgh miplti f gs. Cmbitilitdcti f bficil gs by bdig d ts-gic ppchs shld ls b ltd t s thipttil bilitis m ffctily.

    Table 1 | Genes responsible for abiotic stress tolerance and yield improvement in crops identified by QTL analysis

    Trat cr g (adrrt ara xlad)

    edd rt Dr btwt artal arts

    natur alllsutabl r us mrmt

    Rs

    Fruit size Tomato fw2.2 (30%) RAS-related protein Expression level Low expression 4547

    Grain size (weight) Rice gs3 (20%) Transmembrane protein Nonsense mutation Loss of function 48

    Grain size (length) Rice gs3 (55%) Transmembrane protein Nonsense mutation Loss of function 48Grain size (width) Rice gw2 (58%) RING-type ubiquitin E3

    ligase3Premature stop Loss of function 49, 50

    Grain number Rice Gn1a (44%) Cytokinin oxidase/dehydrogenase

    Expression level Loss of function 51

    Submergence tolerance Rice Sub1A (70%) ERF-related factor Presence or absence Gain of function 65, 67

    Aluminium tolerance Wheat ALMT1 (80%) Malate efflux transporter Expression level High expression 72

    Aluminium tolerance Sorghum MATE (80%) Citrate efflux transporter Expression level High expression 74

    Boron toxicity tolerance Barley Bot1 (34%) Boron efflux transporter Expression level High expression 8688

    Salt tolerance (shoot K+concentration)

    Rice SKC1 (40%) HKT-type Na+ transporter Amino-acid substitution Gain of function 98, 99

    Salt tolerance (low Na+in leaves)

    Wheat Nax1 (38%) HKT-type Na+ transporter Expression level High expression 103

    Conclusions and future directions

    Tditil mlcl gtic stdis h ctibtdt dstdig f th dlyig bilgy ildi bitic stss tlc d yild ctl, whsQTL stdis h ld gtic cmpts tht ilbl f thi impmt i xistig itis.Th hs b gd pgss i g idtificti byQTL mppig f tits, icldig yild d tlc tsil stsss (TABLE 1), sm f which pid dditilcls f impmt f spcific tits i giclt.assciti mppig d slcti scs pt-tilly sfl ppchs f ft mppig stdis, bth s f b pfmd ly i miz dA. thal-iana. T s ths mthds, d QTL mppig, mffctily, it will b imptt t dlp pplicblscs, icldig lg-scl cllctis f cltis,ldcs gmplsm lis s wll s ibd lisdid fm thm, with xtsi ifmti btSnPs d th gtic mks. als, btt kwl-dg f pplti stcts is imptt f bttdsig f ssciti stdis d f dt itptti.Stdis tht cmbi QTL mppig d sscitilysis might p m sccssfl th ithsttgy l. a gig fft t bl sch std-

    is is th dlpmt f lg-scl miz-mppigpplti, cmpisig 5,000recmbnant nbred lnesdid fm cssig ch f 25 dis ibd lis t stdd li, B73, i cjcti with lid-ti f thsds f SnPs (f dtils, s th Pzwb sit)22. assciti stdis f cdidt gs,th fctis f which ld by QTL mppigd/ th ppchs, will b spcilly sfl flll miig.

    Sm iitil isights h b pidd it thchitct f tits lt t cp impmt,which gis imptt ifmti f sttgis t sth gtic cmpts tht idtifid. F xmpl,

    R E V I E W S

    454 | June 2008 | voLuMe 9 www.atur.m/rws/ts

    R E V I E W S

    http://www.gramene.org/db/protein/protein_search?gene_product_id=185847http://www.gramene.org/db/protein/protein_search?gene_product_id=185847
  • 8/7/2019 Genetic approaches to crop improvement

    12/14

    f gi yild i ic, sl mj QTLs cct flg ptis f th phtypic iti. Th it-dcti f sch mj QTLs pids fficitsttgy f cp impmt, d itdcig cm-bitis f difft bficil lci by QTL pymid-ig is pmisig ppch. Sch sttgy is mchlss pwfl if tit is ctlld by my QTLs withsmll ffcts. Impttly, thf, th sccss f thQTL-bsd ppch lgly dpds th chic fptl itis t th sttig pit. a ity c-yig mkd impmt i dtgs titis mst dsibl t b sd i cmbiti with stdd ity tht hs b slctd by tditilbdig pgmms. Hw, s f, QTL stdish ft b sttd with itis tht chs th bsis f th ilbility f gtic mks, thth th dtgsss f tits, ldig t dcdchc f fidig mj QTLs with lg ffcts. This isi pt bcs f th limitti f ilbl sqcifmti , m spcificlly, mk ifmti.rct d ft dcs i sqc tchlgis

    d plymphism dtcti will ld t imp-mts i this d will fcilitt m tit-itdstdis.

    ath imptt iss i QTL stdis will b tdstd th t f htsis, hybid ig,which slts i th phtypic spiity f hybid ptl lis d ths hs ldy b sdf pcticl bdig105. a ppch t ssss -dmit ffcts htsis, sig itgssi lisf tmt, hs ctly b ptd106. It will ls bsstil t istigt cmplxitis tht is wig tgtic d gtyp-by-imt itctis, id t btt dstd th gtic chitct fcmplx gmic tits d xpl hw lllic i-ti i hybids might ctibt t plt flxibility i

    spdig t imtl iti pticllyth iti sscitd with climt chg.

    Stdis cid t s f h ls pidd isightsit th xtt t which gs implictd i dt-gs tits likly t b sfl css difft cpspcis. F impig tlc t sil stsss, it-dcti f spcific i tspts is likly t b ffcti sttgy. Bcs ths tspts highlycsd, miplti f th sm g cld ls bsd css spcis. This is i ctst t th g f glt pti ild i sbmgc tlci ic, which sms t b ffcti ly i spcis-spcific m. Fth impmt sig tspt-s shld b chid if spi g llls cldb fd i tl itis d i idcd gtic

    itis (f xmpl, by chmicl mtgsis), by tificil dsig.

    Simil t QTL pymidig, th itdcti fcmbitis f difft bficil gs it lit

    ity thgh th tsgic ppch is ls likly tpid imptt dicti i cp impmt

    (w c cll this tsgic pymidig). Bcs stsscditis, sch s sliity d dght, y dpd-ig lcl climts d ggphicl fts, th fitig f g ctiitis will b qid f pcticlpplicti i ch . F ptimizti i spc-ti cditis, lll miig d g pymidig (byith hybidizti g miplti) will b sflt pdc sis f plts cyig difft cmbi-tis f dtgs gs t difft lls f ctiity.Slctig th ptiml cmbitis mg ths i-tis d ltig th spcific td-ffs, i tmsf bilgicl dptti, pdctiity d cmic

    l, pmiss t pid sltis t p-xistigbitic stsss s wll s pspcti imtlchgs.

    1. Rosegrant, M. W. & Cline, S. A. Global food security:

    challenges and policies. Science302, 19171919

    (2003).

    2. Stocking, M. A. Tropical soils and food security: the

    next 50 years. Science302, 13561359 (2003).

    3. Schmidhuber, J. & Tubiello, F. N. Global food security

    under climate change. Proc. Natl Acad. Sci. USA104,

    1970319708 (2007).

    4. Brown, M. E. & Funk, C. C. Food security under

    climate change. Science319, 580581 (2008).

    5. Chrstensen, J. H. et al. in Climate change 2007:

    The Physical Science Basis. Contribution of

    Working Group I to the Fourth Assessment

    Report of the Intergovernmental Panel on Climate

    Change (eds Solomon, S. et al.) 848940

    (Cambridge University Press, UK and New York,USA, 2007).

    6. Meehl, G. A. et al. in Climate change 2007:

    The Physical Science Basis. Contribution of Working

    Group I to the Fourth Assessment Report of the

    Intergovernmental Panel on Climate Change

    (eds Solomon, S. et al.) 748845 (Cambridge

    University Press, UK and New York, USA, 2007).

    7. Lobell, D. B. et al. Prioritizing climate change

    adaptation needs for food security in 2030. Science

    319, 607610 (2008).

    8. McCouch, S. R. & Doerge, R. W. QTL mapping in rice.

    Trends Genet.11, 482487 (1995).9. Mackay, T. F. The genetic architecture of quantitative

    traits.Annu. Rev. Genet.35, 303339 (2001).

    10. Ashikari, M. & Matsuoka, M. Identification,

    isolation and pyramiding of quantitative trait loci for

    rice breeding. Trends Plant Sci.11, 344350

    (2006).

    11. Alonso, J. M. & Ecker, J. R. Moving forward in reverse:

    genetic technologies to enable genome-wide phenomic

    screens inArabidopsis. Nature Rev. Genet.7,

    524536 (2006).12. Jung, K. H., An, G. & Ronald, P. C. Towards a

    better bowl of rice: assigning function to tens of

    thousands of rice genes. Nature Rev. Genet.9,

    91101 (2008).

    13. Candela, H. & Hake, S. The art and design of

    genetic screens: maize. NatureRev.Genet.9,

    192203 (2008).14. Ichikawa, T. et al. The FOX hunting system: an

    alternative gain-of-function gene hunting technique.

    Plant J.48, 974985 (2006).

    15. Nakamura, H. et al. A genome-wide gain-of function

    analysis of rice genes using the FOX-hunting system.Plant Mol. Biol.65, 357371 (2007).

    16. International Rice Genome Sequencing Project. The

    map-based sequence of the rice genome. Nature436,

    793800 (2005).

    17. Devos, K. M. Updating the crop circle. Curr. Opin.

    Plant Biol.8, 155162 (2005).

    18. Kling, J. The search for a sequencing thoroughbred.

    Nature Biotech.23, 13331335 (2005).

    19. Liang, C. et al. Gramene: a growing plant

    comparative genomics resource. Nucleic Acids Res.

    36, D947D953 (2008).

    20. Zhu, J. K. Plant salt tolerance. Trends Plant Sci.6,

    6671 (2001).

    21. Yamaguchi-Shinozaki, K. & Shinozaki, K.

    Transcriptional regulatory networks in cellular

    responses and tolerance to dehydration and cold

    stresses.Annu. Rev. Plant Biol. 57, 781803

    (2006).

    22. Yu, J. & Buckler, E. S. Genetic association mapping

    and genome organization of maize. Curr. Opin.

    Biotechnol.17, 155160 (2006).

    23. Flint-Garcia, S. A., Thornsberry, J. M. & Buckler, E. S.

    Structure of linkage disequilibrium in plants,Annu.

    Rev. Plant Biol.54, 357374 (2003).

    24. Kim, S. et al. Recombination and linkage

    disequilibrium inArabidopsis thaliana. Nature Genet.

    39, 11511155 (2007).

    25. Hirschhorn, J. N. & Daly, M. J. Genome-wide

    association studies for common diseases and complex

    traits. Nature Rev. Genet.6, 95108 (2005).

    26. Aranzana, M. J. et al. Genome-wide association

    mapping inArabidopsis identifies previously known

    flowering time and pathogen resistance genes. PLoS

    Genet.1, 531539 (2005).27. Zhao, K. et al. AnArabidopsis example of

    association mapping in structured samples.

    PLoS Genet.3, 7182 (2007).

    This paper, as well as references 24 and 26,

    discusses the feasibility of genome-wide

    association mapping in plants.28. Yu, J. et al. A unified mixed-model method for

    association mapping that accounts for multiple

    levels of relatedness. Nature Genet.38, 203208

    (2006).

    This paper reports a new statistical method to

    handle population structure for association mapping.

    29. Buckler, E. & Gore, M. AnArabidopsis haplotype

    map takes root. Nature Genet.39, 10561057

    (2007).

    30. Thornsberry, J. M., et al.Dwarf8 polymorphisms

    associate with variation in flowering time. Nature

    Genet. 28, 286289 (2001).

    R E V I E W S

    naTure revIeWS |geneTicS voLuMe 9 | June 2008 |455

    f oc uS on g loba l c h a llE n g E S

  • 8/7/2019 Genetic approaches to crop improvement

    13/14

    31. Palaisa, K. A., Morgante, M., Williams, M. &

    Rafalski, A. Contrasting effects of selection on

    sequence diversity and linkage disequilibrium at two

    phytoene synthase loci. Plant Cell15, 17951806

    (2003).

    32. Wong, J. C., Lambert, R. J., Wurtzel, E. T. &

    Rocheford, T. R. QTL and candidate genes phytoene

    synthase and zeta-carotene desaturase associated

    with the accumulation of carotenoids in maize.

    Theor. Appl. Genet.108, 349359 (2004).

    33. Harjes, C. E. et al. Natural genetic variation in

    lycopene epsilon cyclase tapped for maizebiofortification. Science319, 330333 (2008).

    This paper is an example of a successful study

    usingcombinational approaches, with association

    analysis, QTL mapping and chemical mutagenesis

    revealing that the variation at thelycElocus has

    major effects on carotenoid and provitamin A

    composition in maize grain.

    34. Wright, S. I. et al. The effects of artificial selection

    on the maize genome. Science308, 13101314

    (2005).

    35. Yamasaki, M. et al. A large-scale screen for artificial

    selection in maize identifies candidate agronomic loci

    for domestication and crop improvement. Plant Cell

    17, 28592872 (2005).

    36. Yamasaki, M., Wright, S. I. & McMullen, M. D.

    Genomic screening for artificial selection during

    domestication and improvement in maize.Ann. Bot.

    100, 967973 (2007).37. Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular

    genetics of crop domestication. Cell127, 13091321

    (2006).

    38. Hamblin, M. T. et al. Challenges of detecting

    directional selection after a bottleneck: lessons from

    Sorghum bicolor. Genetics.173, 953964 (2006).

    39. Hedden, P. The genes of the Green Revolution. Trends

    Genet.19, 59 (2003).

    40. Nakagawa, M., Shimamoto, K. & Kyozuka, J.

    Overexpression ofRCN1 and RCN2, rice TERMINAL

    FLOWER 1/CENTRORADIALIShomologs, confers delay

    of phase transition and altered panicle morphology in

    rice. Plant J.29, 743750 (2002).

    41. Suzaki, T. et al. The gene FLORAL ORGAN

    NUMBER1 regulates floral meristem size in rice

    and encodes a leucine-rich repeat receptor kinase

    orthologous toArabidopsis CLAVATA1. Development

    131, 56495657 (2004).

    42. Kurakawa, T. et al. Direct control of shoot meristem

    activity by a cytokinin-activating enzyme. Nature445,

    652655 (2007).

    43. Bommert, P., Satoh-Nagasawa, N., Jackson, D. &

    Hirano, H. Y. Genetics and evolution of inflorescenceand flower development in grasses. Plant Cell Physiol.

    46, 6978 (2005).

    44. Kellogg, E. A. Floral displays: genetic control of grass

    inflorescences. Curr. Opin. Plant Biol.10, 2631

    (2007).

    45. Frary, A. et al.fw2.2: A quantitative trait locus key to

    the evolution of tomato fruit size. Science289, 8588

    (2000).46. Cong, B., Liu, J. & Tanksley S. D. Natural alleles at a

    tomato fruit size quantitative trait locus differ by

    heterochronic regulatory mutations. Proc. Natl Acad.

    Sci. USA99, 1360613611 (2002).

    47. Liu, J., Cong, B. & Tanksley, S. D. Generation and

    analysis of an artificial gene dosage series in tomato

    to study the mechanisms by which the cloned

    quantitative trait locus fw2.2 controls fruit size.

    Plant Physiol.132, 292299 (2003).

    48. Fan, C. et al.GS3, a major QTL for grain length and

    weight and minor QTL for grain width and thickness in

    rice, encodes a putative transmembrane protein.Theor. Appl. Genet.112, 11641171 (2006).

    49. Yoon, D. B. et al. Mapping quantitative trait loci for

    yield components and morphological traits in an

    advanced backcross population between Oryza

    grandiglumis and the O. sativajaponica cultivar

    Hwaseongbyeo. Theor. Appl. Genet.112, 10521062

    (2006).

    50. Song, X. J., Huang, W., Shi, M., Zhu, M. Z. & Lin, H. X.

    A QTL for rice grain width and weight encodes a

    previously unknown RING-type E3 ubiquitin ligase.

    Nature Genet.39, 623630 (2007).

    51. Ashikari, M. et al. Cytokinin oxidase regulates rice

    grain production. Science309, 741745 (2005).

    This paper provides evidence that levels of the

    phytohormone cytokinin in the inflorescence affect

    the branching pattern of the panicle, and thus the

    grain yield, of rice. A QTL pyramiding method in

    rice is also demonstrated.

    52. Xing, Y. Z., Tang, W. J., Xue, W. Y., Xu, C. G. &

    Zhang, Q. Fine mapping of a major quantitative trait

    loci, qSSP7, controlling the number of spikelets per

    panicle as a single Mendelian factor in rice. Theor.

    Appl. Genet.116, 789796 (2008).

    53. Zhu, J. K. Salt and drought stress signal transduction

    in plants.Annu. Rev. Plant Biol.53, 247273 (2002).

    54. Yamaguchi, T. & Blumwald, E. Developing salt-tolerant

    crop plants: challenges and opportunities. Trends

    Plant Sci.10, 615620 (2005).

    55. Valliyodan, B. & Nguyen, H. T. Understanding

    regulatory networks and engineering for enhanceddrought tolerance in plants. Curr. Opin. Plant Biol.9,

    189195 (2006).

    56. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-

    Shinozaki, K. & Shinozaki, K. Engineering drought

    tolerance in plants: discovering and tailoring genes

    to unlock the future. Curr. Opin. Biotechnol.17,

    113122 (2006).

    57. Nelson, D. E. et al. Plant nuclear factor Y (NF-Y) B

    subunits confer drought tolerance and lead to

    improved corn yields on water-limited acres.

    Proc. Natl Acad. Sci. USA104, 1645016455

    (2007).

    This paper reports a good example to show that

    the identification of a transcription factor in model

    plants can be applied for crop improvement in the

    field.

    58. Sanchez, A. C., Subudhi, P. K., Rosenow, D. T. &

    Nguyen, H. T. Mapping QTLs associated with drought

    resistance in sorghum (Sorghum bicolorL. Moench).

    Plant Mol. Biol.48, 713726 (2002).

    59. Rivero, R. M. et al. Delayed leaf senescence induces

    extreme drought tolerance in a flowering plant.

    Proc. Natl Acad. Sci. USA104, 1963119636

    (2007).

    60. Harris, K. et al. Sorghum stay-green QTL individually

    reduce post-flowering drought-induced leaf

    senescence.J. Exp. Bot.58, 327338 (2007).

    61. Landi, P. et al.RootABA1 QTL affects root lodging,

    grain yield, and other agronomic traits in maize

    grown under well-watered and water-stressed

    conditions.J. Exp. Bot.58, 319326 (2007).

    62. Tuberosa, R. & Salvi, S. Genomics-based approaches

    to improve drought tolerance of crops. Trends Plant

    Sci.11, 405412 (2006).

    63. Bernier, J., Kumar, A., Ramaiah, V., Spaner, D. &

    Atlin, G. A Large-effect QTL for grain yield under

    reproductive-stage drought stress in upland rice.

    Crop Sci. 47, 507516 (2007).

    64. Kumar, R., Venuprasad, R. & Atlin, G. N. Genetic

    analysis of rainfed lowland rice drought tolerance

    under naturally occurring stress in eastern India:heritability and QTL effects. Field Crops Res.103,

    4252 (2007).

    65. Xu, K., Xu, X., Ronald, P. C. & Mackill, D. J.

    A high-resolution linkage map of the vicinity of the

    rice submergence tolerance locus Sub1. Mol. Gen.

    Genet.263, 681689 (2000).

    66. Gutterson, N. & Reuber, T. L. Regulation of disease

    resistance pathways by AP2/ERF transcription factors.

    Curr. Opin. Plant Biol.7, 465471 (2004).

    67. Xu, K. et al.Sub1A is an ethylene-response-factor-

    like gene that confers submergence tolerance to rice.

    Nature442, 705708 (2006).

    This study revealed the responsible gene allele for

    submergence tolerance among natural variations at

    the Sub1 locus in rice.68. Siangliw, M., Toojinda, T., Tragoonrung, S. &

    Vanavichit, A. Thai jasmine rice carrying QTLch9

    (SubQTL) is submergence tolerant.Ann.Bot.91,

    255261 (2003).

    69. Fukao, T., Xu, K., Ronald, P. C. & Bailey-Serres, J.A variable cluster of ethylene response factor-like

    genes regulates metabolic and developmental

    acclimation responses to submergence in rice.

    Plant Cell18, 20212034 (2006).

    70. Kochian, L. V., Hoekenga, O. A. & Pineros, M. A.

    How do crop plants tolerate acid soils? Mechanisms

    of aluminum tolerance and phosphorous efficiency.

    Annu. Rev. Plant Biol. 55, 459493 (2004).

    71. Sasaki, T. et al. A wheat gene encoding an

    aluminum-activated malate transporter. Plant J.

    37, 645653 (2004).

    72. Raman, H. et al. Molecular characterization and

    mapping ofALMT1, the aluminium-tolerance gene of

    bread wheat (Triticum aestivum L.). Genome48,

    781791 (2005).

    73. Delhaize, E. et al. Engineering high-level aluminum

    tolerance in barley with theALMT1 gene. Proc. Natl

    Acad. Sci. USA101, 1524915254 (2004).

    74. Magalhaes, J. V. et al. A gene in the multidrug and

    toxic compound extrusion (MATE) family confers

    aluminum tolerance in sorghum. Nature Genet.39,

    11561161 (2007).

    This paper,and references 7173, show the

    gene(s) responsible for organic-acid exudation,

    which confers aluminium tolerance in crops.

    75. Matoh, T., Kawaguchi, S. & Kobayashi, M. Ubiquity of a

    borate-rhamnogalacturonan II complex in the cell walls

    of higher plants. Plant Cell Physiol.37, 636640 (1996).

    76. ONeill, M. A., Eberhard, S., Albersheim, P. &

    Darvill, A. G. Requirement of borate cross-linking ofcell wall rhamnogalacturonan II forArabidopsis

    growth. Science294, 846849 (2001).

    77. Shorrocks, V. M. The occurrence and correction of

    boron deficiency. Plant Soil193, 121148 (1997).78. Nable, R. O., Banuelos, G. S. & Paull, J. G. Boron

    toxicity. Plant Soil193, 181 (1997).

    79. Dordas, C., Chrispeels, M. J. & Brown, P. H.

    Permeability and channel-mediated transport of boric

    acid across membrane vesicles isolated from squash

    roots. Plant Physiol.124, 13491362 (2000).

    80. Takano, J. et al. TheArabidopsis major intrinsic

    protein NIP5;1 is essential for efficient boron uptake

    and plant development under boron limitation.

    Plant Cell18, 14981509 (2006).

    81. Takano, J. et al.Arabidopsis boron transporter for

    xylem loading. Nature420, 337340 (2002).

    This is the first report of a boron transporter,

    which led to subsequent findings of related boron

    transporter genes, which are responsible for

    tolerance to boron toxicity (see references 86,

    8889).

    82. Miwa, K., Takano, J. & Fujiwara, T. Improvement of

    seed yields under boron-limiting conditions through

    overexpression of BOR1, a boron transporter for

    xylem loading, in Arabidopsis thaliana. Plant J.46,

    10841091 (2006).

    83. Takano, J., Miwa, K., Yuan, L., von Wirn, N. &

    Fujiwara, T. Endocytosis and degradation of BOR1, a

    boron transporter of Arabidopsis thaliana, regulated

    by boron availability. Proc. Natl Acad. Sci. USA102,

    1227612281 (2005).

    84. Nakagawa, Y. et al. Cell-type specificity of the

    expression of Os BOR1, a rice efflux boron

    transporter gene, is regulated in response to boron

    availability for efficient boron uptake and xylem

    loading. Plant Cell19, 26242635 (2007).

    85. Hayes, J. E. & Reid, R. J. Boron tolerance in barley is

    mediated by efflux of boron from the roots. Plant

    Physiol.136, 33763382 (2004).

    86. Reid, R. Identification of boron transporter genes likely

    to be responsible for tolerance to boron toxicity in wheatand barley. Plant Cell Physiol.48, 16731678 (2007).

    87. Jefferies, S. P. et al. Mapping of chromosome regions

    conferring boron toxicity tolerance in barley (Hordeum

    vulgare L.). Theor. Appl. Genet.98, 12931303

    (1999).

    88. Sutton, T. et al. Boron-toxicity tolerance in barley

    arising from efflux transporter amplification. Science

    318, 14461449 (2007).89. Miwa, K. et al. Plants tolerant of high boron levels.

    Science318, 1417 (2007).

    90. Apse, M. P. & Blumwald, E. Na+ transport in plants.

    FEBS Lett.581, 22472254 (2007).

    91. Gaxiola, R. A. et al. Drought- and salt-tolerant plants

    result from overexpression of the AVP1 H+ pump.

    Proc. Natl Acad. Sci. USA98, 1144411449 (2001).92. Park, S. et al. Up-regulation of a H+-pyrophosphatase

    (H+-PPase) as a strategy to engineer drought-resistant

    crop plants. Proc. Natl Acad. Sci. USA102,

    1883018835 (2005).

    93. Yang, H. et al. Enhanced phosphorus nutrition inmonocots and dicots over-expressing a phosphorus-

    responsive type I H+-pyrophosphatase. Plant

    Biotechnol. J.5, 735745 (2007).

    94. Dubcovsky, J., Santa Maria, G., Epstein, E., Luo, M. C.

    & Dvork, J. Mapping of the K+/Na+ discrimination

    locus Kna1 in wheat. Theor. Appl. Genet.2, 448454

    (1996).

    95. Maathuis, F. J. M. & Amtmann, A. K+ nutrition and

    Na+ toxicity: the basis of cellular K+/Na+ ratios.

    Ann. Bot. 84, 123133 (1999).

    96. Garthwaite, A. J., von Bothmer, R. & Colmer, T. D.

    Salt tolerance in wild Hordeum species is associated

    with restricted entry of Na+ and Cl into the shoots.

    J. Exp. Bot.56, 23652378 (2005).

    97. Sahi, C., Singh, A., Kumar, K. Blumwald, E. & Grover, A.

    Salt stress response in rice: genetics, molecular biology,

    and comparative genomics. Funct. Integr. Genomics6,

    263284 (2006).

    R E V I E W S

    456 | June 2008 | voLuMe 9 www.atur.m/rws/ts

    R E V I E W S

  • 8/7/2019 Genetic approaches to crop improvement

    14/14

    98. Lin, H. X. et al. QTLs for Na+ and K+ uptake of the

    shoots and roots controlling rice salt tolerance.

    Theor. Appl. Genet.108, 253260 (2004).

    99. Ren, Z. H. et al. A rice quantitative trait locus for salt

    tolerance encodes a sodium transporter. Nature

    Genet.37, 11411146 (2005).

    This is the first study to reveal a gene that is

    responsible for salt tolerance in monocot cereals

    by a forward genetics approach. The authors

    propose that the sodium transporter is involved

    in long-distance translocation of Na+, which is

    important for salt tolerance in plants.100. Platten, J. D. et al. Nomenclature for HKT transporters,

    key determinants of plant salinity tolerance. Trends

    Plant Sci.11, 372374 (2006).

    101. Lindsay, M. P., Lagudah, E. S., Hare, R. A. & Munns, R.

    (2004). A locus for sodium exclusion (Nax1), a trait for

    salt tolerance, mapped in durum wheat. Funct. Plant

    Biol. 31, 11051114 (2004).

    102. James, R. A., Davenport, R. J. & Munns, R.

    Physiological characterization of two genes for Na+

    exclusion in durum wheat, Nax1 and Nax2. Plant

    Physiol.142, 15371547 (2006).103. Huang, S. et al. A sodium transporter (HKT7)

    is a candidate for Nax1, a gene for salt tolerance

    in durum wheat. Plant Physiol.142, 17181727

    (2006).

    104. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K.

    & Shinozaki, K. Improving plant drought, salt, and

    freezing tolerance by gene transfer of a single stress-

    inducible transcription factor. Nature Biotechnol. 17,

    287291 (1999).

    105. Lippman, Z. B. & Zamir D. Heterosis: revisiting the

    magic. Trends Genet.23, 6066 (2007).

    106. Semel, Y. et al. Overdominant quantitative trait loci for

    yield and fitness in tomato. Proc. Natl Acad. Sci. USA

    103, 1298112986 (2006).

    107. Terada, R., Johzuka-Hisatomi, Y., Saitoh, M., Asao, H.

    & Iida, S. Gene targeting by homologous recombinationas a biotechnological tool for rice functional genomics.

    Plant Physiol. 144, 846856 (2007).

    This report and previous studies by the same

    group have showed the advance in homologous

    recombination in rice.

    108. Demidchik, V. & Maathuis, F. J. Physiological roles of

    nonselective cation channels in plants: from salt stress

    to signalling and development. New Phytol.175,

    387404 (2007).

    109. Horie, T. et al. Rice OsHKT2;1 transporter mediates

    large Na+ influx component into K+-starved roots for

    growth. EMBO J.26, 30033014 (2007).

    110. Rus, A. M., Bressan, R. A. & Hasegana, P. M.

    Unraveling salt tolerance in crops. NatureGenet. 37,

    10291030 (2005).

    AcknowledgementsWe thank M. Maeshima, T. Fujiwara, D. Saisho, M. Ashikari,

    and T. Hattori for useful suggestions.

    DATABASESEtrez gee:http://www.ncbi.nlm.nih.gov/entrez/query.

    fcgi?db=gene

    ALMT1 | Bot1|FRI|PSY1|RPM1 |RPS2|RPS5

    grmee:http://www.gramene.org

    ckx2|Gn1a | gs3|gw2 | HKT7A2 |OsCKX2 | sd1 | Sub1

    uiPrtKb:http://ca.expasy.org/sprotAVP1|BOR1 | NFYB1 | NHX1 | NIP5-1|SKC1|SOS1

    FURTHER INFORMATIONSi Tkeds mepe:

    http://www.agr.nagoya-u.ac.jp/~nubs/index-e.html

    DoE Jit geme Istitte (JgI):http://www.jgi.doe.gov/

    sequencing/cspseqplans2006.html

    Mizeseqee: http://www.maizesequence.org/index.html

    Mizeeme: http://www.maizegenome.org

    Pze:http://www.panzea.org

    Pytzme: http://www.phytozome.net/sorghum

    RiehpMp:http://www.ricehapmap.org

    ALL LinkS ARe AcTive in The onLine pDf

    R E V I E W Sf oc uS on g loba l c h a llE n g E S

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=543388&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=100127239&ordinalpos=3&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=100127239&ordinalpos=3&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=828044&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=828044&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=828044&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=100136882&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=100136882&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=100136882&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=819889&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=819889&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=828715&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=828715&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=828715&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=837775&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=837775&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.gramene.org/http://www.gramene.org/http://www.gramene.org/db/genes/search_gene?acc=GR:0020051http://www.gramene.org/db/genes/search_gene?acc=GR:0020051http://www.gramene.org/db/qtl/qtl_display?qtl_id=10693http://www.gramene.org/db/qtl/qtl_display?qtl_id=10693http://www.gramene.org/db/qtl/qtl_display?qtl_id=3386http://www.gramene.org/db/qtl/qtl_display?qtl_id=3386http://www.gramene.org/db/qtl/qtl_display?qtl_id=3919http://www.gramene.org/db/qtl/qtl_display?qtl_id=3919http://www.gramene.org/db/protein/protein_search?gene_product_id=185847http://www.gramene.org/db/protein/protein_search?gene_product_id=156175http://www.gramene.org/db/protein/protein_search?gene_product_id=156175http://www.gramene.org/db/genes/search_gene?acc=GR:0060842http://www.gramene.org/db/qtl/qtl_display?qtl_id=7285http://ca.expasy.org/sprothttp://www.expasy.org/uniprot/P31414http://www.expasy.org/uniprot/P31414http://www.expasy.org/uniprot/Q8VYR7http://www.expasy.org/uniprot/Q8VYR7http://www.expasy.org/uniprot/Q9SLG0http://www.expasy.org/uniprot/Q68KI4http://www.expasy.org/uniprot/Q9SV84http://www.expasy.org/uniprot/Q9SV84http://www.expasy.org/uniprot/Q0JNB6http://www.expasy.org/uniprot/Q0JNB6http://www.expasy.org/uniprot/Q0JNB6http://www.expasy.org/uniprot/Q9LKW9http://www.expasy.org/uniprot/Q9LKW9http://www.agr.nagoya-u.ac.jp/~nubs/index-e.htmlhttp://www.jgi.doe.gov/sequencing/cspseqplans2006.htmlhttp://www.jgi.doe.gov/sequencing/cspseqplans2006.htmlhttp://www.maizesequence.org/index.htmlhttp://www.maizegenome.org/http://www.maizegenome.org/http://www.panzea.org/http://www.phytozome.net/sorghumhttp://www.ricehapmap.org/http://www.ricehapmap.org/http://www.phytozome.net/sorghumhttp://www.panzea.org/http://www.maizegenome.org/http://www.maizesequence.org/index.htmlhttp://www.jgi.doe.gov/sequencing/cspseqplans2006.htmlhttp://www.jgi.doe.gov/sequencing/cspseqplans2006.htmlhttp://www.agr.nagoya-u.ac.jp/~nubs/index-e.htmlhttp://www.expasy.org/uniprot/Q9LKW9http://www.expasy.org/uniprot/Q0JNB6http://www.expasy.org/uniprot/Q9SV84http://www.expasy.org/uniprot/Q68KI4http://www.expasy.org/uniprot/Q9SLG0http://www.expasy.org/uniprot/Q8VYR7http://www.expasy.org/uniprot/P31414http://ca.expasy.org/sprothttp://www.gramene.org/db/qtl/qtl_display?qtl_id=7285http://www.gramene.org/db/genes/search_gene?acc=GR:0060842http://www.gramene.org/db/protein/protein_search?gene_product_id=156175http://www.gramene.org/db/protein/protein_search?gene_product_id=185847http://www.gramene.org/db/qtl/qtl_display?qtl_id=3919http://www.gramene.org/db/qtl/qtl_display?qtl_id=3386http://www.gramene.org/db/qtl/qtl_display?qtl_id=10693http://www.gramene.org/db/genes/search_gene?acc=GR:0020051http://www.gramene.org/http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=837775&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=828715&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=819889&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=100136882&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=828044&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=100127239&ordinalpos=3&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=543388&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene