GENERATING ELECTRICITY WITHIN THE PHYSIOLOGICAL · PDF file 2013. 7. 19. ·...

Click here to load reader

  • date post

    01-Nov-2020
  • Category

    Documents

  • view

    1
  • download

    0

Embed Size (px)

Transcript of GENERATING ELECTRICITY WITHIN THE PHYSIOLOGICAL · PDF file 2013. 7. 19. ·...

  • Doctor of Philosophy

    University of Pittsburgh

    2007

    of the requirements for the degree of

    the School of Engineering in partial fulfillment

    MS, University of Pittsburgh, 2004

    Submitted to the Graduate Faculty of

    BS, BA, University of Pittsburgh, 2001

    Gusphyl Antonio Justin

    GENERATING ELECTRICITY WITHIN THE PHYSIOLOGICAL ENVIRONMENT FOR LOW POWER IMPLANTABLE MEDICAL

    DEVICE APPLICATIONS: TOWARDS THE DEVELOPMENT OF IN- VIVO BIOFUEL CELL TECHNOLOGIES

    by

  • SCHOOL OF ENGINEERING

    This dissertation was presented

    by

    Gusphyl Antonio Justin

    It was defended on

    June 4th, 2007

    and approved by

    Robert Sclabassi, Professor, Department of Neurological Surgery

    Mingui Sun, Professor, Department of Neurological Surgery

    Harvey Borovetz, Professor, Bioengineering Department

    Xinyan Tracy Cui, Assistant Professor, Bioengineering Department

    Yingze Zhang, Associate Professor, Department of Pulmonary, Allergy and Critical Care Medicine

    David Waldeck, Professor, Chemistry Department

    Dissertation Director: Robert Sclabassi, Professor, Department of Neurological Surgery

    UNIVERSITY OF PITTSBURGH

    ii

  • Copyright © by Gusphyl A. Justin

    2007

    iii

  • GENERATING ELECTRICITY WITHIN THE PHYSIOLOGICAL ENVIRONMENT FOR LOW POWER IMPLANTABLE MEDICAL DEVICE APPLICATIONS: TOWARDS THE

    DEVELOPMENT OF IN-VIVO BIOFUEL CELL TECHNOLOGIES

    Gusphyl A. Justin, PhD

    University of Pittsburgh, 2007

    Electrochemical studies were performed to explore electron transfer (ET) between human white

    blood cells (WBC) and carbon fiber electrodes (CFE). Currently, an active area of research

    involves encouraging ET between microbes and various electrodes in a biofuel cell (BFC). ET

    between microbes and electrodes are thought to occur i) directly through plasma membrane-

    bound electron transport chain proteins; and/or ii) indirectly through the release of metabolic

    products or biomolecules near the electrode surface. An important motivation of this research is

    the need for alternative long lasting power sources for implantable diagnostic and therapeutic

    devices. A particular interest is reducing the size and weight of implantable devices. Currently

    employed internal batteries largely contribute to both. BFCs are promising prospects as they

    couple the oxidation of a biofuel (such as glucose) to the reduction of molecular oxygen to water.

    Both glucose and oxygen are abundantly present within our body’s cells and tissues. The goal of

    this project is to explore the feasibility of utilizing WBCs (a human cell model) to generate

    electricity by fostering direct or indirect ET between these cells - or more specifically, between

    the metabolic processes of these cells - and the anode of a BFC. ET from the metabolic processes

    of whole cells to electrodes had, to the best of our knowledge, only previously been

    demonstrated for microbes. The electrochemical activities of WBCs isolated from whole human

    blood by red blood cell (RBC) lysis, peripheral blood mononuclear cells (PBMCs) isolated on a

    Ficoll-Paque gradient, as well as cells from a BLCL cell line and two leukemia cell lines (K562

    iv

  • and Jurkat) were all investigated by incorporation of the cells into the anode compartment of a

    proton exchange membrane fuel cell (PEMFC). Cyclic voltammetry was employed as an

    electrochemical technique to investigate the ET ability of the cells, as it can reveal both

    thermodynamic and kinetic information regarding oxidation-reduction processes at the CFE

    surface. The results of our studies demonstrate that upon activation, biochemical species, such as

    serotonin, are released by PBMCs, which may become irreversibly oxidized at the electrode

    surface.

    v

  • TABLE OF CONTENTS

    TABLE OF CONTENTS........................................................................................................................... VI

    LIST OF TABLES .................................................................................................................................. VIII

    LIST OF FIGURES ................................................................................................................................... IX

    PREFACE..................................................................................................................................................XII

    1.0 INTRODUCTION...........................................................................................................................1

    2.0 BACKGROUND .............................................................................................................................4

    2.1 CHALLENGES IN ENERGY DELIVERY TO IMPLANTABLE DEVICES ....................................................4

    2.2 POWER SOURCES ...........................................................................................................................6

    2.2.1 Internal Batteries.....................................................................................................................6

    2.2.2 Nuclear Batteries.....................................................................................................................7

    2.2.3 Piezoelectric Devices...............................................................................................................8

    2.2.4 Biological Power Sources .......................................................................................................9

    2.3 TRANSCUTANEOUS ENERGY TRANSMISSION................................................................................11

    3.0 BIOFUEL CELLS: A REVIEW..................................................................................................12

    3.1 INTRODUCTION TO BIOFUEL CELLS ..............................................................................................13

    3.2 MICROBIAL FUEL CELLS...............................................................................................................17

    3.3 ENZYME-BASED BIOFUEL CELLS ..................................................................................................24

    4.0 NADPH OXIDASE .......................................................................................................................28

    5.0 LEUKOCYTE-BASED BIOFUEL CELL STUDY ...................................................................33

    vi

  • 5.1 ABSTRACT ...................................................................................................................................33

    5.2 INTRODUCTION............................................................................................................................34

    5.3 EXPERIMENT I: MATERIALS AND METHODS..................................................................................37

    5.3.1 White blood cell isolation......................................................................................................37

    5.3.2 Biofuel cell Bioreactor Preparation ......................................................................................40

    5.3.3 Cell activation and chemical manipulation ...........................................................................43

    5.4 EXPERIMENT I: RESULTS AND DISCUSSION...................................................................................44

    5.5 EXPERIMENT II: MATERIALS AND METHODS ...............................................................................58

    5.5.1 White blood cell isolation......................................................................................................58

    5.5.2 Measurement of open circuit potential and current ..............................................................59

    5.6 EXPERIMENT II: RESULTS AND DISCUSSION .................................................................................60

    5.7 CONCLUSIONS.............................................................................................................................82

    6.0 CYCLIC VOLTAMMETRY AND HPLC OF LEUKOCYTES ..............................................84

    6.1 ABSTRACT ...................................................................................................................................84

    6.2 INTRODUCTION............................................................................................................................86

    6.3 MATERIALS AND METHOD..................................................................................................88

    6.3.1 Cyclic Voltammetry ...............................................................................................................88

    6.3.2 Microdialysis and High Performance Liquid Chromatography............................................91

    6.4 RESULTS AND DISCUSSION...........................................................................................................95

    6.4.1 Cyclic Voltammetry ...............................................................................................................95

    6.4.2 Microdialysis and HPLC.....