GENERATING ELECTRICITY WITHIN THE PHYSIOLOGICAL · PDF file 2013. 7. 19. ·...
date post
01-Nov-2020Category
Documents
view
1download
0
Embed Size (px)
Transcript of GENERATING ELECTRICITY WITHIN THE PHYSIOLOGICAL · PDF file 2013. 7. 19. ·...
Doctor of Philosophy
University of Pittsburgh
2007
of the requirements for the degree of
the School of Engineering in partial fulfillment
MS, University of Pittsburgh, 2004
Submitted to the Graduate Faculty of
BS, BA, University of Pittsburgh, 2001
Gusphyl Antonio Justin
GENERATING ELECTRICITY WITHIN THE PHYSIOLOGICAL ENVIRONMENT FOR LOW POWER IMPLANTABLE MEDICAL
DEVICE APPLICATIONS: TOWARDS THE DEVELOPMENT OF IN- VIVO BIOFUEL CELL TECHNOLOGIES
by
SCHOOL OF ENGINEERING
This dissertation was presented
by
Gusphyl Antonio Justin
It was defended on
June 4th, 2007
and approved by
Robert Sclabassi, Professor, Department of Neurological Surgery
Mingui Sun, Professor, Department of Neurological Surgery
Harvey Borovetz, Professor, Bioengineering Department
Xinyan Tracy Cui, Assistant Professor, Bioengineering Department
Yingze Zhang, Associate Professor, Department of Pulmonary, Allergy and Critical Care Medicine
David Waldeck, Professor, Chemistry Department
Dissertation Director: Robert Sclabassi, Professor, Department of Neurological Surgery
UNIVERSITY OF PITTSBURGH
ii
Copyright © by Gusphyl A. Justin
2007
iii
GENERATING ELECTRICITY WITHIN THE PHYSIOLOGICAL ENVIRONMENT FOR LOW POWER IMPLANTABLE MEDICAL DEVICE APPLICATIONS: TOWARDS THE
DEVELOPMENT OF IN-VIVO BIOFUEL CELL TECHNOLOGIES
Gusphyl A. Justin, PhD
University of Pittsburgh, 2007
Electrochemical studies were performed to explore electron transfer (ET) between human white
blood cells (WBC) and carbon fiber electrodes (CFE). Currently, an active area of research
involves encouraging ET between microbes and various electrodes in a biofuel cell (BFC). ET
between microbes and electrodes are thought to occur i) directly through plasma membrane-
bound electron transport chain proteins; and/or ii) indirectly through the release of metabolic
products or biomolecules near the electrode surface. An important motivation of this research is
the need for alternative long lasting power sources for implantable diagnostic and therapeutic
devices. A particular interest is reducing the size and weight of implantable devices. Currently
employed internal batteries largely contribute to both. BFCs are promising prospects as they
couple the oxidation of a biofuel (such as glucose) to the reduction of molecular oxygen to water.
Both glucose and oxygen are abundantly present within our body’s cells and tissues. The goal of
this project is to explore the feasibility of utilizing WBCs (a human cell model) to generate
electricity by fostering direct or indirect ET between these cells - or more specifically, between
the metabolic processes of these cells - and the anode of a BFC. ET from the metabolic processes
of whole cells to electrodes had, to the best of our knowledge, only previously been
demonstrated for microbes. The electrochemical activities of WBCs isolated from whole human
blood by red blood cell (RBC) lysis, peripheral blood mononuclear cells (PBMCs) isolated on a
Ficoll-Paque gradient, as well as cells from a BLCL cell line and two leukemia cell lines (K562
iv
and Jurkat) were all investigated by incorporation of the cells into the anode compartment of a
proton exchange membrane fuel cell (PEMFC). Cyclic voltammetry was employed as an
electrochemical technique to investigate the ET ability of the cells, as it can reveal both
thermodynamic and kinetic information regarding oxidation-reduction processes at the CFE
surface. The results of our studies demonstrate that upon activation, biochemical species, such as
serotonin, are released by PBMCs, which may become irreversibly oxidized at the electrode
surface.
v
TABLE OF CONTENTS
TABLE OF CONTENTS........................................................................................................................... VI
LIST OF TABLES .................................................................................................................................. VIII
LIST OF FIGURES ................................................................................................................................... IX
PREFACE..................................................................................................................................................XII
1.0 INTRODUCTION...........................................................................................................................1
2.0 BACKGROUND .............................................................................................................................4
2.1 CHALLENGES IN ENERGY DELIVERY TO IMPLANTABLE DEVICES ....................................................4
2.2 POWER SOURCES ...........................................................................................................................6
2.2.1 Internal Batteries.....................................................................................................................6
2.2.2 Nuclear Batteries.....................................................................................................................7
2.2.3 Piezoelectric Devices...............................................................................................................8
2.2.4 Biological Power Sources .......................................................................................................9
2.3 TRANSCUTANEOUS ENERGY TRANSMISSION................................................................................11
3.0 BIOFUEL CELLS: A REVIEW..................................................................................................12
3.1 INTRODUCTION TO BIOFUEL CELLS ..............................................................................................13
3.2 MICROBIAL FUEL CELLS...............................................................................................................17
3.3 ENZYME-BASED BIOFUEL CELLS ..................................................................................................24
4.0 NADPH OXIDASE .......................................................................................................................28
5.0 LEUKOCYTE-BASED BIOFUEL CELL STUDY ...................................................................33
vi
5.1 ABSTRACT ...................................................................................................................................33
5.2 INTRODUCTION............................................................................................................................34
5.3 EXPERIMENT I: MATERIALS AND METHODS..................................................................................37
5.3.1 White blood cell isolation......................................................................................................37
5.3.2 Biofuel cell Bioreactor Preparation ......................................................................................40
5.3.3 Cell activation and chemical manipulation ...........................................................................43
5.4 EXPERIMENT I: RESULTS AND DISCUSSION...................................................................................44
5.5 EXPERIMENT II: MATERIALS AND METHODS ...............................................................................58
5.5.1 White blood cell isolation......................................................................................................58
5.5.2 Measurement of open circuit potential and current ..............................................................59
5.6 EXPERIMENT II: RESULTS AND DISCUSSION .................................................................................60
5.7 CONCLUSIONS.............................................................................................................................82
6.0 CYCLIC VOLTAMMETRY AND HPLC OF LEUKOCYTES ..............................................84
6.1 ABSTRACT ...................................................................................................................................84
6.2 INTRODUCTION............................................................................................................................86
6.3 MATERIALS AND METHOD..................................................................................................88
6.3.1 Cyclic Voltammetry ...............................................................................................................88
6.3.2 Microdialysis and High Performance Liquid Chromatography............................................91
6.4 RESULTS AND DISCUSSION...........................................................................................................95
6.4.1 Cyclic Voltammetry ...............................................................................................................95
6.4.2 Microdialysis and HPLC.....