Generalized MPLS Premiere Journée Française sur l’IETF

35
Generalized MPLS Premiere Journée Française sur l’IETF Papadimitriou Dimitri [email protected]

description

Generalized MPLS Premiere Journée Française sur l’IETF. Papadimitriou Dimitri [email protected]. Table of Content. GMPLS Key Drivers Evolution of a Standard (from MPLS to GMPLS) GMPLS Paradigm and Concepts Technology Signalling TE-Routing - PowerPoint PPT Presentation

Transcript of Generalized MPLS Premiere Journée Française sur l’IETF

Page 1: Generalized MPLS Premiere Journée Française sur l’IETF

Generalized MPLSPremiere Journée Française sur

l’IETF

Papadimitriou [email protected]

Page 2: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Table of Content

GMPLS Key Drivers Evolution of a Standard (from MPLS to

GMPLS) GMPLS

Paradigm and Concepts Technology Signalling TE-Routing

Key Differences between GMPLS and MPLS What about MPLambdaS ? Applications and Future GMPLS evolutions Conclusion

Page 3: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

GMPLS Key Drivers

Dynamic and Distributed LSP Explicit TE-Route Computation (today: simulation, manual planning and human action)

Dynamic and Distributed intra and inter-domain LSP Setup/ Deletion/ Modification (today: manual and step-by-step provisioning - doesn’t provide “bandwidth on demand” capability)

Network resource optimization when using a peer interconnection model with multi-layer traffic-engineering and protection/restoration (today: provisioned model implies at least waste of 40% - 60% network resources)

Per-LSP (per-LSP Group) Fast Restoration in 200ms to < 1s (today: centralized computation based on restricted scenarios implying restoration time > 5s) and Signalled Protection in < 50ms (as specified in ITU-T G.841)

Page 4: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

GMPLS Key Drivers (cont’d)

Simplified Network control and management (today: each transport layer has its own control and management plane implying waste of 60% - 80% carrier resources)

Removes strong limitations of today proprietary protocols:

b/w network nodes (EMS/control plane) and Centralized NM System

b/w Centralized NM Systems (implying additional proprietary developments)

Conclusion: GMPLS can provide “carrier class” response to new generation transmission networks challenges

Scope: Demystify GMPLS paradigm and related concepts

Page 5: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Control and Transmission Plane Evolutions

Transport plane

Control/management plane

analog(copper)

digital (PDH,SDH)

optical(analog, but now on fiber)

point-to-point

wavelengthswitched

burst/packet

switched

operator-assisted/centrally managed provisioning

non transparent

today1970 1995

automated path setup under distributed control using

GMPLS

opaque

optical

optical

Page 6: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Evolution of a Standard (Scope)

AO Packet Sw itchingUnder developm ent

AO Wavelength w itchingGM PLS (IETF)

AO/NNI Project (O IF)

AO Packet Sw itchingUnder developm entGM PLS Extensions

"Optical SDH/Sonet" since 1998M PLam bdaS/GM PLS (IETF)

UNI - NNI Specifications (O IF)based on Pre-OTN Standards

OT NIT U-T G.709 - G.872"Step to All-Optical"

OT NIT U-T G.709 - G.872

Non-Transparent Optical Netw orksUNI - NNI Specifications

SDH/SonetIT U-T G .707 / ANSI T 1.105

IP/MPLS Developments (since 1996)

IETF Standards

Page 7: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Evolution of a Standard

MPLS: MultiProtocol Label Switching IP packet based Packet Traffic Engineering (MPLS-TE)

MPS: MultiProtocol Lambda Switching MPLS control applied on optical channels

(wavelengths/lambda’s) and IGP TE extensions GMPLS: Generalized MPLS

MPLS control applied on circuits (SDH/Sonet) and optical channel layer and IGP TE extensions

New Protocol introduction: LMP GMPLS: “separation” b/w Technology

dependent and independent LMP extended to “passive devices” via LMP-

WDM GMPLS covers G.707 SDH, G.709 OTN…

IETF 46-48

IETF48-49

IETF50-51

Page 8: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Generalized MPLS Paradigm

GMPLS is based on several premises: maintaining 1:1 relationship control plane technology

and instance with transport plane layer(s) is counter-productive

• “integrated IP/MPLS-Optical control plane” concept maintaining N transport plane layer(s) is counter-

productive• only IP/MPLS packet technologies will remain in long-run• ATM layer pushed toward ACCESS networks• SDH/Sonet layer used as framing for p2p links (just as

Layer-2 IP-over-PPP) re-use MPLS-TE as “non-packet” LSP control plane

• “lightpath” defines switched path (label space values: wavelengths)

• generalize Address Prefix to “non-packet” terminating interfaces

• generalize TE concept to “non-packet” resources

Page 9: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Let’s Be Cautious ! GMPLS “optical” and “optical” GMPLS GMPLS “protocol” but “protocol suite” … a “philosophy” ? GMPLS (as protocol suite)

tends to “ubiquity” by including MPLS (subset of GMPLS) applies to ANY control plane interconnection

(peer/overlay) and service model (domain/unified) covers “standard” mainly ITU-T/T1X1 transmission layers

• issue: who drives ? Transmission or Control plane ? GMPLS (as distributed control plane concept)

collaboration with NMS (during transition phase) in particular for first all-optical deployments

next steps NMS limited to SNMP/Policy/VPN and LDAP Services

and after … ???

Page 10: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Let’s Be Cautious ! (cont’d) Drawbacks and Challenges

“Full applicability” with multi-service devices in “integrated networks”

Pushing “routing protocols” to some limits … requiring LS IGP enhancements, LMP, etc.

Future GMPLS developments could suffer from a lack of “scientific” coverage

IETF Sub-IP Area WG Positioning IPO WG plays “driving role” … from (all-)optical

viewpoint CCAMP WG plays “driving role” … from control and

(monitoring) measurement protocols PPVPN WG can be considered here as “service enabler” Many collaborations with other WG (MPLS, OSPF, ISIS,

etc.) and other bodies: ITU-T/T1X1, IEEE, etc.

Page 11: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Distributed Control Plane Concept

Management Plane

Control Plane

Transport Plane

Distributed

Control Channels

Transport Channels

Management Channels

Network Management

System

Network Controller

Network Device

Page 12: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

GMPLS Technology GMPLS supports five types of interfaces:

PSC - Packet Switching Capable: IP/MPLS L2SC - Layer-2 Switching Capable: ATM, FR, Ethernet TDM - Time-Division Multiplexing: Sonet, SDH, G.709

ODU LSC - Wavelength Switching: Lambda, G.709 OCh FSC - Fiber Switching

GMPLS extends MPLS/MPLS-TE control plane LSP establishment spanning PSC or L2SC interfaces is

defined in MPLS/MPLS-TE control planes GMPLS extends these control planes to support this five

classes of interfaces (i.e. layers) As MPLS-TE, GMPLS provides

separation b/w transmission, control and management plane

network management using SNMP (dedicated MIB)

Page 13: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

GMPLS Technology GMPLS control plane supports:

domain and unified service model overlay, augmented & peer control plane

interconnection model (known as overlay and peer models)

GMPLS control plane architecture includes several extended MPLS-TE building blocks:

Signalling Protocols: RSVP-TE and CR-LDP Intra-domain Routing Protocols: OSPF-TE and ISIS-TE Inter-domain Routing Protocol: BGP Link Management Protocol (LMP): new

TE-Routing enhanced scalability and flexibility Link Bundling (TE-Links) Generalized Unnumbered interfaces Extended Explicit Routing

Page 14: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

GMPLS Signalling

Downstream on demand Label Allocation Ingress LSR initiated Ordered Control Liberal Label retention mode (conservative not

excluded) No distinction b/w Intra and Inter-domain (except

policy) No restriction on LSP establishment strategy

Control/Signalling driven Topology driven Data/Flow driven

Constraint-based Routing: strict and loose explicit routing (hop-by-hop not

excluded) strict routing limited to intra-area routing ! inter-area routing under specification

Page 15: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

GMPLS Signalling Label Space per transport technology (in addition to

MPLS) “Wavelengths” for Lambda LSP SDH/Sonet for TDM LSP G.709 OTN for TDM ODUk and OCh LSP

Signalling Extensions Label Request including:

• LSP Encoding Type• Switching Type• Payload Type

Upstream Label: bi-directional LSP Label Set: tackle wavelength continuity in AO Networks Suggested Label: to improve processing Traffic Parameters including:

• TDM: SDH (ITU-T G.707) and Sonet (ANSI T1.105)• OTN: G.709 OTN (ITU-T G.709) and Pre-OTN

Page 16: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Downstream-on-demand Ordered Control

Suggested Label: 8

Upstream Label: 4

Egress LSR

Ingress LSR

Suggested Label: 3

Upstream Label: 6 Downstream Label: 9

Downstream Label: 5

Suggested Label: 9

Upstream Label: 2

Downstream Label: 8

Page 17: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Traffic Parameters and Label Space

Traffic Parameters Technology “independent” traffic parameters:

• Packet• ATM/Frame Relay• MPLambdaS

Technology “dependent” traffic parameters:• TDM: SDH (ITU-T G.707) and Sonet (ANSI

T1.105)• Optical: G.709 OTN (ITU-T G.709) and Pre-OTN

Extended Label Space (Generalized Label) Wavelength (Waveband) Label Space SDH/SONET Label Space G.709 OTN Label Space

Page 18: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

SDH/Sonet Traffic Parameters

Signal Type SDH: LOVC/TUG and HOVC/AUG SONET: VT/VTG and STS SPE/STS-

GroupRequest Contiguous Concatenation

(RCC) Standard Contiguous Concatenation Arbitrary Contiguous Concatenation Flexible Contiguous Concatenation

Number of components (timeslots)

NCC: Contiguous concatenation NVC: Virtual concatenationMultiplier (multiple connections)Transparency RS/Section OH MS/Line OH per OH Byte (on-demand)

Signal Type (8-bits) RCC (8-bits)

NVC (16-bits)

NCC (16-bits)

Multiplier (16-bits)

Transparency (32-bits)

Page 19: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

SDH/Sonet Label Space Numbering scheme:

For SDH, extension of G.707 numbering scheme (K, L, M) For SONET, field U = 0 = K (not significant). Only S, L and

M fields are significant Each letter indicates a possible branch number starting at

parent node in multiplex structure (increasing order from top of multiplex structure)

U (1,..,4) S (1,..,N) M (1,..,10) L (1,..,8) K (1,..4)

S - indicates a specific AUG-1/STS-1 inside an STM-N/STS-N multiplex U - only significant for SDH, indicates a specific VC inside a given AUG-1 K - only significant for SDH VC-4 (ignored for HO VC-3), indicates a

specific branch of a VC-4. L - indicates a specific branch of a TUG-3, VC-3 or STS-1 SPE (not

significant for unstructured VC-4 or STS-1 SPE) M - indicates a specific branch of a TUG-2/VT Group (not significant for

unstructured VC-4, TUG-3, VC-3 or STS-1 SPE (M=0))

Page 20: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

G.709 OTN Traffic Parameters

Signal Type DTH: ODU1, ODU2 and ODU3 OTH: OCh at 2.5, 10 and 40 GbpsRequest Multiplexing Type (RMT) Direct Multiplexing (flexible) Default: no multiplexing (mapping)

Number of components NMC: Direct Multiplexing NVC: Virtual ComponentsMultiplier (multiple

connections)

NVC (16-bits)

NMC (16-bits)

Multiplier (16-bits)

Reserved (32-bits)

RMT (8-bits) Signal Type (8-bits)

Page 21: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

G.709 OTN Label Space - Definitions

Label Structure defined as Tree: Root: OTUk signal and Leaves: ODUj signals (k j)

3 fields k1, k2 and k3 self-consistently characterising ODUk label space

k1 (1-bit): unstructured client signal mapped into ODU1 (k1 = 1) via OPU1

k2 (3-bit): unstructured client signal mapped into ODU2 (k2 = 1) via OPU2 or the position of ODU1 tributary slot in ODTUG2 (k2 = 2,..,5) mapped into ODU2 (via OPU2)

k3 (6-bit): unstructured client signal mapped into ODU3 (k3 = 1) via OPU3 or the position of ODU1 tributary slot in ODTUG3 (k3 = 2,..,17) mapped into ODU3 (via OPU3) or the position of ODU2 tributary slot in ODTUG3 (k3 = 18,..,33) mapped into ODU3 (via OPU3)

k1 Reserved k2 k3

Page 22: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

G.709 OTN Label Space - Examples

If label k[i]=1 (i = 1, 2 or 3) and labels k[j]=0 (j = 1, 2 and 3with j=/=i), then ODUk signal ODU[i] not structured and mapped into the corresponding OTU[i] (mapping of an ODUk into an OTUk)

Numbering starts at 1 and Label Field = 0 invalid Examples:

k3=0, k2=0, k1=1 indicates an ODU1 mapped into an OTU1 k3=0, k2=1, k1=0 indicates an ODU2 mapped into an OTU2 k3=1, k2=0, k1=0 indicates an ODU3 mapped into an OTU3 k3=0, k2=3, k1=0 indicates the second ODU1 into an

ODTUG2 mapped into an ODU2 (via OPU2) mapped into an OTU2

k3=5, k2=0, k1=0 indicates the fourth ODU1 into an ODTUG3 mapped into an ODU3 (via OPU3) mapped into an OTU3

Page 23: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

GMPLS TE-Routing Extensions

GMPLS based on IP routing and addressing models

IPv4/v6 addresses used to identify PSC and non-PSC interfaces

Re-using of existing routing protocols enables: benefits from existing intra and inter domain traffic-

engineering extensions benefits from existing inter-domain policy

To cover SDH/Sonet, G.709 OTN transmission technology GMPLS-TE defines technology dependent TE extensions

Increasing scalability using Link bundling and unnumbered interfaces

LSP Hierarchy (and region) through Forwarding Adjacency concept (FA-LSP)

Page 24: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

TE-Routing Extensions for SDH/Sonet

TE-Routing information transported OSPF: Link State Advertisements (LSAs) grouped in

OSPF Packet Data Units (PDUs) IS-IS: Link State PDUs (LSPs)

TLVs describing capabilities of SDH/SONET links Link Capability and Allocation

• LS-MC TLV: Link SDH/SONET Multiplex Capability TLV• LS-CC TLV: Link SDH/SONET Concatenation Capability

TLV • LS-PC TLV: Link SDH/SONET Protection Capability TLV • LS-UA TLV: Link SDH/SONET Unallocated Component TLV

Node Capability• RS-I TLV: Router SDH Interconnection TLV• RS-SI TLV: Router SDH-SONET Interworking TLV

Clearly demonstrates rationale for link bundling and unnumbered interfaces

Page 25: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

TE-Routing Extensions for G.709 OTN

TE-Routing information transported OSPF: Link State Advertisements (LSAs) grouped in

OSPF Packet Data Units (PDUs) IS-IS: Link State PDUs (LSPs)

TLVs describing capabilities of G.709 OTN links At ODU Layer

• LD-MP TLV: Link ODUk Mapping Capability TLV• LD-MC TLV: Link ODUk Multiplexing Capability TLV• LD-CC TLV: Link ODUk Concatenation Capability TLV• LD-UA TLV: Link ODUk Unallocated Component TLV

At OCh Layer• LO-MC TLV: Link OCh Multiplexing Capability TLV • LO-UA TLV: Link OCh Unallocated Component TLV

Clearly demonstrates rationale for link bundling and unnumbered interfaces

Page 26: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Link Management Protocol - LMP

LMP Protocol provides: Control Channel dynamic configuration Control Channel maintenance (Hello Protocol) Link Verification (Discovery, Mis-wiring) Link Property Correlation (Link bundling) Fault Management

• detection (using LoS/LoL/etc.)• localization/correlation (alarm suppression)• notification

LMP extended at OIF to cover UNI Neighbor and Service Discovery NNI Adjacency, Neighbor and Service Discovery Further elaboration for SDH/Sonet and G.709

specifics

Page 27: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Key Differences with MPLS-TE Label space(s) including timeslot, wavelength, or

physical space while label stacking is NOT supported Same type of Ingress and Egress LSR interface per LSP Control Sonet/SDH, G.709 OTN, Lambda LSP while

payload can include G.707 SDH/Sonet, G.709 OTN, Lambda, Ethernet, etc.

Bandwidth allocation in discrete units (TDM, LSC and FSC interfaces)

Downstream on demand ordered control (label distribution)

Bi-directional LSP setup (using Upstream Label) Reduced bi-directional LSP setup latency (using

Suggested Label)

Page 28: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Key Differences with MPLS-TE (cont’d)

Label Set to restrict the label choice by downstream node (photonic networks w/o wavelength conversion)

Forwarding Adjacencies in addition to Routing Adjacencies

Fast failure notification/location (for LSP restoration)

Provides enhanced recovery mechanisms (control-plane) in case of signalling channel and/or node failure and “graceful restart”

Page 29: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Each OXC includes the equivalent of MPLS-capable Label-Switching Router (LSR)

MPLS control plane is implemented in each OXC Lambda LSP (or Lightpaths) are considered

similar to MPLS Label-Switched Paths (LSPs) Selection of wavelengths (or lambdas) and OXC

ports are considered similar to selection of labels MPLS signaling protocols (such as RSVP-TE, CR-

LDP) adapted for Lambda LSP setup/delete/etc. IGPs (such as OSPF, ISIS) with “optical” traffic-

engineering extensions used for topology/resource discovery using IP address space (no “reachability extensions”)

What about MPLambdaS ?

Page 30: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

GMPLS Application Scope Optical Internetworking Forum - OIF

UNI 1.0 Signalling Protocol Expected to become major NNI 1.0 Protocol Suite

ITU-T SG15 Q12/Q15: ASTN (G.807)/ASON Model Q9/Q12/Q15: G.DCM using Traffic Parameters Q12/Q15: G.RTG using TE-Routing Extensions Q9/Q11/Q15: G.VBI (LMP-WDM/OLI)

ATM Forum GMPLS as “control plane” for ATM networks

Interoperability Tests OIF UNI Interoperability Test (SuperComm’01 - June’01) GMU MPLS/GMPLS Interop Test (October’01) New: OIF NNI Interoperability Test (SuperComm’02 -

June’02)

Page 31: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

Future Developments Extend connection services to p2mp and mp2mp GMPLS-based Meshed Protection/Restoration Tackling All-Optical challenges

optical routing impairments transparency

Integrate optical (Layer-1/Layer-0) VPN architecture

Keeping track of G.709 OTN evolutions Define a global management model including

performance monitoring/management security and policy ‘optical’ VPN scheduling services billing/accounting

Page 32: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

References - GMPLS E.Mannie, D.Papadimitriou et al., ‘Generalized MPLS Architecture’,

Informationa Draft, draft-ietf-ccamp-gmpls-architecture-01.txt, November 2001

P. Ashwood-Smith, Lou Berger et al., ‘Generalized MPLS Signaling – Signaling Functional Requirements,’ Internet Draft, Work in progress, draft-ietf-mpls-generalized-signalling-06.txt, October 2001

P. Ashwood-Smith, Lou Berger et al., ‘Generalized MPLS Signaling – RSVP-TE Extensions,’ Internet Draft, Work in progress, draft-ietf-mpls-generalized-rsvp-te-05.txt, October 2001

P. Ashwood-Smith, Lou Berger et al., ‘Generalized MPLS Signaling – CR-LDP Extensions,’ Internet Draft, Work in progress, draft-ietf-mpls-generalized-cr-ldp-04.txt, July 2001

E.Mannie, D.Papadimitriou et al., ‘Generalized MPLS Extensions for SONET and SDH Control’, Internet Draft, Work in progress, draft-ietf-ccamp-gmpls-sonet-sdh-02.txt, October 2001

M.Fontana, D.Papadimitriou et al., ‘Generalized MPLS Extensions for G.079 Optical Transport Networks Control’, Internet Draft, Work in progress, draft-fontana-ccamp-gmpls-g709-02.txt, November 2001

Page 33: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

References - (G)MPLS-TE K.Kompella, Y.Rekhter, “Signalling Unnumbered Links in RSVP-TE”,

Internet Draft, Work in progress, draft-ietf-mpls-rsvp-unnum-03.txt, November 2001

K.Kompella, Y.Rekhter, “Signalling Unnumbered Links in CR-LDP”, Internet Draft, Work in progress, draft-ietf-mpls-crldp-unnum-02.txt, March 2001

K.Kompella and Y.Rekhter, LSP Hierarchy with MPLS TE, Internet Draft, Work in progress, draft-ietf-mpls-lsp-hierarchy-03.txt, November 2001

K.Kompella, Y.Rekhter and L. Berger, “Link Bundling in MPLS Traffic Engineering”, Internet Draft, Work in progress, draft-ietf-mpls-bundle-01.txt, November 2001

K. Kompella et al., “Routing Extensions in Support of Generalized MPLS”, Internet Draft, Work in progress, draft-ietf-ccamp-gmpls-routing-01.txt, November 2001

K. Kompella et al., “IS-IS Extensions in Support of Generalized MPLS”, Internet Draft, Work in progress, draft-ietf-isis-gmpls-extensions-05.txt, November 2001

K. Kompella et al. “OSPF Extensions in Support of Generalized MPLS”, Internet Draft, Work in progress, draft-ietf-ccamp-ospf-gmpls-extensions-01.txt, November 01

Page 34: Generalized MPLS Premiere Journée Française sur l’IETF

Papadimitriou D. - Alcatel IPO NA (NSG) DNAC - November 2001

References - MPLS-TE Optical D. Awduche et al., ‘Multi-Protocol Lambda Switching: Combining

MPLS Traffic Engineering Control With Optical Cross-Connects,’ Internet Draft, Work in progress, draft-awduche-mpls-te-optical-03.txt, April 2001

B. Rajagopalan et al., ‘IP over Optical Networks: A Framework,’ Internet Draft, Work in progress, draft-ietf-ipo-framework-01.txt, July 2001

A.Chiu, J.Strand et al., ‘Impairments And Other Constraints On Optical Layer Routing,’ Internet Draft, Work in progress, draft-ietf-ipo-impairments-00.txt, May 2001

D. Papadimitriou et al., ‘Non-linear routing impairments in wavelength switched optical networks,’ Internet Draft, Work in progress, draft-papadimitriou-ipo-non-linear-routing-impairments-01.txt, November 2001

D. Papadimitriou et al., ‘Linear Crosstalk for Impairment-based Optical Routing,’ Internet Draft, Work in progress, draft-papadim-ipo-impairments-crosstalk-00.txt, November 2001

D. Papadimitriou et al., ‘Enhanced LSP Services’, Internet Draft, Work in progress, draft-papadimitriou-enhanced-lsps-04.txt, July 2001

Page 35: Generalized MPLS Premiere Journée Française sur l’IETF

BACKUP SLIDES