Generalized Additive Models - Stanford...

34
MRC c Hastie & Tibshirani January 23, 2000 GAM: 1 Generalized Additive Models Outline Review of generalized additive models Example: Dynamic CAPM model Example: Kyphosis in young children Example: Additive Multinomial Choice Model Fitting GAMs in Splus

Transcript of Generalized Additive Models - Stanford...

Page 1: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 1✬

GeneralizedAdditive Models

Outline

• Review of generalized additive models

• Example: Dynamic CAPM model

• Example: Kyphosis in young children

• Example: Additive Multinomial ChoiceModel

• Fitting GAMs in Splus

Page 2: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 2✬

Additive Models

Y = α+ f1(x1) + f2(x2) + · · ·+ fp(xp) + ε

• Y = α+ β1x1 + β2x2 + ε — linear model

• Y = α+ {β11x1 + β12x21} +β2 log(x2)+

∑j β3j1(cj<x3≤cj+1) + ε

• Y = α+ β1x1 + β2x2 + f3(x3) + ε —semiparametric model

• Y = α+ β1x1 + β2x2 + f3(x3) + f4(x4) + ε

• Y = α+ β1x1 + f2(x2) + f34(x3, x4) + ε

Page 3: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 3✬

A complicated additive model

+ error

x 9

f 89 (x 8 ,x 9 )

x 8

+

x 6

f 67 (x 6 ,x 7 )

+x 7

Y =

x 1

f 1 (x 1 )

x 2

f 2 (x 2 )

+

x 4 =1

x 4 =2f 34 (x 3 ,x 4 )

+

x 3 x 5

f 5 (x 5 )

+

Page 4: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 4✬

The price for additivity

age

base deficit

f1(age)+f2(base deficit)

age

base deficit

f(age, base deficit)

For each value of age, the function of base deficithas the same shape — the level differs. And viceversa.

Page 5: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 5✬

Generalized Additive Models

Logistic Regression

A model for 0/1 data, as in classification problemswith 2 classes. P (Y |X) = Binomial(1, p(X))

logit p(x) = log( p(x)1− p(x)

)= α+ f1(x1) + f2(x2) + · · ·+ fp(xp)

or

p(x) =eα+f1(x1)+f2(x2)+···+fp(xp)

1 + eα+f1(x1)+f2(x2)+···+fp(xp)

Binomial variance:

Var(Y | x) = p(x)(1− p(x))

Log-Likelihood:

�(p) =∑

i

{yi log p(xi) + (1− yi) log(1− p(xi))}

Page 6: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 6✬

Other Examples

• poisson regression—log(µ(x)) = α+ f1(x1) + f2(x2) + · · ·+ fp(xp)

• discrete choice models — survey responsedata

• resistant additive models — taperedlikelihoods

• semiparametric additive models for designedexperiments

• additive decomposition of time series

• additive autoregression models

• varying coefficient models —η(x, t) = α(t) + x1β1(t) + x2β2(t)

Page 7: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 7✬

Seasonal-Trend DecompositionD

ata

320

330

340

350

Tre

nd32

033

034

035

0S

easo

nal

-20

2R

emai

nder

-0.6

-0.2

0.2

0.6

1960 1970 1980

Data are monthly CO2 measurements recorded atMauna-Loa, Hawaii.

Page 8: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 8✬

Fitting Additive Models

Y = f1(x1) + f2(x2) + · · ·+ fp(xp) + ε

Estimating Equations

f1(x1) = S1(y − • − f2(x2) − · · · − fp(xp))

f2(x2) = S2(y − f1(x1) − • − · · · − fp(xp))

...

fp(xp) = Sp(y − f1(x1) − f2(x2) − · · · − •)

where Sj are:

• univariate regression smoothers such as

smoothing splines, lowess, kernel

• linear regression operators yielding polynomial

fits, piecewise constant fits, parametric spline fits,

etc

• more complicated operators such as surface

smoothers for 2nd order interactions

We use Gauss-Seidel or “backfitting” to solve these

estimating equations.

Page 9: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 9✬

Justification?

Example: penalized least squares

Minimizen∑

i=1

(yi−

p∑j=1

fj(xij))2+

p∑j=1

λj

∫(f ′′j (t))

2dt

f1 = S1(λ1)(y −∑j �=1fj)

f2 = S2(λ2)(y −∑j �=2fj)

...

fp = Sp(λp)(y −∑j �=p

fj)

where Sj(λj) denotes a smoothing spline usingvariable xj and penalty coefficient λj . Backfittingconverges to the minimizer.

Page 10: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 10✬

Fitting generalized additive models

Logistic Regression

• Compute starting values: foldj and

ηold =∑

j foldj (xj) e.g. using linear logistic

regression

• Iterate

– construct adjusted dependent variable

zi = ηoldi +

(yi − poldi )

poldi (1− pold

i )

– construct weights wi = poldi (1− pold

i )

– compute ηnew = Awz, the weightedadditive model fit to z.

• Stop when functions don’t change

This is a Newton-Raphson algorithm for apenalized log-likelihood problem.

Page 11: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 11✬

Example: Kyphosis Case Study

This is a medical example, and illustrates thepower of additive models in relatively smallsample scenarios. Logistic regression models areused frequently with economic and financial data.

84 Children at the Toronto Hospital for SickChildren underwent Laminectomy, a correctivespinal surgery for a variety of abnormalities underthe general heading kyphosis.

Results: 65 successes, 19 kyphosis still present.

Goal: Try to understand/predict whether theoperation will be successful

Page 12: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 12✬

050

100

150

200

250

kyphosis no kyphosis

age

in m

onth

s

24

68

1012

14 *

*

kyphosis no kyphosis

num

ber

of le

vels

510

15

******

kyphosis no kyphosis

star

t lev

el

510

1520

****

**

kyphosis no kyphosis

end

leve

l

Page 13: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 13✬

age in months

˚

˚

˚˚˚˚˚

˚˚

˚˚

˚

˚

˚

˚

˚˚˚

˚

˚˚

˚

˚

˚

˚

˚ ˚˚ ˚˚

˚ ˚˚

˚

˚˚˚˚

˚

˚˚̊

˚˚

˚˚

˚˚˚˚

˚

˚˚

˚ ˚

˚˚˚

˚

˚

˚

˚

˚

˚

•••••

• ••••

•• ••• ••

2 4 6 8 10 12 14

˚

˚

˚ ˚˚˚̊˚˚

˚ ˚

˚

˚

˚

˚

˚˚ ˚

˚

˚˚

˚

˚

˚

˚

˚ ˚ ˚˚˚

˚̊˚

˚

˚˚

˚˚˚

˚˚̊

˚˚

˚˚

˚˚˚̊

˚

˚˚

˚ ˚

˚˚

˚

˚

˚

˚

˚

˚

˚

•• •• •

•••

•••• • •• •

•0

50

100

150

200

250

˚ ˚˚̊

˚˚ ˚ ˚˚˚

˚

˚˚˚ ˚˚˚

˚ ˚˚˚ ˚˚ ˚˚ ˚

˚˚˚

˚˚˚˚

˚

˚ ˚ ˚̊˚

˚˚̊

˚˚˚

˚

˚˚ ˚̊˚˚

˚˚̊ ˚˚˚ ˚˚ ˚˚

˚˚ •• ••

• ••••

•••

2

4

6

8

10

12

14

number of levels

˚ ˚˚ ˚

˚̊̊̊˚ ˚

˚

˚˚˚˚ ˚˚˚˚

˚˚ ˚ ˚̊̊˚

˚˚

˚˚˚

˚˚

˚

˚ ˚˚˚˚

˚˚̊

˚̊˚

˚

˚˚ ˚̊˚˚

˚˚ ˚˚˚ ˚˚ ˚̊

˚

˚˚•

• •••

• ••••

•••

˚

˚

˚

˚̊ ˚˚ ˚ ˚

˚

˚˚

˚˚ ˚ ˚

˚

˚

˚

˚

˚

˚

˚˚ ˚˚˚̊˚˚

˚

˚˚˚

˚˚

˚ ˚̊ ˚˚

˚̊˚˚

˚˚

˚

˚

˚̊

˚

˚˚˚

˚˚˚

˚

˚˚ ˚˚ ˚˚

••

•••

• •

••

0 50 100 200

˚

˚

˚

˚˚̊˚˚˚

˚

˚˚

˚˚ ˚˚

˚

˚

˚

˚

˚

˚

˚̊˚˚˚ ˚˚

˚˚

˚ ˚˚

˚˚

˚˚˚˚˚

˚̊˚˚

˚˚

˚

˚

˚˚

˚

˚˚̊˚˚˚

˚

˚˚˚ ˚˚ ˚

••

• ••

••

••

•start level

5

10

15

5 10 15

Page 14: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 14✬

Initial Model

logP (X)

1 − P (X)= f1(Age) + f2(Number) + f3(Start)

age

s(ag

e, 3

)

0 50 100 150 200 250

-4-3

-2-1

01

number

s(nu

mbe

r, 3

)

2 4 6 8 10 12 14

-10

12

34

start

s(st

art,

3)

0 5 10 15

-4-3

-2-1

01

Page 15: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 15✬

Analysis of Deviance

GAM models have to be assessed for overfitting,even more carefully than for parametric models.Do we believe the upswing in the function forNumber?

We can compare a series of nested models usingthe change in deviance, just like we do for linearmodels.Analysis of deviance table for kyphosis data

Model Dev df ∆ Dev ∆ df P-value

null (81 observations) 83.2 80.0

s(age)+s(number)+s(start) 40.8 68.2 42.4 11.8 0.00

s(age)+number+s(start) 46.3 71.1 5.5 2.9 0.13

s(age)+s(start) 48.4 72.1 2.1 1.0 0.14

Page 16: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 16✬

Likelihood Inference: Linear Models

For linear models

H0 : Logit(P (X, Z) = βT X p parameters

H1 : Logit(P (X, Z) = βT X + γT Z p + q parameters

Under H0

2 [LLmax(H1) − LLmax(H0)]n∼∞

χ2q

For Bernoulli data

Dev(Y, Hi)def= −2LLmax(Hi)

Dev(H1, H2) = Dev(Y, H0) − Dev(Y, H1)n∼∞

χ2q

Page 17: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 17✬

Likelihood Inference: Additive Models

H0 : Logit(P (X, Z) = s1(X)

H1 : Logit(P (X, Z) = s1(X) + s2(Z)

Dev(H1, H0) ≈ χ2df

df = EH0Dev(H1, H0)

≈ tr(SZ) − 1

where SZ is the weighted smoothing operator used in

fitting s2(Z).

Similar approximations using smoother matrices gets

standard error estimates for curves.

Page 18: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 19✬

Final Model

age

s(ag

e, 3

)

0 50 100 150 200

-8-6

-4-2

02

4

nonparametric additive fit

start

s(st

art,

3)

5 10 15

-8-6

-4-2

02

4

age

poly

(age

, 2)

0 50 100 150 200

-8-6

-4-2

02

4

parametric approximation

start

(sta

rt -

12)

* I(

star

t > 1

2)

5 10 15

-8-6

-4-2

02

Page 19: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 20✬

Alternative Representation

age

fitte

d pr

eval

ence

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

start < 12

start = 14

age

star

t

0 50 100 150 200

510

15

0.5

0.3

0.1

˚

˚

˚

˚̊˚˚ ˚ ˚

˚

˚

˚˚ ˚

˚˚

˚

˚

˚

˚

˚

˚˚ ˚˚

˚˚

˚

˚

˚

˚ ˚

˚

˚˚

˚ ˚˚ ˚

˚

˚̊˚˚

˚

˚

˚

˚

˚̊

˚

˚

˚˚

˚˚

˚

˚

˚

˚ ˚˚ ˚˚

••

••

Page 20: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 25✬

Example: Discrete Choice Models

Binary and Multinomial logit models are used todetermine the utility function used by a subset ofthe population in selecting from two or morechoices of services.

For example, the following might be 3 scenariospresented in a survey to assess the utility forelectrical services choices. The respondent readsthe configurations and makes a choice A, B or C.

Service Cover-age

InitialCost

MonthlyFee

WinterRatescents/kwh

SummerRatescents/kwh

A Service Drop,Meter

$400 $5 15 30

B None $300 $20 12.5 25

C Service Drop,Meter, InsideWiring

$300 $20 15 25

Each respondent is presented with a different setof three alternatives, mixed and matched in abalanced but random way.

Page 21: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 26✬

Multinomial Choice Model

Individual i is presented with a set of Kalternatives, each described in terms of a vector ofp variables xij , j = 1, . . . ,K. Based on a utilitytheory, we model the probability of choice as

P (Choice = k|set of K alts) =exp(βT xik)∑K�=1 exp(βT xi�)

This is the linear multinomial choice model, andthe parameters β are fit by maximizing theconditional log-likelihood:

�(β) =N∑

i=1

log

[exp(βT xiCi

)∑K�=1 exp(βT xi�)

]

where Ci is the choice made by respondent i.

See “Discrete Choice Analysis” by Ben-Akiva andLerman, MIT Press, 1985.

Page 22: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 27✬

Simulation: Electrical Survey

Our data are proprietary, so we have simulatedsome survey results. In the figure below, thegreen curves represent hypothetical true utilitiesfj(xj) for the jth variable, and the blue curvesthose estimated from our linear model.

The total utility for variable x isη(x) =

∑j fj(xj). A “respondent” is faced with

K = 3 alternatives x�, � = 1, . . . ,K, and picksalternative k with probability

exp(η(xk))/∑

exp(η(x�))

• In practice respondents can see differentnumbers of alternatives

• Although it is usual practice to offeralternatives for each variable from a veryrestricted range, it is not necessary, andinhibits the fitting of nonlinear utilityfunctions.

Page 23: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 28✬

Linear Multinomial Choice Model

The green curves represent hypothetical trueutilities fj(xj) for the jth variable, and the bluecurves those estimated using the linear model.

Monthly Fee ($)

5 10 15 20

-1.5

-0.5

0.5

Line Service

none d/m/wire

Initial Cost ($)

0 100 200 300 400

-1.0

0.0

1.0

Summer Rate (c/kwh)

0.20 0.25 0.30 0.35

-1.0

0.0

1.0

Page 24: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 29✬

Generalized Additive Models

Using generalized additive models, we can modelthe utility contributions fj(xj)non-parametrically.

The penalized conditional log-likelihood mightlook like

�p(η) =N∑

i=1

log

[exp(η(xiCi

))∑K�=1 exp(η(xi�))

]+ J(η)

where Ci is the choice made by respondent i. Hereη(x) =

∑j fj(xj) and J(η) imposes smoothness

constraints on the functions fj implicit in η.

Page 25: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 30✬

Additive Multinomial Choice Model

The green curves represent hypothetical trueutilities fj(xj) for the jth variable, and the bluecurves those estimated from the simulated datausing our generalized additive model.

Monthly Fee ($)

5 10 15 20

-1.5

-0.5

0.5

Line Service

none d/m/wire

Initial Cost ($)

0 100 200 300 400

-1.0

0.0

1.0

Summer Rate (c/kwh)

0.20 0.25 0.30 0.35

-0.5

0.5

1.5

Page 26: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 31✬

Fitting GAMs in Splus

The Splus language and environment for dataanalysis, modeling and graphics comes with toolsfor fitting

• Linear and anova models

• Generalized linear and generalized additivemodels

• Local regression

• Tree based models

• General nonlinear models

• Time series and spatial models

• Survival models

In addition, a wide variety of contributed softwareis available for fitting neural networks models,nearest neighbor methods, discriminant analysis,and almost any useful models used in practice.

Page 27: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 32✬

What tools are available?

Besides a rich functional programming languagefor graphics and statistical computing, specialtools are available for modeling:

• Symbolic formula language

• Data frames

• Software (lm(), aov(), glm(), gam() , ...)

• Classes and Methods

Page 28: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 33✬

GAMs and Formulas

gam(NOx ∼ C + s(E) )

• reads NOx is modeled as C + s(E)

• the first term is linear in C

• the second term is nonparametric in E, to befit using a smoothing spline and a defaultamount of smoothing

Page 29: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 34✬

More formulas

NOx ∼ s(C) + s(E, df=6)

NOx ∼ s(C) + lo(E, degree=2, span=.5)

NOx ∼ C + bs(E, knots=c(0.75,0.9,1.0))

log(NOx) ∼ C * poly(E,4)

NOx ∼ lo(C, E)

Each term in a formula y ∼ a + b can refer to:

• numeric vector

• factor or logical vector

• matrix

• an expression that evaluates to one of theabove

Page 30: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 35✬

gam objects

eth1 <- gam(NOx ∼ C + lo(E, degree=2))

> eth1

Call:

gam(formula = NOx ∼ C + lo(E, degree = 2))

Degrees of Freedom: 88 total; 80.1 Residual

Residual Deviance: 5.2

Page 31: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 36✬

> plot(eth1, se=T, residuals=T)

C

C

8 10 12 14 16 18

-0.5

0.0

0.5

oooooo

oo o

o

o

oo

o

o

o

o

oo

o

ooo

o

oo

o

o

o o

ooo

o

oo

o

o

o

o

o

oo

o

o

o

oo

ooo

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

E

lo(E

, deg

ree

= 2

)

0.6 0.8 1.0 1.2

-2-1

01

2

o

o

o

o

o

o

o

o

o

o

o

ooo

oo

oo

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

oo

oo

o

o

o

o

o

oo

o

oo

o

oo

o

o

o

o

o

o

o

oo

o

o

o

ooo

oo

o

Page 32: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 37✬

Classes and Methods

kyph1 <- gam(Kyphosis ∼ s(Age) + s(Start),

family=binomial)

> class(kyph1)

[1] "gam" "glm" "lm"

Functions like print() and plot() are generic.Some other generics are:

• summary(kyph1)

• update(kyph1, . ∼ . + Number)

• predict(eth1, newdata, se=T)

• anova(kyph1, kyph2, kyph3)

• step(kyph1, scope)

• and extractors such as fitted(), residuals(),and family()

Page 33: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 38✬

Practical Features of GAM Software

• Mixes parametric and nonparametric modelsin a transparent way:

– deviance and degrees of freedom (df) forall terms. (for nonparametric terms we usedf = tr(S)− 1).

– The df can be used to specify the amountof smoothing for any given term. E.G.s(Age, df=1) implies linear, s(Age, df=6)

a rather flexible smooth curve.

– Often parametric functions ortransformations will be suggested by theadditive terms, and subsequent analysiscan be done in parametric mode; e.g. . . .

Page 34: Generalized Additive Models - Stanford Universitystatweb.stanford.edu/~tibs/stat315a/LECTURES/gam.pdf · MRC cHastie&TibshiraniJanuary23,2000 GAM:4 Thepriceforadditivity base deficit

MRC c©Hastie & Tibshirani January 23, 2000 GAM: 39✬

s(Age) + s(Start)

Age

s(A

ge)

0 50 100 150 200

-6-4

-20

2

oo

o

ooo

oo

oo

o

o

oo

o

o

o

o

o

oo

oo

oo

oo

o

o

oo

ooo

o

o

o

o

o

oo

o oo

oo

oo

o

oo

o

o

o

oo

o

o

o

o

oo

ooo

o oo

oo

ooo

ooo

o

o

oo

o

Start

s(S

tart

)

5 10 15-1

0-5

0 oo

o

o

oo

ooo

oo

o

o o

o

oo

o

o

o

o

oo

o

o

o

o

oooo

o o

o

o

o

o

o

o oo

ooo

o

o

oo

o

oo

o

o

o

oo

o

o

oo

o o

o

oo

o

o

oo

o

oo

o

o

oo

o

oo

o

o

Age

poly

(Age

, 2)

0 50 100 150 200

-6-4

-20

2

o o

o

ooo

oo

oo

o

o

oo

o

o

o

o

o

oo

oo

oo

oo

o

o

oo

ooo

o

o

o

o

o

oo

o oo

oooo

o

oo

o

o

o

oo

o

o

o

o

oo

ooo

o o

o

oo

ooo

o

oo

o

o

oo

o

Start

I((S

tart

- 1

0) *

(S

tart

> 1

0))

5 10 15

-4-2

02

4

o

o

o

o

oo

ooo

oo

o

oo

o

oo

o

o

o

o

oo

o

o

o

o

oooo

oo

o

o

o

o

o

oo

o

ooo

o

o

oo

o

o

o

o

o

ooo

o

o

o

o

o o

o

oo

o

o

o

o

oo

o

o

o

oo

o

oo

o

o

poly(Age, 2) + I( (Start-10)*(Start>10) )